51
|
Santos RLP, Hassan MJ, Sikandar S, Lee K, Ali G, Martin PE, Wambangco MAL, Ahmad W, Leal SM. DFNB68, a novel autosomal recessive non-syndromic hearing impairment locus at chromosomal region 19p13.2. Hum Genet 2006; 120:85-92. [PMID: 16703383 PMCID: PMC2909094 DOI: 10.1007/s00439-006-0188-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/09/2006] [Indexed: 11/29/2022]
Abstract
From a large collection of families with autosomal recessive non-syndromic hearing impairment (NSHI) from Pakistan, linkage has been established for two unrelated consanguineous families to 19p13.2. This new locus was assigned the name DFNB68. A 10 cM genome scan and additional fine mapping were carried out using microsatellite marker loci. Linkage was established for both families to DFNB68 with maximum multipoint LOD scores of 4.8 and 4.6. The overlap of the homozygous regions between the two families was bounded by D19S586 and D19S584, which limits the locus interval to 1.9 cM and contains 1.4 Mb. The genes CTL2, KEAP1 and CDKN2D were screened but were negative for functional sequence variants.
Collapse
Affiliation(s)
- Regie Lyn P. Santos
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building N1619.01, Houston, TX 77030, USA. Genetic Epidemiology Unit, Department of Epidemiology and Biostatistics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Shaheen Sikandar
- Department of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building N1619.01, Houston, TX 77030, USA
| | - Ghazanfar Ali
- Department of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Protacio E. Martin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building N1619.01, Houston, TX 77030, USA
| | - Michael Angelo L. Wambangco
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building N1619.01, Houston, TX 77030, USA
| | - Wasim Ahmad
- Department of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Suzanne M. Leal
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Alkek Building N1619.01, Houston, TX 77030, USA
| |
Collapse
|
52
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
53
|
Dinkova-Kostova AT, Holtzclaw WD, Kensler TW. The Role of Keap1 in Cellular Protective Responses. Chem Res Toxicol 2005; 18:1779-91. [PMID: 16359168 DOI: 10.1021/tx050217c] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Albena T Dinkova-Kostova
- The Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
54
|
Velichkova M, Hasson T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol 2005; 25:4501-13. [PMID: 15899855 PMCID: PMC1140621 DOI: 10.1128/mcb.25.11.4501-4513.2005] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 09/09/2004] [Accepted: 02/24/2005] [Indexed: 11/20/2022] Open
Abstract
Keap1 is a negative regulator of Nrf2, a transcription factor essential for antioxidant response element (ARE)-mediated gene expression. We find that Keap1 sequesters Nrf2 in the cytoplasm, not by docking it to the actin cytoskeleton but instead through an active Crm1/exportin-dependent nuclear export mechanism. Deletion and mutagenesis studies identified a nuclear export signal (NES) in the intervening region of Keap1 comprised of hydrophobic leucine and isoleucine residues in agreement with a traditional NES consensus sequence. Mutation of the hydrophobic amino acids resulted in nuclear accumulation of both Keap1 and Nrf2, as did treatment with the drug leptomycin B, which inactivates Crm1/exportin. ARE genes were partially activated under these conditions, suggesting that additional oxidation-sensitive elements are required for full activation of the antioxidant response. Based on these data, we propose a new model for regulation of Nrf2 by Keap1. Under normal conditions, Keap1 and Nrf2 are complexed in the cytoplasm where they are targeted for degradation. Oxidative stress inactivates Keap1's NES, allowing entry of both Keap1 and Nrf2 into the nucleus and transcriptional transactivation of ARE genes.
