51
|
Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol 2015; 309:C251-63. [DOI: 10.1152/ajpcell.00354.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels produce background K+ currents. We elucidated that TASK1 channels in rat adrenal medullary cells and PC12 cells are internalized in a clathrin-dependent manner in response to nerve growth factor (NGF). Here, the molecular mechanism for this internalization in PC12 cells was explored. The combination of enzyme inhibitors with tropomyosin receptor kinase A mutants revealed that the internalization was mediated by both phospholipase C and phosphatidylinositol 3-kinase pathways that converge on protein kinase C with the consequent activation of Src, a nonreceptor tyrosine kinase. The NGF-induced endocytosis of TASK1 channels did not occur in the presence of the Src inhibitor or with the expression of a kinase-dead Src mutant. Additionally, NGF induced a transient colocalization of Src with the TASK1 channel, but not the TASK1 mutant, in which tyrosine at 370 was replaced with phenylalanine. This TASK1 mutant showed no increase in tyrosine phosphorylation and markedly diminished internalization in response to NGF. We concluded that NGF induces endocytosis of TASK1 channels via tyrosine phosphorylation in its carboxyl terminus.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
52
|
Catecholamine secretion by chemical hypoxia in guinea-pig, but not rat, adrenal medullary cells: differences in mitochondria. Neuroscience 2015; 301:134-43. [PMID: 26047729 DOI: 10.1016/j.neuroscience.2015.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023]
Abstract
The effects of mitochondrial inhibitors (CN(-), a complex IV inhibitor and CCCP, protonophore) on catecholamine (CA) secretion and mitochondrial function were explored functionally and biochemically in rat and guinea-pig adrenal chromaffin cells. Guinea-pig chromaffin cells conspicuously secreted CA in response to CN(-) or CCCP, but rat cells showed a little, if any, secretory response to either of them. The resting metabolic rates in rat adrenal medullae did not differ from those in guinea-pig adrenal medullae. On the other hand, the time course of depolarization of the mitochondrial membrane potential (ΔΨm) in guinea-pig chromaffin cells in response to CN(-) was slower than that in rat chromaffin cells, and this difference was abolished by oligomycin, an F1F0-ATPase inhibitor. The extent of CCCP-induced decrease in cellular ATP in guinea-pig chromaffin cells, which was indirectly measured using a Mg(2+) indicator, was smaller than that in rat chromaffin cells. Relative expression levels of F1F0-ATPase inhibitor factor in guinea-pig adrenal medullae were smaller than in rat adrenal medullae, and the opposite was true for F1F0-ATPase α subunit. The present results indicate that guinea-pig chromaffin cells secrete more CA in response to a mitochondrial inhibitor than rat chromaffin cells and this higher susceptibility in the former is accounted for by a larger extent of reversed operation of F1F0-ATPase with the consequent decrease in ATP under conditions where ΔΨm is depolarized.
Collapse
|
53
|
Evolution of vertebrates as viewed from the crest. Nature 2015; 520:474-482. [PMID: 25903629 DOI: 10.1038/nature14436] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.
Collapse
|
54
|
Karbalaie K, Tanhaei S, Rabiei F, Kiani-Esfahani A, Masoudi NS, Nasr-Esfahani MH, Baharvand H. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. CELL JOURNAL 2015; 17:37-48. [PMID: 25870833 PMCID: PMC4393670 DOI: 10.22074/cellj.2015.510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/17/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs). These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. MATERIALS AND METHODS In this experimental study, we cultured human embryonic stem cells (hESCs) on stromal stem cells from human exfoliated deciduous teeth (SHED) for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs) and NCCs. RESULTS In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. CONCLUSION SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA) and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.
