51
|
Abstract
One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.
Collapse
Affiliation(s)
- Alyssa A Brewer
- Department of Cognitive Sciences and Center for Hearing Research, University of California, Irvine, California 92697; ,
| | - Brian Barton
- Department of Cognitive Sciences and Center for Hearing Research, University of California, Irvine, California 92697; ,
| |
Collapse
|
52
|
Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron 2016; 90:219-33. [PMID: 27100195 PMCID: PMC4840471 DOI: 10.1016/j.neuron.2016.03.018] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 10/21/2022]
Abstract
The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets' social behavior and cognition are more similar to that of humans. For example, marmosets are among only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this Primer, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and signaling. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY 14627, USA
| | - Afonso C Silva
- Section on Cerebral Microcirculation, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
53
|
May PJC, Westö J, Tiitinen H. Computational modelling suggests that temporal integration results from synaptic adaptation in auditory cortex. Eur J Neurosci 2015; 41:615-30. [PMID: 25728180 DOI: 10.1111/ejn.12820] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
Abstract
Incoming sounds are represented in the context of preceding events, and this requires a memory mechanism that integrates information over time. Here, it was demonstrated that response adaptation, the suppression of neural responses due to stimulus repetition, might reflect a computational solution that auditory cortex uses for temporal integration. Adaptation is observed in single-unit measurements as two-tone forward masking effects and as stimulus-specific adaptation (SSA). In non-invasive observations, the amplitude of the auditory N1m response adapts strongly with stimulus repetition, and it is followed by response recovery (the so-called mismatch response) to rare deviant events. The current computational simulations described the serial core-belt-parabelt structure of auditory cortex, and included synaptic adaptation, the short-term, activity-dependent depression of excitatory corticocortical connections. It was found that synaptic adaptation is sufficient for columns to respond selectively to tone pairs and complex tone sequences. These responses were defined as combination sensitive, thus reflecting temporal integration, when a strong response to a stimulus sequence was coupled with weaker responses both to the time-reversed sequence and to the isolated sequence elements. The temporal complexity of the stimulus seemed to be reflected in the proportion of combination-sensitive columns across the different regions of the model. Our results suggest that while synaptic adaptation produces facilitation and suppression effects, including SSA and the modulation of the N1m response, its functional significance may actually be in its contribution to temporal integration. This integration seems to benefit from the serial structure of auditory cortex.
Collapse
Affiliation(s)
- Patrick J C May
- Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University, P.O. Box 12200, FI-00076, Aalto, Finland
| | | | | |
Collapse
|
54
|
Lee CC. Exploring functions for the non-lemniscal auditory thalamus. Front Neural Circuits 2015; 9:69. [PMID: 26582978 PMCID: PMC4631820 DOI: 10.3389/fncir.2015.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
The functions of the medial geniculate body (MGB) in normal hearing still remain somewhat enigmatic, in part due to the relatively unexplored properties of the non-lemniscal MGB nuclei. Indeed, the canonical view of the thalamus as a simple relay for transmitting ascending information to the cortex belies a role in higher-order forebrain processes. However, recent anatomical and physiological findings now suggest important information and affective processing roles for the non-primary auditory thalamic nuclei. The non-lemniscal nuclei send and receive feedforward and feedback projections among a wide constellation of midbrain, cortical, and limbic-related sites, which support potential conduits for auditory information flow to higher auditory cortical areas, mediators for transitioning among arousal states, and synchronizers of activity across expansive cortical territories. Considered here is a perspective on the putative and unresolved functional roles of the non-lemniscal nuclei of the MGB.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine Baton Rouge, LA, USA
| |
Collapse
|
55
|
Hinkley LB, Mizuiri D, Hong O, Nagarajan SS, Cheung SW. Increased striatal functional connectivity with auditory cortex in tinnitus. Front Hum Neurosci 2015; 9:568. [PMID: 26578924 PMCID: PMC4623204 DOI: 10.3389/fnhum.2015.00568] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Tinnitus is a common auditory perceptual disorder whose neural substrates are under intense debate. One physiologically based model posits the dorsal striatum to play a key role in gating auditory phantoms to perceptual awareness. Here, we directly test this model along with the roles of auditory and auditory-limbic networks in tinnitus non-invasively by comparing resting-state fMRI functional connectivity patterns in chronic tinnitus patients against matched control subjects without hearing loss. We assess resting-state functional connectivity of the caudate dorsal striatum (area LC), caudate head (CH), nucleus accumbens (NA), and primary auditory cortex (A1) to determine patterns of abnormal connectivity. In chronic tinnitus, increases in ipsilateral striatal–auditory cortical connectivity are found consistently only in area LC. Other patterns of increased connectivity are as follows: (1) right striatal area LC, A1, CH, and NA with parietal cortex, (2) left and right CHs with dorsal pre-frontal cortex, (3) NA and A1 with cerebellum, hippocampus, visual and ventral pre-frontal cortex. Those findings provide further support for a striatal gating model of tinnitus, where dysfunctionally permissive area LC enables auditory phantoms to reach perceptual awareness.
