51
|
Massa V, Avagliano L, Grazioli P, De Castro SCP, Parodi C, Savery D, Vergani P, Cuttin S, Doi P, Bulfamante G, Copp AJ, Greene NDE. Dynamic acetylation profile during mammalian neurulation. Birth Defects Res 2019; 112:205-211. [PMID: 31758757 PMCID: PMC7004172 DOI: 10.1002/bdr2.1618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens. METHODS We used both human and mouse (Cited2 -/- ) samples to analyze the dynamic acetylation of proteins during embryo development through immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. RESULTS We report the dynamic profile of histone and protein acetylation status during neural tube closure. We also report a rescue effect in an animal model by chemical p53 inhibition. CONCLUSIONS Our data suggest that the p53-acetylation equilibrium may play a role in primary neurulation in mammals.
Collapse
Affiliation(s)
- Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Laura Avagliano
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Sandra C P De Castro
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chiara Parodi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrizia Vergani
- Department of Obstetrics and Gynaecology, Foundation MBBM, University of Milano-Bicocca, Monza, Italy
| | - Serena Cuttin
- Department of Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Patrizia Doi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Andrew J Copp
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
52
|
Avagliano L, Massa V, George TM, Qureshy S, Bulfamante G, Finnell RH. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res 2019; 111:1455-1467. [PMID: 30421543 PMCID: PMC6511489 DOI: 10.1002/bdr2.1380] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
Neural tube defects (NTDs) are the second most common congenital malformations in humans affecting the development of the central nervous system. Although NTD pathogenesis has not yet been fully elucidated, many risk factors, both genetic and environmental, have been extensively reported. Classically divided in two main sub-groups (open and closed defects) NTDs present extremely variable prognosis mainly depending on the site of the lesion. Herein, we review the literature on the histological and pathological features, epidemiology, prenatal diagnosis, and prognosis, based on the type of defect, with the aim of providing important information based on NTDs classification for clinicians and scientists.
Collapse
Affiliation(s)
- Laura Avagliano
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children’s Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Sarah Qureshy
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Gaetano Bulfamante
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Richard H. Finnell
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
53
|
Pei P, Cheng X, Yu J, Shen J, Li X, Wu J, Wang S, Zhang T. Folate deficiency induced H2A ubiquitination to lead to downregulated expression of genes involved in neural tube defects. Epigenetics Chromatin 2019; 12:69. [PMID: 31722724 PMCID: PMC6852770 DOI: 10.1186/s13072-019-0312-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are common congenital malformations resulting in failure of the neural tube closure during early embryonic development. Although it is known that maternal folate deficiency increases the risk of NTDs, the mechanism remains elusive. RESULTS Herein, we report that histone H2A monoubiquitination (H2AK119ub1) plays a role in neural tube closure. We found that the folate antagonist methotrexate induced H2AK119ub1 in mouse embryonic stem cells. We demonstrated that an increase in H2AK119ub1 downregulated expression of the neural tube closure-related genes Cdx2, Nes, Pax6, and Gata4 in mouse embryonic stem cells under folate deficiency conditions. We also determined that the E3 ligase Mdm2 was responsible for the methotrexate-induced increase in H2AK119ub1 and downregulation of neural tube closure-related genes. Surprisingly, we found that Mdm2 is required for MTX-induced H2A ubiquitination and is recruited to the sites of DSB, which is dependent on DNA damage signaling kinase ATM. Furthermore, folic acid supplementation restored H2AK119ub1 binding to neural tube closure-related genes. Downregulation of these genes was also observed in both brain tissue of mouse and human NTD cases, and high levels of H2AK119ub1 were found in the corresponding NTDs samples with their maternal serum folate under low levels. Pearson correlation analysis showed a significant negative correlation between expression of the neural precursor genes and H2AK119ub1. CONCLUSION Our results indicate that folate deficiency contributes to the onset of NTDs by altering H2AK119ub1 and subsequently affecting expression of neural tube closure-related genes. This may be a potential risk factor for NTDs in response to folate deficiency.
Collapse
Affiliation(s)
- Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiyue Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinying Shen
- School of Engineering Technology, Beijing Normal University, Zhuhai, 519085, Guangdong, China
| | - Xue Li
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
54
|
López‐Escobar B, Wlodarczyk BJ, Caro‐Vega J, Lin Y, Finnell RH, Ybot‐González P. The interaction of maternal diabetes with mutations that affect folate metabolism and how they affect the development of neural tube defects in mice. Dev Dyn 2019; 248:900-917. [DOI: 10.1002/dvdy.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Beatriz López‐Escobar
- Neurodevelopment Research GroupInstitute of Biomedicine of Seville/Hospital Virgen del Rocio/US/CSIC Sevilla Spain
- Department of Nutritional SciencesDell Pediatric Research Institute, The University of Texas at Austin Austin Texas USA
| | - Bogdan J. Wlodarczyk
- Department of Nutritional SciencesDell Pediatric Research Institute, The University of Texas at Austin Austin Texas USA
- Departments of Molecular and Cellular Biology and MedicineBaylor College of Medicine Houston Texas USA
| | - Jose Caro‐Vega
- Neurodevelopment Research GroupInstitute of Biomedicine of Seville/Hospital Virgen del Rocio/US/CSIC Sevilla Spain
| | - Ying Lin
- Department of Nutritional SciencesDell Pediatric Research Institute, The University of Texas at Austin Austin Texas USA
- Departments of Molecular and Cellular Biology and MedicineBaylor College of Medicine Houston Texas USA
| | - Richard H. Finnell
- Department of Nutritional SciencesDell Pediatric Research Institute, The University of Texas at Austin Austin Texas USA
- Departments of Molecular and Cellular Biology and MedicineBaylor College of Medicine Houston Texas USA
| | - Patricia Ybot‐González
- Neurodevelopment Research GroupInstitute of Biomedicine of Seville/Hospital Virgen del Rocio/US/CSIC Sevilla Spain
- Department of Neurology and NeurofisiologyHospital Virgen de Macarena Sevilla Spain
| |
Collapse
|
55
|
Kim SE, Lei Y, Hwang SH, Wlodarczyk BJ, Mukhopadhyay S, Shaw GM, Ross ME, Finnell RH. Dominant negative GPR161 rare variants are risk factors of human spina bifida. Hum Mol Genet 2019; 28:200-208. [PMID: 30256984 DOI: 10.1093/hmg/ddy339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Spina bifida (SB) is a complex disorder of failed neural tube closure during the first month of human gestation, with a suspected etiology involving multiple gene and environmental interactions. GPR161 is a ciliary G-protein coupled receptor that regulates Sonic Hedgehog (Shh) signaling. Gpr161 null and hypomorphic mutations cause neural tube defects (NTDs) in mouse models. Herein we show that several genes involved in Shh and Wnt signaling were differentially expressed in the Gpr161 null embryos using RNA-seq analysis. To determine whether there exists an association between GPR161 and SB in humans, we performed direct Sanger sequencing on the GPR161 gene in a cohort of 384 SB patients and 190 healthy controls. We identified six rare variants of GPR161 in six SB cases, of which two of the variants were novel and did not exist in any databases. Both of these variants were predicted to be damaging by SIFT and/or PolyPhen analysis. The novel GPR161 rare variants mislocalized to the primary cilia, dysregulated Shh and Wnt signaling and inhibited cell proliferation in vitro. Our results demonstrate that GPR161 mutations cause NTDs via dysregulation of Shh and Wnt signaling in mice, and novel rare variants of GPR161 can be risk factors for SB in humans.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Yunping Lei
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA.,Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bogdan J Wlodarczyk
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA.,Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA.,Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
56
|
Stigson M, Kultima K, Jergil M, Scholz B, Alm H, Gustafson AL, Dencker L. Molecular Targets and Early Response Biomarkers for the Prediction of Developmental Toxicity In Vitro. Altern Lab Anim 2019; 35:335-42. [PMID: 17650952 DOI: 10.1177/026119290703500313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is an urgent need for new in vitro methods to predict the potential developmental toxicity of candidate drugs in the early lead identification and optimisation process. This would lead to a reduction in the total number of animals required in full-scale developmental toxicology studies, and would improve the efficiency of drug development. However, suitable in vitro systems permitting robust high-throughput screening for this purpose, for the most part, remain to be designed. An understanding of the mechanisms involved in developmental toxicity may be essential for the validation of in vitro tests. Early response biomarkers — even a single one — could contribute to reducing assay time and facilitating automation. The use of toxicogenomics approaches to study in vitro and in vivo models in parallel may be a powerful tool in defining such mechanisms of action and the molecular targets of toxicity, and also for use in finding possible biomarkers of early response. Using valproic acid as a model substance, the use of DNA microarrays to identify teratogen-responsive genes in cell models is discussed. It is concluded that gene expression in P19 mouse embryocarcinoma cells represents a potentially suitable assay system, which could be readily used in a tiered testing system for developmental toxicity testing.