Collapse
Affiliation(s)
- Khadijeh Karbalaie
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayyeh Tanhaei
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzaneh Rabiei
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
55
|
Jacob C. Transcriptional control of neural crest specification into peripheral glia. Glia 2015; 63:1883-1896. [PMID: 25752517 DOI: 10.1002/glia.22816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015;63:1883-1896.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
56
|
Butler IJ, Lankford JE, Hashmi SS, Numan MT. Biogenic amine metabolism in juvenile neurocardiogenic syncope with dysautonomia. Ann Clin Transl Neurol 2015; 1:251-7. [PMID: 25590038 PMCID: PMC4292742 DOI: 10.1002/acn3.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Biogenic amine brain levels and their cerebral metabolism are frequently studied by quantitation of biogenic amine metabolites in cerebrospinal fluid (CSF) compared to age-matched controls. There is a paucity of studies in adolescents and young adults investigating the potential role of disordered cerebral biogenic amine metabolism in young patients who have dysautonomia based on abnormal head-up tilt table (HUTT). METHODS In a cohort of juvenile patients with neurocardiogenic syncope and dysautonomia documented by abnormal HUTT, biogenic amine metabolites of dopamine and serotonin were quantitated in 18 patients (15 females). HUTT testing is an effective clinical method to evaluate posturally induced physiological events in patients suspected of neurocardiogenic syncope with dysautonomia. RESULTS Levels of the dopamine metabolite (homovanillic acid: HVA) and/or the serotonin metabolite (5-hydroxyindoleacetic acid: 5HIAA) were significantly reduced in 13 patients compared to age-matched controls. INTERPRETATION Peripheral biogenic amines and their metabolites have been extensively studied in adults with dysautonomia due to various neurodegenerative disorders (Parkinson disease, multiple system atrophy, primary autonomic failure). Our findings indicate that more than two-thirds of this cohort of young patients with dysautonomia of variable severity have a defect in cerebral biogenic amines, particularly in dopamine and serotonin metabolism.
Collapse
Affiliation(s)
- Ian J Butler
- Division of Child and Adolescent Neurology, Department of Pediatrics, The University of Texas Medical School at Houston Houston, Texas
| | - Jeremy E Lankford
- Division of Child and Adolescent Neurology, Department of Pediatrics, The University of Texas Medical School at Houston Houston, Texas
| | - Syed Shahrukh Hashmi
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston Houston, Texas
| | - Mohammed T Numan
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Medical School at Houston Houston, Texas
| |
Collapse
|
57
|
Harada K, Matsuoka H, Miyata H, Matsui M, Inoue M. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Br J Pharmacol 2015; 172:1348-59. [PMID: 25393049 DOI: 10.1111/bph.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/26/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. EXPERIMENTAL APPROACH To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. KEY RESULTS Muscarinic M₁, M₄ and M₅ receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M₁, but not M₃, M₄ or M₅, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M₁ receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M₁ receptor. CONCLUSIONS AND IMPLICATIONS Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M₁ receptor alone is responsible for muscarine-induced catecholamine secretion.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
58
|
Braasch I, Schartl M. Evolution of endothelin receptors in vertebrates. Gen Comp Endocrinol 2014; 209:21-34. [PMID: 25010382 DOI: 10.1016/j.ygcen.2014.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023]
Abstract
Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of newly available genome assemblies from phylogenetically informative taxa. Our assessment further highlights the diversity of the vertebrate endothelin system and calls for detailed functional and pharmacological analyses of the endothelin system beyond tetrapods.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
59
|
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. ACTA ACUST UNITED AC 2014; 102:309-23. [PMID: 25227322 DOI: 10.1002/bdrc.21076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co-evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome.
Collapse
Affiliation(s)
- Anna L Keyte
- Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University, Durham, North Carolina
| | | | | |
Collapse
|
60
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
61
|
Nagao Y, Suzuki T, Shimizu A, Kimura T, Seki R, Adachi T, Inoue C, Omae Y, Kamei Y, Hara I, Taniguchi Y, Naruse K, Wakamatsu Y, Kelsh RN, Hibi M, Hashimoto H. Sox5 functions as a fate switch in medaka pigment cell development. PLoS Genet 2014; 10:e1004246. [PMID: 24699463 PMCID: PMC3974636 DOI: 10.1371/journal.pgen.1004246] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/02/2014] [Indexed: 11/30/2022] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). How individual cell fates are specified from multipotent progenitor cells is a fundamental question in developmental and stem cell biology. Accumulating evidence indicates that stem cells develop into each of their final, diverse cell-types after progression through one or more partially-restricted intermediates, but the molecular mechanisms underlying final fate choice are largely unknown. Neural crest cells (NCCs) give rise to diverse cell-types including multiple pigment cells and thus are a favored model for understanding the mechanism of fate specification. We have investigated how a specific fate choice is made from partially-restricted pigment cell progenitors in medaka. We show that Sry-related transcription factor Sox5 is required for fate determination between yellow xanthophore and white leucophore, and its loss causes excessive formation of leucophores and absence of xanthophores. We demonstrate that Sox5 functions cell-autonomously in the xanthophore lineage in medaka. Furthermore, pax7a is expressed in the partially-restricted progenitor cells shared with xanthophore and leucophore lineages, and Sox5 acts in some of these cells to promote xanthophore lineage. Our work reveals the role of Sox5 as a molecular switch determining xanthophore versus leucophore fate choice from the shared progenitor, and identifies an important mechanism regulating pigment cell fate choice from NCCs.