Collapse
Affiliation(s)
- Michaella Velichkova
- University of California at San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, 2129 Bonner Hall, MC 0368, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA.
| | | |
Collapse
|
55
|
Martin SG, McDonald WH, Yates JR, Chang F. Tea4p Links Microtubule Plus Ends with the Formin For3p in the Establishment of Cell Polarity. Dev Cell 2005; 8:479-91. [PMID: 15809031 DOI: 10.1016/j.devcel.2005.02.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/31/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Microtubules regulate actin-based processes such as cell migration and cytokinesis, but molecular mechanisms are not understood. In the fission yeast Schizosaccharomyces pombe, microtubule plus ends regulate cell polarity in part by transporting the kelch repeat protein tea1p to cell ends. Here, we identify tea4p, a SH3 domain protein that binds directly to tea1p. Like tea1p, tea4p localizes to growing microtubule plus ends and to cortical sites at cell ends, and it is necessary for the establishment of bipolar growth. Tea4p binds directly to and recruits the formin for3p, which nucleates actin cable assembly. During "new end take off" (NETO), formation of a protein complex that includes tea1p, tea4p, and for3p is necessary and sufficient for the establishment of cell polarity and localized actin assembly at new cell ends. Our results suggest a molecular mechanism for how microtubule plus ends regulate the spatial distribution of actin assembly.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Microbiology, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
| | | | | | | |
Collapse
|
56
|
Dance AL, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, Hasson T. Regulation of myosin-VI targeting to endocytic compartments. Traffic 2005; 5:798-813. [PMID: 15355515 DOI: 10.1111/j.1600-0854.2004.00224.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface.
Collapse
Affiliation(s)
- Amber L Dance
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Heiska L, Carpén O. Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem 2004; 280:10244-52. [PMID: 15623525 DOI: 10.1074/jbc.m411353200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ezrin, a linker between plasma membrane and actin cytoskeleton possesses morphogenic properties and can promote dissemination of tumor cells. Ezrin is phosphorylated on tyrosine, but a detailed picture of the signaling pathways involved in this modification is lacking. The transforming tyrosine kinase Src has various cytoskeletal substrates and is involved in regulation of cellular adhesion. We studied the role of Src in tyrosine phosphorylation of ezrin in adherent cells. We show that ezrin is phosphorylated in human embryonic kidney 293 cells in a Src family-dependent way. In SYF cells lacking Src, Yes, and Fyn, ezrin was not tyrosine-phosphorylated but reintroduction of wild-type Src followed by Src activation or introduction of active Src restored phosphorylation. Mapping of the Src-catalyzed tyrosine in vitro and in vivo by site-directed mutagenesis demonstrated Tyr(477) as the primary target residue. We generated a pTyr(477)-phosphospecific antibody, which confirmed that Tyr(477) becomes phosphorylated in cells in a Src-dependent manner. Tyr(477) phosphorylation did not affect ezrin head-to-tail association or phosphorylation of ezrin on threonine 566, indicating that the function of Tyr(477) phosphorylation is not related to the intramolecular regulation of ezrin. A modified yeast two-hybrid screen in which ezrin bait was phosphorylated by Src identified a novel interaction with a kelch-repeat protein family member, KBTBD2 (Kelch-repeat and BTB/POZ domain containing 2). The Src dependence of the interaction was further verified by affinity precipitation assays. Identification of a functional interplay with Src opens novel avenues for further characterization of the biological activities of ezrin.