Collapse
Affiliation(s)
- Michael Stigson
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
57
|
Targeted panel sequencing establishes the implication of planar cell polarity pathway and involves new candidate genes in neural tube defect disorders. Hum Genet 2019; 138:363-374. [DOI: 10.1007/s00439-019-01993-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
|
58
|
Zhang H, Guo Y, Gu H, Wei X, Ma W, Liu D, Yu K, Luo W, Ma L, Liu Y, Xue J, Huang J, Wang Y, Jia S, Dong N, Wang H, Yuan Z. TRIM4 is associated with neural tube defects based on genome-wide DNA methylation analysis. Clin Epigenetics 2019; 11:17. [PMID: 30709423 PMCID: PMC6359777 DOI: 10.1186/s13148-018-0603-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are complex abnormalities associated with gene-environment interactions. The underlying cause has not been determined. METHODS Spinal cord tissues from cases with NTDs and healthy controls were collected. Methylation patterns between cases and normal individuals were compared using 450K Infinium Methylation BeadChip Illumina. DNA methylation analysis by pyrosequencing (PyroMark Q96) and mRNA and protein expression were analyzed using real-time quantitative PCR and Western blotting, respectively. Next-generation and Sanger sequencing were used to determine genetic variants in the target genes. RESULTS Spinal cord tissues from cases with NTDs had more hypomethylated than hypermethylated genes. Further evaluation showed that the exon 1 region of TRIM4 was hypomethylated, and TRIM4 mRNA and protein levels were significantly increased in NTDs compared to controls. A rare missense variant (rs76665876) in TRIM4 was found in 3 of the 14 NTD cases but was not related to TRIM4 expression. TRIM4 mRNA levels were significantly increased in cases with hypomethylation and without the rs76665876 variant. CONCLUSION These findings suggest that spinal cord tissues in cases with NTDs had a different genome-wide methylation pattern compared to controls. Abnormal methylation patterns in TRIM4 in immunity pathways might be involved in NTD pathogenesis. Genetic variants in TRIM4 genes only slightly contribute to the etiology of human NTDs.
Collapse
Affiliation(s)
- Henan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yi Guo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Kun Yu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xue
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jieting Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Naixuan Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
59
|
Lin S, Ren A, Wang L, Santos C, Huang Y, Jin L, Li Z, Greene NDE. Aberrant methylation of Pax3 gene and neural tube defects in association with exposure to polycyclic aromatic hydrocarbons. Clin Epigenetics 2019; 11:13. [PMID: 30665459 PMCID: PMC6341549 DOI: 10.1186/s13148-019-0611-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are common and severe congenital malformations. Pax3 is an essential gene for neural tube closure in mice but it is unknown whether altered expression or methylation of PAX3 contributes to human NTDs. We examined the potential role of hypermethylation of Pax3 in the development of NTDs by analyzing human NTD cases and a mouse model in which NTDs were induced by benzo[a]pyrene (BaP), a widely studied polycyclic aromatic hydrocarbon (PAH). METHODS We extracted methylation information of PAX3 in neural tissues from array data of ten NTD cases and eight non-malformed controls. A validation study was then performed in a larger independent population comprising 73 NTD cases and 29 controls. Finally, we examined methylation patterns and expression of Pax3 in neural tissues from mouse embryos of dams exposed to BaP or BaP and vitamin E. RESULTS Seven CpG sites in PAX3 were hypermethylated in NTD fetuses as compared to controls in the array data. In the validation phase, significantly higher methylation levels in the body region of PAX3 were observed in NTD cases than in controls (P = 0.003). And mean methylation intensity in the body region of PAX3 in fetal neural tissues was positively correlated with median concentrations of PAH in maternal serum. In the mouse model, BaP-induced NTDs were associated with hypermethylation of specific CpG sites within both the promoter and body region of Pax3. Supplementation with vitamin E via chow decreased the rate of NTDs, partly recovered the repressed total antioxidant capacity in mouse embryos exposed to BaP, and this was accompanied by the normalization of Pax3 methylation level and gene expression. CONCLUSION Hypermethylation of Pax3 may play a role in the development of NTDs; DNA methylation aberration may be caused by exposure to BaP, with possible involvement of oxidative stress.
Collapse
Affiliation(s)
- Shanshan Lin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.,Division of Birth Cohort Study, and Department of Neonatal Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Chloe Santos
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Yun Huang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Nicholas D E Greene
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
60
|
De Castro SCP, Gustavsson P, Marshall AR, Gordon WM, Galea G, Nikolopoulou E, Savery D, Rolo A, Stanier P, Andersen B, Copp AJ, Greene NDE. Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Hum Mol Genet 2018; 27:4218-4230. [PMID: 30189017 PMCID: PMC6276835 DOI: 10.1093/hmg/ddy313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.