Collapse
Affiliation(s)
- Yusuke Nagao
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takao Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Tetsuaki Kimura
- National Institute for Basic Biology, Interuniversity Bio-Backup Project Center, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, United Kingdom
| | - Chikako Inoue
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yoshihiro Omae
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Interuniversity Bio-Backup Project Center, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yuko Wakamatsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, United Kingdom
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
62
|
Green SA, Bronner ME. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 2014; 87:44-51. [PMID: 24560767 PMCID: PMC3995830 DOI: 10.1016/j.diff.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/26/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates.
Collapse
Affiliation(s)
- Stephen A Green
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Marianne E Bronner
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA.
| |
Collapse
|
63
|
Yasui K, Kaji T, Morov AR, Yonemura S. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J Morphol 2013; 275:465-77. [PMID: 24301696 DOI: 10.1002/jmor.20228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 11/12/2022]
Abstract
The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern.
Collapse
Affiliation(s)
- Kinya Yasui
- Department of Biological Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | |
Collapse
|
64
|
Drosos Y, Kouloukoussa M, Ostvold AC, Havaki S, Katsantoni E, Marinos E, Aleporou-Marinou V. Dynamic expression of the vertebrate-specific protein Nucks during rodent embryonic development. Gene Expr Patterns 2013; 14:19-29. [PMID: 24140890 DOI: 10.1016/j.gep.2013.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022]
Abstract
The nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS) is a highly phosphorylated nuclear protein that is overexpressed in many types of cancer. The flexibility of NUCKS and its extensive posttranslational modifications indicate that it is multifunctional, and its expression in most cell types suggests a housekeeping function. However, spatiotemporal expression of the Nucks protein during rodent development has not been reported. Thus, we investigated the expression of both the Nucks mRNA and protein during rat and mouse development by immunohistochemistry, in situ hybridization, Western immunoblotting, and reverse-transcription PCR analysis. We also used BLAST analysis against expressed sequence tag databases to determine whether a NUCKS homologue is expressed in invertebrate organisms. We found that Nucks expression increased during the initial stages of embryonic development, and then gradually decreased until birth in all tissues except the nervous tissue and muscle fibers. Interestingly, the expression of Nucks was very strong in migrating neural crest cells at E13.5 and ectoderm-derived tissues. In most tissues analyzed, the levels of Nucks correlated with the levels of Bax and activated caspase-3, which are indicative of apoptosis. Moreover, Nucks was upregulated very early during neuronal apoptosis in vitro. Expression analysis revealed that no transcript with close homology to the Nucks gene was present in invertebrates. The expression of Nucks in both proliferating and quiescent cells and its correlation with Bax levels and apoptosis strongly suggest that Nucks plays complex roles in cell homeostasis. Furthermore, the lack of homology in invertebrate organisms indicates a specific role for Nucks in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece.
| | - Mirsini Kouloukoussa
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Anne Carine Ostvold
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Sophia Havaki
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Eleni Katsantoni
- Hematology/Oncology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelos Marinos
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Vassiliki Aleporou-Marinou
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece
| |
Collapse
|
65
|
Feinberg TE, Mallatt J. The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front Psychol 2013; 4:667. [PMID: 24109460 PMCID: PMC3790330 DOI: 10.3389/fpsyg.2013.00667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022] Open
Abstract
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Neurology and Psychiatry, Albert Einstein College of Medicine and Beth Israel Medical CenterNew York, NY, USA
| | - Jon Mallatt
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
66
|
Gasparini F, Caicci F, Rigon F, Zaniolo G, Burighel P, Manni L. Cytodifferentiation of hair cells during the development of a basal chordate. Hear Res 2013; 304:188-99. [PMID: 23876523 DOI: 10.1016/j.heares.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 01/10/2023]
Abstract
Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin VIIa; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
68
|
Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 2013; 125:469-89. [PMID: 23525521 PMCID: PMC3652528 DOI: 10.1007/s00401-013-1104-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/02/2023]
Abstract
The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association of brain and skull conserved over evolutionary time obvious in the study of development and disease.