Collapse
Affiliation(s)
- Leena Heiska
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
58
|
Strachan GD, Morgan KL, Otis LL, Caltagarone J, Gittis A, Bowser R, Jordan-Sciutto KL. Fetal Alz-50 clone 1 interacts with the human orthologue of the Kelch-like Ech-associated protein. Biochemistry 2004; 43:12113-22. [PMID: 15379550 PMCID: PMC3670950 DOI: 10.1021/bi0494166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fetal Alz-50 reactive clone 1 (FAC1) protein exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. Using the yeast two-hybrid screen, the human orthologue of Keap1 (hKeap1) was identified as a FAC1 interacting protein. Keap1 is an important regulator of the oxidative stress response pathway through its interaction with the Nrf family of transcription factors. An interaction between full-length FAC1 and hKeap1 proteins has been demonstrated, and the FAC1 binding domain of hKeap1 has been identified as the Kelch repeats. In addition, FAC1 colocalizes with endogenous Keap1 within the cytoplasm of PT67 cells. Exogenously introduced eGFP:hKeap1 fusion protein redistributed FAC1 to colocalize with eGFP:hKeap1 in perinuclear, spherical structures. The interaction between FAC1 and hKeap1 is reduced by competition with the Nrf2 protein. However, competition by Nrf2 for hKeap1 is reduced by diethylmaleate (DEM), a known disrupter of the Nrf2:Keap1 interaction. DEM does not affect the ability of FAC1 to bind hKeap1 in our assay. These results suggest that hKeap1 regulates FAC1 in addition to its known role in control of Nrf2. Furthermore, the observed competition between FAC1 and Nrf2 for binding hKeap1 indicates that the interplay between these three proteins has important implications for neuronal response to oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kelly L. Jordan-Sciutto
- Author to whom correspondence should be addressed [telephone (215) 898-4196; fax (215) 573-2050; ]
| |
Collapse
|
59
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 625] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
60
|
Feierbach B, Verde F, Chang F. Regulation of a formin complex by the microtubule plus end protein tea1p. ACTA ACUST UNITED AC 2004; 165:697-707. [PMID: 15184402 PMCID: PMC2172381 DOI: 10.1083/jcb.200403090] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large “polarisome” complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end–binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Δbud6Δtea1Δ triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.
Collapse
Affiliation(s)
- Becket Feierbach
- Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th St., New York, NY 10032, USA
| | | | | |
Collapse
|
61
|
Wu YL, Gong Z. A novel zebrafish kelchlike gene klhl and its human ortholog KLHL display conserved expression patterns in skeletal and cardiac muscles. Gene 2004; 338:75-83. [PMID: 15302408 DOI: 10.1016/j.gene.2004.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/10/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022]
Abstract
In this study, a novel gene, kelchlike (klhl) was identified in zebrafish by whole-mount in situ hybridization screen for important genes involved in embryogenesis. A full-length klhl cDNA was cloned and characterized. We found that klhl was a member of the kelch-repeat superfamily, containing two evolutionary conserved domains--broad-complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) domain, and kelch motif. Database mining revealed the presence of putative orthologs of klhl in human, mouse, rat, and pufferfish. klhl was determined to map to zebrafish linkage group (LG) 13 and was found to be syntenic with the proposed orthologs of klhl in human, mouse, and rat. In an effort to elucidate the function of klhl, klhl expression was investigated by Northern blot analysis and in situ hybridization. klhl is specifically expressed in the fast skeletal and cardiac muscle. Northern blot analyses show that the human ortholog, KLHL, is also specifically expressed in the skeletal muscles and heart. In silico analyses of rat expressed sequence tag (EST) clones corresponding to rat Klhl ortholog also indicate that its expression is also restricted to rat muscle tissues, suggesting a conserved role of klhl in vertebrates. The expression pattern of klhl, as well as the presence of the kelch repeats indicates a possible role for Klhl in the organization of striated muscle cytoarchitecture.
Collapse
Affiliation(s)
- Yi Lian Wu
- Department of Biological Sciences, National University of Singapore, Block S2 #05-17, 14 Science Drive 4, 10 Kent Ridge crescent, Singapore 119260, Singapore
| | | |
Collapse
|
62
|
Skop AR, Liu H, Yates J, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 2004; 305:61-6. [PMID: 15166316 PMCID: PMC3679889 DOI: 10.1126/science.1097931] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokinesis is the essential process that partitions cellular contents into daughter cells. To identify and characterize cytokinesis proteins rapidly, we used a functional proteomic and comparative genomic strategy. Midbodies were isolated from mammalian cells, proteins were identified by multidimensional protein identification technology (MudPIT), and protein function was assessed in Caenorhabditis elegans. Of 172 homologs disrupted by RNA interference, 58% displayed defects in cleavage furrow formation or completion, or germline cytokinesis. Functional dissection of the midbody demonstrated the importance of lipid rafts and vesicle trafficking pathways in cytokinesis, and the utilization of common membrane cytoskeletal components in diverse morphogenetic events in the cleavage furrow, the germline, and neurons.