Collapse
Affiliation(s)
- Sandra C P De Castro
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter Gustavsson
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Abigail R Marshall
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - William M Gordon
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Gabriel Galea
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Evanthia Nikolopoulou
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dawn Savery
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ana Rolo
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Philip Stanier
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Andrew J Copp
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
61
|
Lemay P, De Marco P, Traverso M, Merello E, Dionne-Laporte A, Spiegelman D, Henrion É, Diallo O, Audibert F, Michaud JL, Cama A, Rouleau GA, Kibar Z, Capra V. Whole exome sequencing identifies novel predisposing genes in neural tube defects. Mol Genet Genomic Med 2018; 7:e00467. [PMID: 30415495 PMCID: PMC6382446 DOI: 10.1002/mgg3.467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Neural tube defects (NTD) are among the most common defects affecting 1:1000 births. They are caused by a failure of neural tube closure during development. Their clinical presentation is diverse and dependent on the site and severity of the original defect on the embryonic axis. The etiology of NTD is multifactorial involving environmental factors and genetic variants that remain largely unknown. METHODS We have conducted a whole exome sequencing (WES) study in five new NTD families and pooled the results with WES data from three NTD families and 43 trios that were previously investigated by our group. We analyzed the data using biased candidate gene and unbiased gene burden approaches. RESULTS We identified four novel loss-of-function variants in three genes, MTHFR, DLC1, and ITGB1, previously associated with NTD. Notably, DLC1 carried two protein truncating variants in two independent cases. We also demonstrated an enrichment of variants in MYO1E involved in cytoskeletal remodeling. This enrichment reached borderline significance in a replication cohort supporting the association of this new candidate gene to NTD. CONCLUSION These data provide some key insights into the pathogenic mechanisms of human NTD and demonstrate the power of next-generation sequencing in deciphering the genetics of this complex trait.
Collapse
Affiliation(s)
- Philippe Lemay
- CHU Sainte-Justine Research Center, University of Montréal, Montréal, Québec, Canada
| | | | | | | | | | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Édouard Henrion
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ousmane Diallo
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - François Audibert
- CHU Sainte-Justine Research Center, University of Montréal, Montréal, Québec, Canada.,Department of Obstetrics and Gynecology, University of Montréal, Montréal, Québec, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, University of Montréal, Montréal, Québec, Canada.,Department of Pediatrics, University of Montréal, Montréal, Québec, Canada
| | | | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Zoha Kibar
- CHU Sainte-Justine Research Center, University of Montréal, Montréal, Québec, Canada.,Department of Neurosciences, University of Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
62
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
63
|
Bai B, Zhang Q, Wan C, Li D, Zhang T, Li H. CBP/p300 inhibitor C646 prevents high glucose exposure induced neuroepithelial cell proliferation. Birth Defects Res 2018; 110:1118-1128. [PMID: 30114346 DOI: 10.1002/bdr2.1360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Maternal diabetes related neural tube defects (NTDs) are a result of oxidative stress and apoptosis. However, the molecular mechanism behind the pathogenesis is not fully understood. Here, we report that high glucose exposure-induced epigenetic changes influence histone H4 acetylation and neuroepithelial cell proliferation. We also show that the acetyltransferase inhibitor C646 can prevent high glucose induced changes in histone H4 acetylation and neuroepithelial cell proliferation. METHODS By using LC-MS/MS as an unbiased approach, we screened the histone acetylation profile in an E9 neuroepithelial cell line (NE-4C) under high glucose exposure. We further explored the mechanism in cells in vitro and in maternal diabetes-induced mouse embryos in vivo. RESULTS We identified 35 core histone acetylation marks in normal E9 neuroepithelial cells, whereas high glucose exposure resulted in novel acetylation sites on H4K31 and H4K44. Acetylation levels of embryonic development associated H4K5/K8/K12/K16 increased in neuroepithelial cells exposed to high glucose in vitro and in brain tissue from maternal diabetes induced exencephalic embryos in vivo. Further, mRNA level of histone acetyltransferase CBP encoded gene Crebbp was significantly increased both in vitro and in vivo. The addition of C646, a selective inhibitor for CBP/p300, significantly rescued increase of H4K5/K8/K12/K16 acetylation levels and H3S10pi-labeled neuroepithelial cell proliferation induced by high glucose exposure. CONCLUSION Our data provide complementary insights for potential mechanisms of maternal diabetes induced NTDs.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, 80045
| |
Collapse
|
64
|
Liu BH, Wang J, Li CM, Qi L, Song YH, Pan H, Li TY, Wang BB. Novel mutation in SP2 in a Chinese pedigree with Neural tube defects. CNS Neurosci Ther 2018; 24:978-980. [PMID: 29855149 DOI: 10.1111/cns.12988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Bei-Hong Liu
- Graduate School of Peking Union Medical College, Beijing, China.,Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cong-Min Li
- Zhengzhou First People's Hospital, Henan, China
| | - Lin Qi
- Children's Hospital Affiliated to Zhengzhou University, Henan, China
| | - Yan-Hong Song
- Children's Hospital Affiliated to Zhengzhou University, Henan, China
| | - Hong Pan
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Teng-Yan Li
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Bin-Bin Wang
- Graduate School of Peking Union Medical College, Beijing, China.,Center for Genetics, National Research Institute of Family Planning, Beijing, China
| |
Collapse
|
65
|
Shimada IS, Mukhopadhyay S. G-protein-coupled receptor signaling and neural tube closure defects. Birth Defects Res 2018; 109:129-139. [PMID: 27731925 DOI: 10.1002/bdra.23567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Disruption of the normal mechanisms that mediate neural tube closure can result in neural tube defects (NTDs) with devastating consequences in affected patients. With the advent of next-generation sequencing, we are increasingly detecting mutations in multiple genes in NTD cases. However, our ability to determine which of these genes contribute to the malformation is limited by our understanding of the pathways controlling neural tube closure. G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in humans and have been historically favored as drug targets. Recent studies implicate several GPCRs and downstream signaling pathways in neural tube development and closure. In this review, we will discuss our current understanding of GPCR signaling pathways in pathogenesis of NTDs. Notable examples include the orphan primary cilia-localized GPCR, Gpr161 that regulates the basal suppression machinery of sonic hedgehog pathway by means of activation of cAMP-protein kinase A signaling in the neural tube, and protease-activated receptors that are activated by a local network of membrane-tethered proteases during neural tube closure involving the surface ectoderm. Understanding the role of these GPCR-regulated pathways in neural tube development and closure is essential toward identification of underlying genetic causes to prevent NTDs. Birth Defects Research 109:129-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
66
|
Nguyen MP, Lupo PJ, Northrup H, Morrison AC, Cirino PT, Au KS. Maternal gene-micronutrient interactions related to one-carbon metabolism and the risk of myelomeningocele among offspring. Birth Defects Res 2018; 109:99-105. [PMID: 27384413 DOI: 10.1002/bdra.23538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Few studies have evaluated interactions between maternal genetic variation in 5,10-methylenetetrahydrofolate reductase (MTHFR) and micronutrient intake on the risk of myelomeningocele (MM) in offspring. Therefore, we sought to determine if the role of maternal MTHFR C677T and A1298C on MM risk is altered by maternal intake of micronutrients related to one-carbon metabolism. METHODS The study consisted of 220 MM case-parent trios recruited from 1996 to 2006. A dietary questionnaire was used to obtain information on maternal dietary intake on eight micronutrients including folate and cobalamin. TaqMan assays were used to generate MTHFR C677T and A1298C genotypes. Log-linear models were used to evaluate the joint effects of maternal genotype and micronutrient intake dichotomized as at or above versus below the United States Recommended Dietary Allowance (US RDA) on MM. RESULTS There was little evidence to suggest maternal MTHFR genotypes interacted with micronutrient intake to influence the risk of MM. For instance, the effect of MTHFR 677T was similar for mothers with cobalamin intake below US RDA (relative risk [RR] = 0.97) versus at or above US RDA cobalamin intake (RR = 0.81, interaction p = 0.87). However, some differences were noted. For example, the effect of MTHFR 1298C appeared to be different between those mothers below US RDA folate intake (RR = 0.98) versus those at or above US RDA folate intake (RR = 0.68), but the interaction was not statistically significant (interaction p = 0.27). CONCLUSION There did not appear to be strong effects of maternal micronutrient intake on the role of maternal genetic polymorphisms in MTHFR C677T and A1298C on MM risk. Birth Defects Research 109:99-105, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margaret P Nguyen