Collapse
Affiliation(s)
- Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA.
| | | |
Collapse
|
69
|
Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 2013; 14:5978-97. [PMID: 23502464 PMCID: PMC3634461 DOI: 10.3390/ijms14035978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal regenerative capacity, with frontal neural crest derived osteoblasts benefitting from greater osteogenic potential. We outline how this model has been used to elucidate some of the molecular mechanisms which underlie these differences and place these findings into the context of our current understanding of the key, highly conserved, pathways which govern the osteoblast lineage including FGF, BMP, Wnt and TGFβ signaling. Furthermore, we explore recent studies which have provided a tantalizing insight into way these pathways interact, with evidence accumulating for certain transcription factors, such as Runx2, acting as a nexus for cross-talk.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Department of Advanced Biomedical Science, University of Studies of Naples Federico II, Naples 80131, Italy
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| |
Collapse
|
70
|
Butts T, Graham A. Old before their time: the ancient origins of the neural crest. Pigment Cell Melanoma Res 2013; 26:287-289. [PMID: 23490033 DOI: 10.1111/pcmr.12075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch 2013; 465:1051-64. [DOI: 10.1007/s00424-013-1222-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/13/2013] [Accepted: 01/20/2013] [Indexed: 11/27/2022]
|
72
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
73
|
Ning G, Liu X, Dai M, Meng A, Wang Q. MicroRNA-92a Upholds Bmp Signaling by Targeting noggin3 during Pharyngeal Cartilage Formation. Dev Cell 2013; 24:283-95. [DOI: 10.1016/j.devcel.2012.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/27/2012] [Accepted: 12/24/2012] [Indexed: 12/21/2022]
|
74
|
Hall BK, Gillis JA. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 2013; 222:19-31. [PMID: 22414251 PMCID: PMC3552412 DOI: 10.1111/j.1469-7580.2012.01495.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2012] [Indexed: 01/15/2023] Open
Abstract
Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as 'neural crest-like'- and that cephalochordates lack such cells--this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data--alongside cell behaviour, cell fate and embryonic context--to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells--non-pigment-forming trunk lateral line cells and pigment-forming 'neural crest-like cells' (NCLC)--are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues--cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular 'cartilage-like' tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural crest cells and their derivatives evolved and diversified in a step-wise fashion--first by elaboration of neural plate border cells, then by the innovation or co-option of new or ancient metazoan cell fates.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
75
|
Green SA, Bronner ME. Gene duplications and the early evolution of neural crest development. Semin Cell Dev Biol 2012; 24:95-100. [PMID: 23287633 DOI: 10.1016/j.semcdb.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 11/26/2022]
Abstract
Neural crest cells are an important cell type present in all vertebrates, and elaboration of the neural crest is thought to have been a key factor in their evolutionary success. Genomic comparisons suggest there were two major genome duplications in early vertebrate evolution, raising the possibility that evolution of neural crest was facilitated by gene duplications. Here, we review the process of early neural crest formation and its underlying gene regulatory network (GRN) as well as the evolution of important neural crest derivatives. In this context, we assess the likelihood that gene and genome duplications capacitated neural crest evolution, particularly in light of novel data arising from invertebrate chordates.
Collapse
Affiliation(s)
- Stephen A Green
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | | |
Collapse
|
76
|
Epperlein HH, Khattak S, Knapp D, Tanaka EM, Malashichev YB. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum). PLoS One 2012; 7:e52244. [PMID: 23300623 PMCID: PMC3531446 DOI: 10.1371/journal.pone.0052244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.