Collapse
Affiliation(s)
- Ahna R Skop
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
63
|
Abstract
Cell adhesion complexes are sensors that interact with the extracellular environment and allow for the transmission of signals found outside the cell across the plasma membrane to the cell interior. Keap1 is a newly identified component of cell adhesion complexes. We investigated Keap1's association with these complexes in diverse tissues and cell types. Keap1 is present in focal adhesion (FA)-like assemblies in kidney proximal tubule cells where it colocates with actin. In liver, Keap1 is found in the adherens junctions (AJ) and at the base of the bile canaliculi. To study Keap1's involvement in both the integrin-based FA and the cadherin-based AJ, we induced formation of these complexes in fibroblasts, using a serum starvation followed by a serum supplementation method. When compared with vinculin, a component of all FA, we found that Keap1 assembles only in the peripheral FA. Within the peripheral FA, Keap1 was present in distinct foci along the length of the FA and these foci were different from vinculin, talin, paxillin, and phospho-tyrosine rich regions of the FA. Unlike most FA components, Keap1 was also recruited to the newly formed AJ. As Keap1 homologues are actin-bundling proteins, we hypothesize that Keap1's function is to bundle F-actin within these diverse types of cell adhesion components.
Collapse
Affiliation(s)
- Michaella Velichkova
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0368, USA.
| | | |
Collapse
|
64
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
65
|
Guttman JA, Takai Y, Vogl AW. Evidence that tubulobulbar complexes in the seminiferous epithelium are involved with internalization of adhesion junctions. Biol Reprod 2004; 71:548-59. [PMID: 15084482 DOI: 10.1095/biolreprod.104.028803] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCalpha, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.
Collapse
Affiliation(s)
- Julian A Guttman
- Department of Anatomy and Cell Biology, Faculty of Medicine, The University of British Columbia, 313-2177 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
66
|
Abstract
In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce approximately 150 x 10(6) spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor alpha (TNFalpha) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, New York, New York 10021, USA
| | | |
Collapse
|
67
|
Prag S, Adams JC. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics 2003; 4:42. [PMID: 13678422 PMCID: PMC222960 DOI: 10.1186/1471-2105-4-42] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 09/17/2003] [Indexed: 12/15/2022] Open
Abstract
Background The kelch motif is an ancient and evolutionarily-widespread sequence motif of 44–56 amino acids in length. It occurs as five to seven repeats that form a β-propeller tertiary structure. Over 28 kelch-repeat proteins have been sequenced and functionally characterised from diverse organisms spanning from viruses, plants and fungi to mammals and it is evident from expressed sequence tag, domain and genome databases that many additional hypothetical proteins contain kelch-repeats. In general, kelch-repeat β-propellers are involved in protein-protein interactions, however the modest sequence identity between kelch motifs, the diversity of domain architectures, and the partial information on this protein family in any single species, all present difficulties to developing a coherent view of the kelch-repeat domain and the kelch-repeat protein superfamily. To understand the complexity of this superfamily of proteins, we have analysed by bioinformatics the complement of kelch-repeat proteins encoded in the human genome and have made comparisons to the kelch-repeat proteins encoded in other sequenced genomes. Results We identified 71 kelch-repeat proteins encoded in the human genome, whereas 5 or 8 members were identified in yeasts and around 18 in C. elegans, D. melanogaster and A. gambiae. Multiple domain architectures were identified in each organism, including previously unrecognised forms. The vast majority of kelch-repeat domains are predicted to form six-bladed β-propellers. The most prevalent domain architecture in the metazoan animal genomes studied was the BTB/kelch domain organisation and we uncovered 3 subgroups of human BTB/kelch proteins. Sequence analysis of the kelch-repeat domains of the most robustly-related subgroups identified differences in β-propeller organisation that could provide direction for experimental study of protein-binding characteristics. Conclusion The kelch-repeat superfamily constitutes a distinct and evolutionarily-widespread family of β-propeller domain-containing proteins. Expansion of the family during the evolution of multicellular animals is mainly accounted for by a major expansion of the BTB/kelch domain architecture. BTB/kelch proteins constitute 72 % of the kelch-repeat superfamily of H. sapiens and form three subgroups, one of which appears the most-conserved during evolution. Distinctions in propeller blade organisation between subgroups 1 and 2 were identified that could provide new direction for biochemical and functional studies of novel kelch-repeat proteins.