- Divisions of Neonatology, Department of Pediatrics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas
| | - Paul T Cirino
- Department of Psychology, University of Houston, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| |
Collapse
|
67
|
Gao X, Finnell RH, Wang H, Zheng Y. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid. Birth Defects Res 2018; 110:982-993. [PMID: 29732722 DOI: 10.1002/bdr2.1336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are clinically significant congenital malformations which are known to be folic acid (FA) responsive, such that supplementation significantly reduces the prevalence of NTDs. Nonetheless, some individuals fail to respond to FA supplementation; hence NTDs remain a significant public health concern. The mechanisms that underlie the beneficial effects of FA supplementation remain poorly understood. Mouse models have been used extensively to study the mechanisms driving neural tube closure (NTC). METHODS Microarray data of GSE51285 was downloaded from the NCBI GEO database, which contains the RNA expression profiles of livers from five NTD mouse mutants (heterozygous females) and their corresponding wildtype (WT) controls. Those five NTD mutants have different responsiveness to FA supplementation. The differentially expressed genes (DEGs) between NTD heterozygous and WT mice, as well as the DEGs between FA-responsive and FA-resistant mutants were carefully examined. Weighted gene correlation network analysis (WGCNA) was performed in order to identify genes with high correlations to either FA responsiveness or NTDs, respectively. RESULTS In total, we identified 18 genes related to the pathogenesis of NTDs, as well as 55 genes related to FA responsiveness. Eight more candidate genes (Abcc3, Gsr, Gclc, Mthfd1, Gart, Bche, Slc25a32, and Slc44a2) were identified by examining the DEGs of those genes involved in the extended folate metabolic pathway between FA-responsive and FA-resistant mutants. CONCLUSIONS Those genes are involved in mitochondrial choline metabolism, de novo purine synthesis, and glutathione generation, suggesting that formate, choline, and manipulating antioxidant levels may be effective interventions in FA-resistant NTDs.
Collapse
Affiliation(s)
- Xiaoya Gao
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas.,Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yufang Zheng
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
68
|
Wang L, Xiao Y, Tian T, Jin L, Lei Y, Finnell RH, Ren A. Digenic variants of planar cell polarity genes in human neural tube defect patients. Mol Genet Metab 2018; 124:94-100. [PMID: 29573971 PMCID: PMC5966321 DOI: 10.1016/j.ymgme.2018.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Neural tube defects (NTDs) are considered to be a complex genetic disorder, although the identity of the genetic factors remains largely unknown. Mouse model studies suggest a multifactorial oligogenic pattern of inheritance for NTDs, yet evidence from published human studies is surprisingly absent. In the present study, targeted next-generation sequencing was performed to screen for DNA variants in the entire coding regions and intron-exon boundaries of targeted genes using DNA samples from 510 NTD cases. These candidate genes were PCP genes, including VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3 and PTK7. Candidate variants were validated using Sanger sequencing. A total of 397 single nucleotide variants(SNVs) were identified with a mean depth of approximately 570×. Of these identified SNVs, 74 were predicted to affect protein function and had a minor allele frequency of <0.01 or unknown. Among these 74 missense SNVs, 10 were identified from six NTD cases that carried two mutated genes. Of the six NTD cases, three spina bifida cases and one anencephaly case carried digenic variants in the CELSR1 and SCRIB gene; one anencephaly case carried variants in the CELSR1 and DVL3 gene; and one spina bifida case carried variants in the PTK7 and SCRIB genes. Three cases that parental samples were available were confirmed to be compound heterozygous. None of the digenic variants were found in the 1000 genome database. The findings imply that genetic variation might interact in a digenic fashion to generate the visible NTD phenotypes and emphasize the importance of these genetic interactions in the development of NTDs in humans.
Collapse
Affiliation(s)
- Linlin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yanhui Xiao
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
69
|
Tian T, Wang L, Shen Y, Zhang B, Finnell RH, Ren A. Hypomethylation of GRHL3 gene is associated with the occurrence of neural tube defects. Epigenomics 2018; 10:891-901. [PMID: 29587534 DOI: 10.2217/epi-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To investigate the relationship between GRHL3 methylation and the etiology of neural tube defects (NTDs). MATERIALS & METHODS Analyze data from a genome-wide DNA methylation array. Targeted DNA methylation analysis was performed for 46 cases and 23 controls. At last, grhl3 overexpression and gene depletion experiments were conducted in zebrafish. RESULTS Five hypomethylated CpGs were discovered in the methylation arrays performed on NTD cases. In a validation study, 15 hypomethylated CpGs were found and the overall methylation levels decreased in brain/spinal cord tissue from NTD cases. The knockdown and overexpression of grhl3 in zebrafish damaged embryonic convergent extension processes. CONCLUSION Hypomethylation of GRHL3 in central nervous tissue is associated with NTDs, further supporting the importance of GRHL3 and methylation in proper neural tube closure.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive & Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, PR China
| | - Linlin Wang
- Institute of Reproductive & Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, PR China
| | - Yan Shen
- Key Laboratory of Cell Proliferation & Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, PR China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation & Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, PR China
| | - Richard H Finnell
- Departments of Molecular & Cellular Biology & Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aiguo Ren
- Institute of Reproductive & Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, PR China
| |
Collapse
|
70
|
Key apoptotic genes APAF1 and CASP9 implicated in recurrent folate-resistant neural tube defects. Eur J Hum Genet 2018; 26:420-427. [PMID: 29358613 PMCID: PMC5838979 DOI: 10.1038/s41431-017-0025-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Neural tube defects (NTDs) remain one of the most serious birth defects, and although genes in several pathways have been implicated as risk factors for neural tube defects via knockout mouse models, very few molecular causes in humans have been identified. Whole exome sequencing identified deleterious variants in key apoptotic genes in two families with recurrent neural tube defects. Functional studies in fibroblasts indicate that these variants are loss-of-function, as apoptosis is significantly reduced. This is the first report of variants in apoptotic genes contributing to neural tube defect risk in humans.
Collapse
|
71
|
Orriss IR, Lanham S, Savery D, Greene NDE, Stanier P, Oreffo R, Copp AJ, Galea GL. Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Sci Rep 2018; 8:3325. [PMID: 29463853 PMCID: PMC5820290 DOI: 10.1038/s41598-018-21718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
72
|
Au KS, Findley TO, Northrup H. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned. Am J Med Genet A 2017; 173:3042-3057. [PMID: 28944587 PMCID: PMC5650505 DOI: 10.1002/ajmg.a.38478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed.
Collapse
Affiliation(s)
- KS Au
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - TO Findley
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
- Shriners Hospitals for Children - Houston, Houston, TX
| |
Collapse
|
73
|
Eibach S, Moes G, Hou YJ, Zovickian J, Pang D. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 2017; 33:1633-1647. [PMID: 27796548 DOI: 10.1007/s00381-016-3288-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. METHODS AND RESULTS We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. CONCLUSION The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.