Collapse
Affiliation(s)
- Hans-Henning Epperlein
- Department of Anatomy, University of Technology Dresden, Dresden, Germany
- Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
| | - Dunja Knapp
- Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
| | - Elly M. Tanaka
- Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
| | - Yegor B. Malashichev
- Department of Embryology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
- Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
77
|
Wolnicka-Glubisz A, Pecio A, Podkowa D, Kolodziejczyk LM, Plonka PM. Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Exp Dermatol 2012; 21:537-40. [PMID: 22716250 DOI: 10.1111/j.1600-0625.2012.01511.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pheomelanin is supposed to be the first type of melanin found in vertebrates, in contrast to the main type - eumelanin. Our study aimed at detecting pheomelanin in the skin of Hymenochirus boettgerii. We employed electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM), supplemented with standard histology and immunochemistry. We identified pheomelanin in the dorsal skin of adult frogs (not only in the dermis, but also in the epidermis) and in the dorsal tadpole. Our work identifies Hymenochirus boettgerii as a model in the basic study on the mechanism, evolution and role of melanogenesis in animals, including human.
Collapse
|
78
|
Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo 2012; 3:24. [PMID: 23020903 PMCID: PMC3564725 DOI: 10.1186/2041-9139-3-24] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022] Open
Abstract
The vertebrate pharyngeal apparatus, serving the dual functions of feeding and respiration, has its embryonic origin in a series of bulges found on the lateral surface of the head, the pharyngeal arches. Developmental studies have been able to discern how these structures are constructed and this has opened the way for an analysis of how the pharyngeal apparatus was assembled and modified during evolution. For many years, the role of the neural crest in organizing pharyngeal development was emphasized and, as this was believed to be a uniquely vertebrate cell type, it was suggested that the development of the pharyngeal apparatus of vertebrates was distinct from that of other chordates. However, it has now been established that a key event in vertebrate pharyngeal development is the outpocketing of the endoderm to form the pharyngeal pouches. Significantly, outpocketing of the pharyngeal endoderm is a basal deuterostome character and the regulatory network that mediates this process is conserved. Thus, the framework around which the vertebrate pharyngeal apparatus is built is ancient. The pharyngeal arches of vertebrates are, however, more complex and this can be ascribed to these structures being populated by neural crest cells, which form the skeletal support of the pharynx, and mesoderm, which will give rise to the musculature and the arch arteries. Within the vertebrates, as development progresses beyond the phylotypic stage, the pharyngeal apparatus has also been extensively remodelled and this has seemingly involved radical alterations to the developmental programme. Recent studies, however, have shown that these alterations were not as dramatic as previously believed. Thus, while the evolution of amniotes was believed to have involved the loss of gills and their covering, the operculum, it is now apparent that neither of these structures was completely lost. Rather, the gills were transformed into the parathyroid glands and the operculum still exists as an embryonic entity and is still required for the internalization of the posterior pharyngeal arches. Thus, the key steps in our phylogenetic history are laid out during the development of our pharyngeal apparatus.
Collapse
|
79
|
Shimeld SM, Donoghue PCJ. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012; 139:2091-9. [DOI: 10.1242/dev.074716] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lampreys and hagfish, which together are known as the cyclostomes or ‘agnathans’, are the only surviving lineages of jawless fish. They diverged early in vertebrate evolution, before the origin of the hinged jaws that are characteristic of gnathostome (jawed) vertebrates and before the evolution of paired appendages. However, they do share numerous characteristics with jawed vertebrates. Studies of cyclostome development can thus help us to understand when, and how, key aspects of the vertebrate body evolved. Here, we summarise the development of cyclostomes, highlighting the key species studied and experimental methods available. We then discuss how studies of cyclostomes have provided important insight into the evolution of fins, jaws, skeleton and neural crest.
Collapse
Affiliation(s)
- Sebastian M. Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Phillip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
80
|
Fisher S, Franz-Odendaal T. Evolution of the bone gene regulatory network. Curr Opin Genet Dev 2012; 22:390-7. [PMID: 22663778 DOI: 10.1016/j.gde.2012.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 11/18/2022]
Abstract
Current fossil, embryological and genetic data shed light on the evolution of the gene regulatory network (GRN) governing bone formation. The key proteins and genes involved in skeletogenesis are well accepted. We discuss when these essential components of the GRN evolved and propose that the Runx genes, master regulators of skeletogenesis, functioned in early cartilages well before they were co-opted to function in the making of bone. Two rounds of whole genome duplication, together with additional tandem gene duplications, created a genetic substrate for segregation of one GRN into several networks regulating the related tissues of cartilage, bone, enamel, and dentin. During this segregation, Runx2 assumed its position at the top of the bone GRN, and Sox9 was excluded from bone, retaining its ancient role in cartilage.