Collapse
Affiliation(s)
- Soren Prag
- Dept. of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Josephine C Adams
- Dept. of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
68
|
Kim H, Yang P, Catanuto P, Verde F, Lai H, Du H, Chang F, Marcus S. The kelch repeat protein, Tea1, is a potential substrate target of the p21-activated kinase, Shk1, in the fission yeast, Schizosaccharomyces pombe. J Biol Chem 2003; 278:30074-82. [PMID: 12764130 DOI: 10.1074/jbc.m302609200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p21-activated kinase (PAK) homolog, Shk1, is a critical component of a multifunctional Ras/Cdc42/PAK complex required for viability, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Substrate targets of the Shk1 kinase have not previously been described. Here we show that the S. pombe cell polarity factor, Tea1, is directly phosphorylated by Shk1 in vitro. We demonstrate further that Tea1 is phosphorylated in S. pombe cells and that its level of phosphorylation is significantly reduced in cells defective in Shk1 function. Consistent with a role for Tea1 as a potential downstream effector of Shk1, we show that a tea1 null mutation rescues the Shk1 hyperactivity-induced lethal phenotype caused by loss of function of the essential Shk1 inhibitor, Skb15. All phenotypes associated with Skb15 loss, including defects in actin cytoskeletal organization, chromosome segregation, and cytokinesis, are suppressed by tea1 Delta, suggesting that Tea1 is a potential mediator of multiple Shk1 functions. S. pombe cells carrying a weak hypomorphic allele of shk1 together with a tea1 Delta mutation exhibit a cytokinesis defective phenotype that is significantly more severe than that observed in the respective single mutants, providing evidence that Shk1 and Tea1 cooperate to regulate cytokinesis. In addition, we show that S. pombe cells carrying the orb2-34 allele of shk1 exhibit a pattern of monopolar growth similar to that observed in tea1 Delta cells, suggesting that Shk1 and Tea1 may regulate one or more common processes involved in the regulation of polarized cell growth. Taken together, our results strongly implicate Tea1 as a potential substrate-effector of the Shk1 kinase.
Collapse
Affiliation(s)
- HyeWon Kim
- Department of Molecular Genetics and Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Buckley BJ, Marshall ZM, Whorton AR. Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. Biochem Biophys Res Commun 2003; 307:973-9. [PMID: 12878207 DOI: 10.1016/s0006-291x(03)01308-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular endothelial cells respond to nitric oxide by activating MAPK pathways and upregulating stress-activated proteins such as gamma-glutamylcysteine synthetase (gamma-GCS) and heme oxygenase-1 (HO-1). Since consensus sequences for the antioxidant response element (ARE) are found in the promoters of the gamma-GCS and HO-1 genes, we examined nuclear translocation of Nrf2, a CNC-bZIP protein which binds to and activates the ARE. We found a dramatic increase in Nrf2 nuclear translocation 1-8h following the nitric oxide donor spermine NONOate. Translocation was inhibited by pretreatment of cells with N-acetylcysteine suggesting involvement of an oxidative mechanism in this response. Translocation was also blocked by PD 98059 and SB 203580, inhibitors of ERK and p38 pathways, respectively. In addition to effects on Nrf2 subcellular localization, spermine NONOate increased Nrf2 protein levels by a mechanism which was inhibited by PD 98059. Pretreatment with N-acetylcysteine, PD 98059, and SB 203580 decreased HO-1 upregulation in spermine NONOate-treated cells. These results suggest that ERK and p38 pathways may regulate nitric oxide-mediated adaptive responses in vascular endothelium via translocation of Nrf2 and activation of the ARE.