Collapse
Affiliation(s)
- Sebastian Eibach
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Paediatric Neurosurgery, Altona Children's Hospital, Hamburg, Germany
| | - Greg Moes
- Neuropathology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Adjunct Faculty of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yong Jin Hou
- Intraoperative Neurophysiology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - John Zovickian
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - Dachling Pang
- Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA.
- Paediatric Neurosurgery, University of California, Davis, CA, USA.
- Great Ormond Street Hospital for Children, NHS Trust, London, UK.
- Department of Paediatric Neurosurgery, Kaiser Permanente Medical Centre, Third Floor, Suite 39, 3600 Broadway, Oakland, CA, 94611, USA.
| |
Collapse
|
74
|
Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B, Elmore SA. Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicol Pathol 2017; 45:705-744. [PMID: 28891434 DOI: 10.1177/0192623317728134] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evaluation of the central nervous system (CNS) in the developing mouse presents unique challenges, given the complexity of ontogenesis, marked structural reorganization over very short distances in 3 dimensions each hour, and numerous developmental events susceptible to genetic and environmental influences. Developmental defects affecting the brain and spinal cord arise frequently both in utero and perinatally as spontaneous events, following teratogen exposure, and as sequelae to induced mutations and thus are a common factor in embryonic and perinatal lethality in many mouse models. Knowledge of normal organ and cellular architecture and differentiation throughout the mouse's life span is crucial to identify and characterize neurodevelopmental lesions. By providing a well-illustrated overview summarizing major events of normal in utero and perinatal mouse CNS development with examples of common developmental abnormalities, this annotated, color atlas can be used to identify normal structure and histology when phenotyping genetically engineered mice and will enhance efforts to describe and interpret brain and spinal cord malformations as causes of mouse embryonic and perinatal lethal phenotypes. The schematics and images in this atlas illustrate major developmental events during gestation from embryonic day (E)7.5 to E18.5 and after birth from postnatal day (P)1 to P21.
Collapse
Affiliation(s)
- Vivian S Chen
- 1 Charles River Laboratories Inc., Durham, North Carolina, USA.,Authors contributed equally
| | - James P Morrison
- 2 Charles River Laboratories Inc., Shrewsbury, Massachusetts, USA.,Authors contributed equally
| | - Myra F Southwell
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julie F Foley
- 4 Bio-Molecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Susan A Elmore
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
75
|
Pappa L, Kals M, Kivistik PA, Metspalu A, Paal A, Nikopensius T. Exome analysis in an Estonian multiplex family with neural tube defects-a case report. Childs Nerv Syst 2017; 33:1575-1581. [PMID: 28721594 DOI: 10.1007/s00381-017-3491-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neural tube defects (NTDs) are a group of common and severe congenital birth defects that occur during early embryonic development due to incomplete closure of the neural tube. The genetic architecture of human NTDs, including spina bifida and hydrocephalus, is highly heterogeneous, with multiple genes/loci and both gene-gene and gene-environment interactions involved. Hence, the variation in outcomes also most likely relates to a combination of the severity of different variants in multiple genes and genetic modifiers affecting the biochemical traits. METHODS Here, we present a multiple-spouse family with one pedigree lineage where three brothers are affected with NTDs-two lumbar spina bifidas without hydrocephalus and one obstructive hydrocephalus. We sequenced the exomes of three NTD patients and their parents. RESULTS The analysis revealed a heterozygous c.844ins68 variant in CBS, which was carried by all affected individuals and inherited from their mother. All affected individuals had a variable set of additional low frequency deleterious variants in PTK7, PLCD4, IL4I1 or RASSF4 as likely causal loci contributing to the disease development. CONCLUSION This report extends the current knowledge of the genetic background of NTDs and proposes that common and low frequency variants in genes involved mostly in one-carbon metabolism or planar cell polarity (PCP) pathways can act in an additive manner to increase the genetic risk of the disease.
Collapse
Affiliation(s)
- Liina Pappa
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Mart Kals
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Paula Ann Kivistik
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Ann Paal
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Tiit Nikopensius
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
76
|
de Bakker BS, Driessen S, Boukens BJD, van den Hoff MJB, Oostra RJ. Single-site neural tube closure in human embryos revisited. Clin Anat 2017; 30:988-999. [PMID: 28795440 DOI: 10.1002/ca.22977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022]
Abstract
Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bernadette S de Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stan Driessen
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J D Boukens
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, The University of Dublin, 2 Ireland;
| | - Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| |
Collapse
|
78
|
Fukushi D, Kurosawa K, Suzuki Y, Suzuki K, Yamada K, Watanabe S, Yokochi K, Wakamatsu N. Clinical and molecular genetic characterization of two siblings with trisomy 2p24.3-pter and monosomy 5p14.3-pter. Am J Med Genet A 2017; 173:2201-2209. [PMID: 28599099 DOI: 10.1002/ajmg.a.38313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/07/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
Abstract
Partial trisomy 2p syndrome is occasionally associated with neural tube defects (NTDs), such as anencephaly, encephalocele, and spina bifida, in addition to common features of intellectual disability, developmental delay, and characteristic facial appearance. The 2p24 region has been reported to be associated with NTDs. Here, we report the cases of 2 siblings with trisomy 2p24.3-pter and monosomy 5p14.3-pter caused by the paternal translocation t(2;5)(p24.3;p14.3). Of the two siblings, the elder sister had spina bifida. We determined the nucleotide sequences of the chromosomal breakpoints and found that the sizes of trisomy 2p and monosomy 5p segments were 18.77 and 17.89 Mb, respectively. NTDs were present in four of seven previously reported patients with trisomy 2p and monosomy 5p as well as in one of the two patients examined in the present study. Although the monosomy 5p of the nine patients were similar in size, the two patients reported here had the smallest size of trisomy 2p. When the clinical features of the nine patients were compared to the present two patients, the elder sister had postaxial polydactyly of the left foot in addition to the characteristic facial appearance and spina bifida, indicating that these features were associated with trisomy 2p24.3-pter. To our knowledge, this is the first study on spina bifida to determine the nucleotide sequences of breakpoints for trisomy 2p24.3-pter and monosomy 5p14.3-pter. Increased gene dosages of dosage-sensitive genes or genes at the trisomy segment (2p24.3) of the presented patients could be associated with NTDs of patients with trisomy 2p.
Collapse
Affiliation(s)
- Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Kaoru Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Seiji Watanabe
- Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology, Seirei-Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| |
Collapse
|
79
|
Role of Atg5-dependent cell death in the embryonic development of Bax/Bak double-knockout mice. Cell Death Differ 2017; 24:1598-1608. [PMID: 28574506 DOI: 10.1038/cdd.2017.84] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death, which is required for the development and homeostasis of metazoans, includes mechanisms such as apoptosis, autophagic cell death, and necrotic (or type III) death. Members of the Bcl2 family regulate apoptosis, among which Bax and Bak act as a mitochondrial gateway. Although embryonic fibroblasts from Bax/Bak double-knockout (DKO) mice are resistant to apoptosis, we previously demonstrated that these cells die through an autophagy-dependent mechanism in response to various types of cellular stressors. To determine the physiological role of autophagy-dependent cell death, we generated Atg5/Bax/Bak triple-knockout (TKO) mice, in which autophagy is greatly suppressed compared with DKO mice. Embryonic fibroblasts and thymocytes from TKO mice underwent autophagy much less frequently, and their viability was much higher than DKO cells in the presence of certain cellular stressors, providing genetic evidence that DKO cells undergo Atg5-dependent death. Compared with wild-type embryos, the loss of interdigital webs was significantly delayed in DKO embryos and was even further delayed in TKO embryos. Brain malformation is a distinct feature observed in DKO embryos on the 129 genetic background, but not in those on a B6 background, whereas such malformations appeared in TKO embryos even on a B6 background. Taken together, our data suggest that Atg5-dependent cell death contributes to the embryonic development of DKO mice, implying that autophagy compensates for the deficiency in apoptosis.