Collapse
Affiliation(s)
- Shannon Fisher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
81
|
Rodrigues FS, Doughton G, Yang B, Kelsh RN. A novel transgenic line using the Cre-lox system to allow permanent lineage-labeling of the zebrafish neural crest. Genesis 2012; 50:750-7. [DOI: 10.1002/dvg.22033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
|
82
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are found in the head. Prominent amongst these differences are the paired sense organs and associated cranial ganglia. Significantly, these structures are derived developmentally from the ectodermal placodes. It has therefore been proposed that the emergence of the ectodermal placodes was concomitant with and central to the evolution of the vertebrates. More recent studies, however, indicate forerunners of the ectodermal placodes can be readily identified outside the vertebrates, particularly in urochordates. Thus the evolutionary history of the ectodermal placodes is deeper and more complex than was previously appreciated with the full repertoire of vertebrate ectodermal placodes, and their derivatives, being assembled over a protracted period rather than arising collectively with the vertebrates.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | |
Collapse
|
83
|
Park BY, Hong CS, Weaver JR, Rosocha EM, Saint-Jeannet JP. Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. Dev Biol 2011; 362:65-75. [PMID: 22173066 DOI: 10.1016/j.ydbio.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/27/2022]
Abstract
Lower vertebrates develop a unique set of primary sensory neurons located in the dorsal spinal cord. These cells, known as Rohon-Beard (RB) sensory neurons, innervate the skin and mediate the response to touch during larval stages. Here we report the expression and function of the transcription factor Xaml1/Runx1 during RB sensory neurons formation. In Xenopus embryos Runx1 is specifically expressed in RB progenitors at the end of gastrulation. Runx1 expression is positively regulated by Fgf and canonical Wnt signaling and negatively regulated by Notch signaling, the same set of factors that control the development of other neural plate border cell types, i.e. the neural crest and cranial placodes. Embryos lacking Runx1 function fail to differentiate RB sensory neurons and lose the mechanosensory response to touch. At early stages Runx1 knockdown results in a RB progenitor-specific loss of expression of Pak3, a p21-activated kinase that promotes cell cycle withdrawal, and of N-tub, a neuronal-specific tubulin. Interestingly, the pro-neural gene Ngnr1, an upstream regulator of Pak3 and N-tub, is either unaffected or expanded in these embryos, suggesting the existence of two distinct regulatory pathways controlling sensory neuron formation in Xenopus. Consistent with this possibility Ngnr1 is not sufficient to activate Runx1 expression in the ectoderm. We propose that Runx1 function is critically required for the generation of RB sensory neurons, an activity reminiscent of that of Runx1 in the development of the mammalian dorsal root ganglion nociceptive sensory neurons.
Collapse
Affiliation(s)
- Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | |
Collapse
|
84
|
Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proc Natl Acad Sci U S A 2011; 108:8720-4. [PMID: 21555584 DOI: 10.1073/pnas.1101754108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of jaws remains largely an enigma that is best addressed by studying fossil and living jawless vertebrates. Conodonts were eel-shaped jawless animals, whose vertebrate affinity is still disputed. The geometrical analysis of exceptional three-dimensionally preserved clusters of oro-pharyngeal elements of the Early Triassic Novispathodus, imaged using propagation phase-contrast X-ray synchrotron microtomography, suggests the presence of a pulley-shaped lingual cartilage similar to that of extant cyclostomes within the feeding apparatus of euconodonts ("true" conodonts). This would lend strong support to their interpretation as vertebrates and demonstrates that the presence of such cartilage is a plesiomorphic condition of crown vertebrates.