Collapse
Affiliation(s)
- Barbara J Buckley
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
70
|
Wolfrum U. The cellular function of the usher gene product myosin VIIa is specified by its ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:133-42. [PMID: 15180257 DOI: 10.1007/978-1-4615-0067-4_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uwe Wolfrum
- Johannes Gutenberg-Universität, Institut für Zoologie, 55099 Mainz, Germany.
| |
Collapse
|
71
|
Abstract
Cell lines have provided important experimental tools that have enhanced our understanding of neural and sensory function. They are particularly valuable in inner ear research because the auditory and vestibular systems are small, complex, and encased in several layers of bone. Organotypic cultures provide an invaluable experimental resource but require repeated microdissection and culture, and remain complex in terms of cell types and states of differentiation. A number of laboratories have established cell lines that offer a range of potential applications to hearing research. This review describes the advances that have already been made with these lines and the potential applications that they offer in the future. The majority of the cell lines are immortalized with a conditionally expressed, temperature sensitive variant of the SV40 tumor antigen. We discuss the value of these cells in developmental studies.
Collapse
Affiliation(s)
- Marcelo N Rivolta
- Department of Biomedical Science, Institute of Molecular Physiology, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, United Kingdom.
| | | |
Collapse
|
72
|
Heid H, Figge U, Winter S, Kuhn C, Zimbelmann R, Franke W. Novel actin-related proteins Arp-T1 and Arp-T2 as components of the cytoskeletal calyx of the mammalian sperm head. Exp Cell Res 2002; 279:177-87. [PMID: 12243744 DOI: 10.1006/excr.2002.5603] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calyx is a large cytoskeletal component of the perinuclear theca of the mammalian sperm head, displaying remarkable morphological interspecies differences, which is biochemically characterized by resistance to high ionic strength and detergents and by a special protein composition, including the basic proteins calicin, cylicin I and II, and two major actin-capping proteins. In our calyx preparations from bull spermatozoa we have noted two major acidic components which upon partial amino acid sequencing have been identified as novel members of the subfamily of actin-related proteins (Arps). Antibodies raised against the corresponding human proteins, termed Arp-T1 and Arp-T2, have been used to detect the proteins by immunoblotting and immunofluorescence microscopy, demonstrating their specific synthesis in the testis, late in spermatid differentiation, and their localization in the calyx. The discovery of two novel Arps as major components in a cytoskeletal, nonmotile structure of mammalian spermatozoa suggests that certain members of this family of proteins may serve functions other than nucleation of actin filaments, and possible biological roles of such Arps in spermatozoa are discussed.
Collapse
Affiliation(s)
- Hans Heid
- Division of Cell Biology, German Cancer Research Center, D-69120, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
73
|
Zipper LM, Mulcahy RT. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem 2002; 277:36544-52. [PMID: 12145307 DOI: 10.1074/jbc.m206530200] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transactivation of phase II detoxification enzymes and antioxidant proteins is mediated by the Cap'N'Collar transcription factor, Nrf2, which is sequestered in the cytoplasm by the actin-binding protein Keap1. Mutation of a conserved serine (S104A) within the Keap1 BTB/POZ domain disrupts Keap1 dimerization and eliminates the ability of Keap1 to sequester Nrf2 in the cytoplasm and repress Nrf2 transactivation. Disruption of endogenous Keap1 dimerization using BTB/POZ dominant negative proteins also inhibits the ability of Keap1 to retain Nrf2 in the cytoplasm. Exposure to an electrophilic agent that induces Nrf2 release and nuclear translocation disrupts formation of a Keap1 complex in vivo. Collectively, these data support the conclusion that Keap1 dimerization is required for Nrf2 sequestration and transcriptional repression. Furthermore, exposure to inducing agents disrupts the Keap1 dimerization function and results in Nrf2 release.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Blotting, Western
- Carrier Proteins/chemistry
- Cell Line
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Cytoskeletal Proteins
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Kelch-Like ECH-Associated Protein 1
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Mice
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- NF-E2-Related Factor 2
- Precipitin Tests
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Serine/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Laurie M Zipper
- Department of Pharmacology, University of Wisconsin Comprehensive Cancer Center, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|