Collapse
|
80
|
Lemay P, De Marco P, Emond A, Spiegelman D, Dionne-Laporte A, Laurent S, Merello E, Accogli A, Rouleau GA, Capra V, Kibar Z. Rare deleterious variants in GRHL3 are associated with human spina bifida. Hum Mutat 2017; 38:716-724. [PMID: 28276201 DOI: 10.1002/humu.23214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/21/2017] [Accepted: 03/04/2017] [Indexed: 01/13/2023]
Abstract
Neural tube defects, including spina bifida, are among the most common birth defects caused by failure of neural tube closure during development. They have a complex etiology involving largely undetermined environmental and genetic factors. Previous studies in mouse models have implicated the transcription factor Grhl3 as an important factor in the pathogenesis of spina bifida. In the present study, we conducted a resequencing analysis of GRHL3 in a cohort of 233 familial and sporadic cases of spina bifida. We identified two novel truncating variants: one homozygous frameshift variant, p.Asp16Aspfs*10, in two affected siblings and one heterozygous intronic splicing variant, p.Ala318Glyfs*26. We also identified five missense variants, one of which was demonstrated to reduce the activation of gene targets in a luciferase reporter assay. With the previously identified p.Arg391Cys variant, eight variants were found in GRHL3. Comparison of the variant rate between our cohort and the ExAC database identified a significant enrichment of deleterious variants in GRHL3 in the whole gene and the transactivation region in spina bifida patients. These data provide strong evidence for a role of GRHL3 as a predisposing factor to spina bifida and will help dissect the complex etiology and pathogenic mechanisms of these malformations.
Collapse
Affiliation(s)
- Philippe Lemay
- CHU Sainte Justine Research Center and University of Montréal, Montréal, Québec, Canada
| | | | - Alexandre Emond
- CHU Sainte Justine Research Center and University of Montréal, Montréal, Québec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | - Sandra Laurent
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Elisa Merello
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Accogli
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Valeria Capra
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy
| | - Zoha Kibar
- CHU Sainte Justine Research Center and University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
81
|
García-Sanz P, Mirasierra M, Moratalla R, Vallejo M. Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Sci Rep 2017; 7:389. [PMID: 28341857 PMCID: PMC5428206 DOI: 10.1038/s41598-017-00334-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.
Collapse
Affiliation(s)
- Patricia García-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
82
|
Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. SCIENTIFICA 2017; 2017:5364827. [PMID: 28286691 PMCID: PMC5327787 DOI: 10.1155/2017/5364827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 05/26/2023]
Abstract
Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.
Collapse
Affiliation(s)
- Siti W. Mohd-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed I. Marwan
- Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
83
|
Wang S, Garcia MD, Lopez AL, Overbeek PA, Larin KV, Larina IV. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:407-419. [PMID: 28101427 PMCID: PMC5231309 DOI: 10.1364/boe.8.000407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Paul A. Overbeek
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
84
|
Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans. G3-GENES GENOMES GENETICS 2016; 6:3307-3316. [PMID: 27543293 PMCID: PMC5068950 DOI: 10.1534/g3.116.033696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans.
Collapse
|
85
|
Preiksaitiene E, Benušienė E, Ciuladaite Z, Šliužas V, Mikštienė V, Kučinskas V. Recurrent fetal syndromic spina bifida associated with 3q26.1-qter duplication and 5p13.33-pter deletion due to familial balanced rearrangement. Taiwan J Obstet Gynecol 2016; 55:410-4. [PMID: 27343325 DOI: 10.1016/j.tjog.2016.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Neural tube defects belong to the second most common group of congenital anomalies, after heart defects, which can be diagnosed by prenatal ultrasonography. Rarely, neural tube defects can be associated with chromosomal abnormalities, including full and partial aneuploidies. We report a familial fetal case with syndromic spina bifida and discuss its association with partial 3q duplication and partial 5p deletion. MATERIALS AND METHODS Clinical findings of three affected family members in two generations and two carriers of the balanced translocation are described. Conventional cytogenetic and fluorescence in situ hybridization (FISH) analysis of the carrier, as well as subtelomeric multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analysis on the DNA extracted from affected family members was performed. RESULTS Subtelomeric FISH analysis of the proposita revealed balanced reciprocal translocation between the long arm of chromosome 3 and short arm of chromosome 5. Subtelomeric MLPA screening of the first child revealed the deletion in 5p15.33 and duplication in 3q29 chromosomal loci, the finding consisting of the unbalanced rearrangement involving the short arm of chromosome 5 and long arm of chromosome 3. Array CGH analysis of the DNA of the second affected child revealed a 31.1Mb duplication of 3q26.1-qter and a 33.6Mb deletion of 5p13.33-pter. CONCLUSION Our report serves to emphasize the consistency in the prenatal sonographic feature of spina bifida in consecutive pregnancies with fetuses associated with partial trisomy 3q (3q26.1-qter) and partial monosomy 5p (5p13.33-pter). The use of molecular cytogenetic technologies such as array CGH and FISH is important for clarifying any type of unbalanced chromosome rearrangement.
Collapse
Affiliation(s)
- Egle Preiksaitiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Eglė Benušienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Zivile Ciuladaite
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vytautas Šliužas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
86
|
Anderson MJ, Schimmang T, Lewandoski M. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension. PLoS Genet 2016; 12:e1006018. [PMID: 27144312 PMCID: PMC4856314 DOI: 10.1371/journal.pgen.1006018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. During embryological development, the vertebrate embryo undergoes profound growth in a head-to-tail direction. During this process, formation of different structures within adjacent tissue layers must occur in a coordinated fashion. Insights into how these adjacent tissues molecularly communicate with each other is essential to understanding both basic embryology and the underlying causes of human birth defects. Mice lacking Fgf3, which encodes a secreted signaling factor, have long been known to have premature axis termination, but the underlying mechanism has not been studied until now. Through a series of complex genetic experiments, we show that FGF3 is an essential factor for coordination of neural tube development and axis extension. FGF3 is secreted from the mesodermal layer, which is the major driver of extending the axis, and negatively regulates expression of another class of secreted signaling molecules in the neuroepithelium, BMPs. In the absence of FGF3, excessive BMP signals cause a delay in neural tube closure, premature specification of neural crest cells and negatively affect the mesoderm, causing a premature termination of the embryological axis. Our work suggests that FGF3 may be a player in the complex etiology of the human birth defect, spina bifida, the failure of posterior neural tube closure.