Collapse
|
85
|
Franz-Odendaal TA. The ocular skeleton through the eye of evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:393-401. [DOI: 10.1002/jez.b.21415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/22/2011] [Accepted: 03/24/2011] [Indexed: 11/06/2022]
|
86
|
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis 2011; 49:177-89. [PMID: 21381182 DOI: 10.1002/dvg.20710] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this work, we describe factors that are active between the development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time.
Collapse
Affiliation(s)
- Ralph S Marcucio
- University of California, San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF, San Francisco General Hospital, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
87
|
Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 2010; 32:808-17. [PMID: 20730948 DOI: 10.1002/bies.200900151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the 'outside-in' hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the 'inside-out' hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest-derived ectomesenchyme. Simply put, odontodes develop 'inside and out', wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | |
Collapse
|
88
|
Sansom RS, Gabbott SE, Purnell MA. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proc Biol Sci 2010; 278:1150-7. [PMID: 20947532 DOI: 10.1098/rspb.2010.1641] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The timing and sequence of events underlying the origin and early evolution of vertebrates remains poorly understood. The palaeontological evidence should shed light on these issues, but difficulties in interpretation of the non-biomineralized fossil record make this problematic. Here we present an experimental analysis of decay of vertebrate characters based on the extant jawless vertebrates (Lampetra and Myxine). This provides a framework for the interpretation of the anatomy of soft-bodied fossil vertebrates and putative cyclostomes, and a context for reading the fossil record of non-biomineralized vertebrate characters. Decay results in transformation and non-random loss of characters. In both lamprey and hagfish, different types of cartilage decay at different rates, resulting in taphonomic bias towards loss of 'soft' cartilages containing vertebrate-specific Col2α1 extracellular matrix proteins; phylogenetically informative soft-tissue characters decay before more plesiomorphic characters. As such, synapomorphic decay bias, previously recognized in early chordates, is more pervasive, and needs to be taken into account when interpreting the anatomy of any non-biomineralized fossil vertebrate, such as Haikouichthys, Mayomyzon and Hardistiella.
Collapse
Affiliation(s)
- Robert S Sansom
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
89
|
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 2010; 67:3037-55. [PMID: 20454996 PMCID: PMC11115498 DOI: 10.1007/s00018-010-0390-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022]
Abstract
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| | - Francois Lallemend
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| |
Collapse
|
90
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
91
|
Yu JKS. The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network – insights from amphioxus. ZOOLOGY 2010; 113:1-9. [DOI: 10.1016/j.zool.2009.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/08/2009] [Accepted: 06/16/2009] [Indexed: 01/26/2023]
|
92
|
Abstract
One of the special attributes of vertebrates is their myelinated nervous system. By increasing the conduction velocity of axons, myelin allows for increased body size, rapid movement and a large and complex brain. In the central nervous system (CNS), oligodendrocytes (OLs) are the myelin-forming cells. The transcription factors OLIG1 and OLIG2, master regulators of OL development, presumably also played a seminal role during the evolution of the genetic programme leading to myelination in the CNS. From the available ontogenetic and phylogenetic data we attempt to reconstruct the evolutionary events that led to the emergence of the Olig gene family and speculate about the links between Olig genes, their specific cis-regulatory elements and myelin evolution. In addition, we report a putative myelin basic protein (MBP) ancestor in the lancelet Branchiostoma floridae, which lacks compact myelin. The lancelet 'Mbp' gene lacks the OLIG1/2- and SOX10-binding sites that characterize vertebrate Mbp homologs, raising the possibility that insertion of cis-regulatory elements might have been involved in evolution of the myelinating programme.