Collapse
Affiliation(s)
- Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
87
|
Fong KSK, Hufnagel RB, Khadka VS, Corley MJ, Maunakea AK, Fogelgren B, Ahmed ZM, Lozanoff S. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure. Dis Model Mech 2016; 9:585-96. [PMID: 26989192 PMCID: PMC4892663 DOI: 10.1242/dmm.024109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 01/19/2023] Open
Abstract
Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. Summary: We propose an epigenetic mechanism establishing the regulation of genes that are crucial for neural tube closure. This mechanism could be a novel target for resolving such birth defects and associated disorders.
Collapse
Affiliation(s)
- Keith S K Fong
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Robert B Hufnagel
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, 3333 Burnet Ave, ML 7003, Cincinnati, OH 45229, USA Unit on Pediatric, Development & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vedbar S Khadka
- Office of Biostatistics and Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Michael J Corley
- Epigenomics Research Program, Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Alika K Maunakea
- Epigenomics Research Program, Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| | - Zubair M Ahmed
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, 3333 Burnet Ave, ML 7003, Cincinnati, OH 45229, USA Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, BioPark Bldg1, 800 West Baltimore Street, Room 404, Baltimore, MD 21201, USA
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA
| |
Collapse
|
88
|
Sudiwala S, De Castro SCP, Leung KY, Brosnan JT, Brosnan ME, Mills K, Copp AJ, Greene NDE. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie 2016; 126:63-70. [PMID: 26924399 PMCID: PMC4909716 DOI: 10.1016/j.biochi.2016.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Neural tube defects in curly tail (ct/ct) embryos are not preventable by folic acid. Expression of Mthfd1L is diminished in ct/ct (Grhl3 hypomorph) embryos. Mthfd1L acts in mitochondrial folate one-carbon metabolism to generate formate. Supplemental formate reduces the frequency of neural tube defects in ct/ct embryos. Formate alters folate profiles of maternal liver and embryos and enhances folate-dependent nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Sandra C P De Castro
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Kevin Mills
- Genetics & Genomic Medicine Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
89
|
Ingber SZ, Pohl HR. Windows of sensitivity to toxic chemicals in the motor effects development. Regul Toxicol Pharmacol 2016; 74:93-104. [PMID: 26686904 PMCID: PMC5599107 DOI: 10.1016/j.yrtph.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review.
Collapse
Affiliation(s)
- Susan Z Ingber
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Hana R Pohl
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA.
| |
Collapse
|
90
|
Sutherland AE. Tissue morphodynamics shaping the early mouse embryo. Semin Cell Dev Biol 2016; 55:89-98. [PMID: 26820524 DOI: 10.1016/j.semcdb.2016.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo.
Collapse
Affiliation(s)
- Ann E Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, United States.
| |
Collapse
|
91
|
Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, Stumpff KM, Smith GJ, Pitstick L, Liao EC, Bjork BC, Czirok A, Saadi I. SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep 2016; 6:17735. [PMID: 26787558 PMCID: PMC4726231 DOI: 10.1038/srep17735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L-knockdown cultured cells, staining of canonical adherens junction (AJ) components, β-catenin and E-cadherin, was increased, and electron micrographs revealed an apico-basal diffusion of AJs. To understand the role of SPECC1L in craniofacial morphogenesis, we generated a mouse model of Specc1l deficiency. Homozygous mutants were embryonic lethal and showed impaired neural tube closure and CNCC delamination. Staining of AJ proteins was increased in the mutant neural folds. This AJ defect is consistent with impaired CNCC delamination, which requires AJ dissolution. Further, PI3K-AKT signaling was reduced and apoptosis was increased in Specc1l mutants. In vitro, moderate inhibition of PI3K-AKT signaling in wildtype cells was sufficient to cause AJ alterations. Importantly, AJ changes induced by SPECC1L-knockdown were rescued by activating the PI3K-AKT pathway. Together, these data indicate SPECC1L as a novel modulator of PI3K-AKT signaling and AJ biology, required for neural tube closure and CNCC delamination.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adam J Olm-Shipman
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kanagaraj Palaniyandi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly M Stumpff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Guerin J Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
92
|
Gonsar N, Coughlin A, Clay-Wright JA, Borg BR, Kindt LM, Liang JO. Temporal and spatial requirements for Nodal-induced anterior mesendoderm and mesoderm in anterior neurulation. Genesis 2016; 54:3-18. [PMID: 26528772 DOI: 10.1002/dvg.22908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/28/2023]
Abstract
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation.
Collapse
Affiliation(s)
- Ngawang Gonsar
- Department of Biology, University of Minnesota Duluth, Duluth, MN.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN
| | - Alicia Coughlin
- Department of Biology, University of Minnesota Duluth, Duluth, MN.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN
| | | | - Bethanie R Borg
- Department of Biology, University of Minnesota Duluth, Duluth, MN
| | - Lexy M Kindt
- Department of Biology, University of Minnesota Duluth, Duluth, MN.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN
| | - Jennifer O Liang
- Department of Biology, University of Minnesota Duluth, Duluth, MN.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN
| |
Collapse
|
93
|
Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep 2015; 5:17559. [PMID: 26691006 PMCID: PMC4686913 DOI: 10.1038/srep17559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022] Open
Abstract
To identify candidate serum molecule biomarkers for the non-invasive early prenatal diagnosis of neural tube defects (NTDs), we employed an iTRAQ-based quantitative proteomic approach to analyze the proteomic changes in serum samples from embryonic day (E) 11 and E13 pregnant rats with spina bifida aperta (SBA) induced by all-trans retinoic acid. Among the 390 proteins identified, 40 proteins at E11 and 26 proteins at E13 displayed significant differential expression in the SBA groups. We confirmed 5 candidate proteins by ELISA. We observed the space-time expression changes of proprotein convertase subtilisin/kexin type 9 (PCSK9) at different stages of fetal development, including a marked decrease in the sera of NTD pregnancies and gradual increase in the sera of normal pregnancies with embryonic development. PCSK9 demonstrated the diagnostic efficacy of potential NTD biomarkers [with an area under the receiver operating characteristic curve of 0.763, 95% CI: 065-0.88]. Additionally, PCSK9 expression in the spinal cords and placentas of SBA rat fetuses was markedly decreased. PCSK9 could serve as a novel molecular biomarker for the non-invasive prenatal screening of NTDs and may be involved in the pathogenesis of NTDs at critical periods of fetal development.
Collapse
|
94
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
95
|
Ma P, Swartz MR, Kindt LM, Kangas AM, Liang JO. Temperature Sensitivity of Neural Tube Defects in Zoep Mutants. Zebrafish 2015; 12:448-56. [PMID: 26366681 DOI: 10.1089/zeb.2015.1113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neural tube defects (NTD) occur when the flat neural plate epithelium fails to fold into the neural tube, the precursor to the brain and spinal cord. Squint (Sqt/Ndr1), a Nodal ligand, and One-eyed pinhead (Oep), a component of the Nodal receptor, are required for anterior neural tube closure in zebrafish. The NTD in sqt and Zoep mutants are incompletely penetrant. The penetrance of several defects in sqt mutants increases upon heat or cold shock. In this project, undergraduate students tested whether temperature influences the Zoep open neural tube phenotype. Single pairs of adults were spawned at 28.5°C, the normal temperature for zebrafish, and one half of the resulting embryos were moved to 34°C at different developmental time points. Analysis of variance indicated temperature and clutch/genetic background significantly contributed to the penetrance of the open neural tube phenotype. Heat shock affected the embryos only at or before the midblastula stage. Many factors, including temperature changes in the mother, nutrition, and genetic background, contribute to NTD in humans. Thus, sqt and Zoep mutants may serve as valuable models for studying the interactions between genetics and the environment during neurulation.
Collapse
Affiliation(s)
- Phyo Ma
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Morgan R Swartz
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Lexy M Kindt
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota.,2 Integrated Biosciences Graduate Program, University of Minnesota , Duluth, Minnesota
| | - Ashley M Kangas
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | | |
Collapse
|
96
|
Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, Das Gaspar JA, Shinde V, Stöber R, Marchan R, van Thriel C, Liebing J, Meisig J, Blüthgen N, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 2015; 89:1599-618. [PMID: 26272509 PMCID: PMC4551554 DOI: 10.1007/s00204-015-1573-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of ‘mercurials’ (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.
Collapse
Affiliation(s)
- Eugen Rempel
- Department of Statistics, TU Dortmund University, 44139, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Spina bifida is a birth defect in which the vertebral column is open, often with spinal cord involvement. The most clinically significant subtype is myelomeningocele (open spina bifida), which is a condition characterized by failure of the lumbosacral spinal neural tube to close during embryonic development. The exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with the level of the lesion. Occurring in approximately 1 per 1,000 births worldwide, myelomeningocele is one of the most common congenital malformations, but its cause is largely unknown. The genetic component is estimated at 60-70%, but few causative genes have been identified to date, despite much information from mouse models. Non-genetic maternal risk factors include reduced folate intake, anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by periconceptional supplementation with folic acid has been demonstrated in clinical trials, leading to food fortification programmes in many countries. Prenatal diagnosis is achieved by ultrasonography, enabling women to seek termination of pregnancy. Individuals who survive to birth have their lesions closed surgically, with subsequent management of associated defects, including the Chiari II brain malformation, hydrocephalus, and urological and orthopaedic sequelae. Fetal surgical repair of myelomeningocele has been associated with improved early neurological outcome compared with postnatal operation. Myelomeningocele affects quality of life during childhood, adolescence and adulthood, posing a challenge for individuals, families and society as a whole. For an illustrated summary of this Primer, visit: http://go.nature.com/fK9XNa.
Collapse
|
98
|
Ossipova O, Kim K, Sokol SY. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol Open 2015; 4:722-30. [PMID: 25910938 PMCID: PMC4467192 DOI: 10.1242/bio.201511676] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP) proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP) of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
99
|
Mazumdar M, Ibne Hasan MOS, Hamid R, Valeri L, Paul L, Selhub J, Rodrigues EG, Silva F, Mia S, Mostofa MG, Quamruzzaman Q, Rahman M, Christiani DC. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh. Environ Health 2015; 14:34. [PMID: 25885259 PMCID: PMC4404044 DOI: 10.1186/s12940-015-0020-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Arsenic induces neural tube defects in several animal models, but its potential to cause neural tube defects in humans is unknown. Our objective was to investigate the associations between maternal arsenic exposure, periconceptional folic acid supplementation, and risk of posterior neural tube defect (myelomeningocele) among a highly exposed population in rural Bangladesh. METHODS We performed a case-control study that recruited physician-confirmed cases from community health clinics served by Dhaka Community Hospital in Bangladesh, as well as local health facilities that treat children with myelomeningocele. Controls were selected from pregnancy registries in the same areas. Maternal arsenic exposure was estimated from drinking water samples taken from wells used during the first trimester of pregnancy. Periconceptional folic acid use was ascertained by self-report, and maternal folate status was further assessed by plasma folate levels measured at the time of the study visit. RESULTS Fifty-seven cases of myelomeningocele were identified along with 55 controls. A significant interaction was observed between drinking water inorganic arsenic and periconceptional folic acid use. As drinking water inorganic arsenic concentrations increased from 1 to 25 μg/L, the estimated protective effect of folic acid use declined (OR 0.22 to 1.03), and was not protective at higher concentrations of arsenic. No main effect of arsenic exposure on myelomeningocele risk was identified. CONCLUSIONS Our study found a significant interaction between drinking water inorganic arsenic concentration from wells used during the first trimester of pregnancy and reported intake of periconceptional folic acid supplements. Results suggest that environmental arsenic exposure reduces the effectiveness of folic acid supplementation in preventing myelomeningocele.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| | | | - Rezina Hamid
- Bangladesh Medical College, 14/A Dhanmondi, Dhaka, 1209, Bangladesh.
| | - Linda Valeri
- Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA, USA.
| | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, USA.
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, USA.
| | - Ema G Rodrigues
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| | - Fareesa Silva
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
| | - Selim Mia
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Md Golam Mostofa
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Quazi Quamruzzaman
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - Mahmuder Rahman
- Dhaka Community Hospital, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, 1217, Bangladesh.
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA.
| |
Collapse
|
100
|
Martiniova L, Field MS, Finkelstein JL, Perry CA, Stover PJ. Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects. Am J Clin Nutr 2015; 101:860-9. [PMID: 25833982 PMCID: PMC4381776 DOI: 10.3945/ajcn.114.097279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/22/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Folic acid prevents neural tube closure defects (NTDs), but the causal metabolic pathways have not been established. Serine hydroxymethyltransferase 1 (SHMT1) is an essential scaffold protein in folate-dependent de novo thymidylate synthesis in the nucleus. SHMT1-deficient mice provide a model to investigate folic acid-responsive NTDs wherein disruption of de novo thymidylate synthesis impairs neural tube closure. OBJECTIVE We examined the effects of maternal supplementation with the pyrimidine nucleosides uridine, thymidine, or deoxyuridine with and without folate deficiency on NTD incidence in the Shmt1 mouse model. DESIGN Shmt1(+/+) and Shmt1(-/-) female mice fed folate-replete or folate-deficient diets and supplemented with uridine, thymidine, or deoxyuridine were bred, and litters (n = 10-23 per group) were examined for the presence of NTDs. Biomarkers of impaired folate status and metabolism were measured, including plasma nucleosides, hepatic uracil content, maternal plasma folate concentrations, and incorporation of nucleoside precursors into DNA. RESULTS Shmt1(+/-) and Shmt1(-/-) embryos from dams fed the folate-deficient diet were susceptible to NTDs. No NTDs were observed in litters from dams fed the folate-deficient diet supplemented with deoxyuridine. Surprisingly, uridine supplementation increased NTD incidence, independent of embryo genotype and dietary folic acid. These dietary nucleosides did not affect maternal hepatic uracil accumulation in DNA but did affect plasma folate concentrations. CONCLUSIONS Maternal deoxyuridine supplementation prevented NTDs in dams fed the folate-deficient diet, whereas maternal uridine supplementation increased NTD incidence, independent of folate and embryo genotype. These findings provide new insights into the metabolic impairments and mechanisms of folate-responsive NTDs resulting from decreased Shmt1 expression.
Collapse
Affiliation(s)
- Lucia Martiniova
- From the Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Martha S Field
- From the Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | | | - Cheryll A Perry
- From the Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Patrick J Stover
- From the Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|