Collapse
|
93
|
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU. What are melanocytes really doing all day long...? Exp Dermatol 2009; 18:799-819. [PMID: 19659579 PMCID: PMC2792575 DOI: 10.1111/j.1600-0625.2009.00912.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyone knows and seems to agree that melanocytes are there to generate melanin - an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crest-derived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time - at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanocytes matter for normal epidermal and/or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but under-appreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Regulation of pre-otic brain development by the cephalic neural crest. Proc Natl Acad Sci U S A 2009; 106:15774-9. [PMID: 19720987 DOI: 10.1073/pnas.0906072106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emergence of the neural crest (NC) is considered an essential asset in the evolution of the chordate phylum, as specific vertebrate traits such as peripheral nervous system, cephalic skeletal tissues, and head development are linked to the NC and its derivatives. It has been proposed that the emergence of the NC was responsible for the formation of a "new head" characterized by the spectacular development of the forebrain and associated sense organs. It was previously shown that removal of the cephalic NC (CNC) prevents the formation of the facial structures but also results in anencephaly. This article reports on the molecular mechanisms whereby the CNC controls cephalic neurulation and brain morphogenesis. This study demonstrates that molecular variations of Gremlin and Noggin level in CNC account for morphological changes in brain size and development. CNC cells act in these processes through a multi-step control and exert cumulative effects counteracting bone morphogenetic protein signaling produced by the neighboring tissues (e.g., adjacent neuroepithelium, ventro-medial mesoderm, superficial ectoderm). These data provide an explanation for the fact that acquisition of the NC during the protochordate-to-vertebrate transition has coincided with a large increase of brain vesicles.
Collapse
|
95
|
Hulsey CD. Cichlid genomics and phenotypic diversity in a comparative context. Integr Comp Biol 2009; 49:618-29. [DOI: 10.1093/icb/icp071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
96
|
Alvares LE, Winterbottom FL, Rodrigues Sobreira D, Xavier-Neto J, Schubert FR, Dietrich S. Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes. Dev Dyn 2009; 238:1166-78. [DOI: 10.1002/dvdy.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
97
|
Braasch I, Volff JN, Schartl M. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication. Mol Biol Evol 2009; 26:783-99. [PMID: 19174480 DOI: 10.1093/molbev/msp015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Morphological innovations like the acquisition of the neural crest as well as gene family expansions by genome duplication are considered as major leaps in the evolution of the vertebrate lineage. Using comparative genomic analyses, we have reconstructed the evolutionary history of the endothelin system, a signaling pathway consisting of endothelin ligands and their G protein-coupled receptors. The endothelin system plays a key role in cardiovascular regulation as well as in the development of diverse neural crest derivatives like pigment cells and craniofacial bone structures, which are hot spots of diversity in vertebrates. However, little is known about the origin and evolution of the endothelin system in the vertebrate lineage. We show that the endothelin core system, that is, endothelin ligands (Edn) and their receptors (Ednr), is a vertebrate-specific innovation. The components of the endothelin core system in modern vertebrate genomes date back to single genes that have been duplicated during whole-genome duplication events. After two rounds of genome duplication during early vertebrate evolution, the endothelin system of an ancestral gnathostome consisted of four ligand and four receptor genes. The previously unknown fourth endothelin ligand Edn4 has been kept in teleost fish but lost in tetrapods. Bony vertebrates generally possess three receptor genes, EdnrA, EdnrB1, and EdnrB2. EdnrB2 has been lost secondarily in the mammalian lineage from a chromosome that gave rise to the sex chromosomes in therians (marsupials and placentals). The endothelin system of fishes was further expanded by a fish-specific genome duplication and duplicated edn2, edn3, ednrA, and ednrB1 genes have been retained in teleost fishes. Functional divergence analyses suppose that following each round of genome duplication, coevolution of ligands and their binding regions in the receptors has occurred, adjusting the endothelin signaling system to the increase of possible ligand-receptor interactions. Furthermore, duplications of genes involved in the endothelin system are associated with functional specialization for the development of particular neural crest derivatives. Our results support an important role for newly emerging ligands and receptors as components of signaling pathways and their expansion through genome duplications in the evolution of the vertebrate neural crest.
Collapse
Affiliation(s)
- Ingo Braasch
- University of Würzburg, Biozentrum, Physiological Chemistry I, Germany.
| | | | | |
Collapse
|
98
|
Nikitina N, Sauka‐Spengler T, Bronner‐Fraser M. Chapter 1 Gene Regulatory Networks in Neural Crest Development and Evolution. Curr Top Dev Biol 2009; 86:1-14. [DOI: 10.1016/s0070-2153(09)01001-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
99
|
The evolution and elaboration of vertebrate neural crest cells. Curr Opin Genet Dev 2008; 18:536-43. [DOI: 10.1016/j.gde.2008.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
|
100
|
Koop D, Holland LZ. The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. ACTA ACUST UNITED AC 2008; 84:175-87. [DOI: 10.1002/bdrc.20128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|