Collapse
Affiliation(s)
- Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco CA, USA
| | - OiSaeng Hong
- Department of Community Health Systems, School of Nursing, University of California at San Francisco, San Francisco CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco CA, USA ; Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco CA, USA ; Surgical Services, San Francisco Veterans Affairs Medical Center, San Francisco CA, USA
| |
Collapse
|
56
|
Pundir AS, Singh UA, Ahuja N, Makhija S, Dikshit PC, Radotra B, Kumar P, Shankar SK, Mahadevan A, Roy TS, Iyengar S. Growth and refinement of excitatory synapses in the human auditory cortex. Brain Struct Funct 2015; 221:3641-74. [PMID: 26438332 DOI: 10.1007/s00429-015-1124-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2015] [Indexed: 02/03/2023]
Abstract
We had earlier demonstrated a neurofilament-rich plexus of axons in the presumptive human auditory cortex during fetal development which became adult-like during infancy. To elucidate the origin of these axons, we studied the expression of the vesicular glutamate transporters (VGLUT) 1 and 2 in the human auditory cortex at different stages of development. While VGLUT-1 expression predominates in intrinsic and cortico-cortical synapses, VGLUT-2 expression predominates in thalamocortical synapses. Levels of VGLUT-2 mRNA were higher in the auditory cortex before birth compared to postnatal development. In contrast, levels of VGLUT-1 mRNA were low before birth and increased during postnatal development to peak during childhood and then began to decrease in adolescence. Both VGLUT-1 and VGLUT-2 proteins were present in the human auditory cortex as early as 15GW. Further, immunohistochemistry revealed that the supra- and infragranular layers were more immunoreactive for VGLUT-1 compared to that in Layer IV at 34GW and this pattern was maintained until adulthood. As for VGLUT-1 mRNA, VGLUT-1 synapses increased in density between prenatal development and childhood in the human auditory cortex after which they appeared to undergo attrition or pruning. The adult pattern of VGLUT-2 immunoreactivity (a dense band of VGLUT-2-positive terminals in Layer IV) also began to appear in the presumptive Heschl's gyrus at 34GW. The density of VGLUT-2-positive puncta in Layer IV increased between prenatal development and adolescence, followed by a decrease in adulthood, suggesting that thalamic axons which innervate the human auditory cortex undergo pruning comparatively late in development.
Collapse
Affiliation(s)
- Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Utkarsha A Singh
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Nikhil Ahuja
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Sonal Makhija
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - P C Dikshit
- Department of Forensic Medicine, Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Bishan Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India
| | - Praveen Kumar
- Department of Obstetrics and Gynecology, Base Hospital, Delhi Cantonment, Delhi, 110010, India
| | - S K Shankar
- Department of Neuropathology, National Institute of Mental Health and Allied Sciences, Hosur Road, Bangalore, 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Allied Sciences, Hosur Road, Bangalore, 560029, India
| | - T S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110002, India
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India.
| |
Collapse
|
57
|
Guipponi O, Cléry J, Odouard S, Wardak C, Ben Hamed S. Whole brain mapping of visual and tactile convergence in the macaque monkey. Neuroimage 2015; 117:93-102. [DOI: 10.1016/j.neuroimage.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
|
58
|
Wu C, Stefanescu RA, Martel DT, Shore SE. Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res 2015; 361:233-50. [PMID: 25526698 PMCID: PMC4475675 DOI: 10.1007/s00441-014-2074-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
Abstract
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.
Collapse
Affiliation(s)
- Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
59
|
High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep 2015; 5:10950. [PMID: 26091254 PMCID: PMC4473644 DOI: 10.1038/srep10950] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 11/17/2022] Open
Abstract
Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged.
Collapse
|
60
|
Miller CT, Thomas AW, Nummela SU, de la Mothe LA. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol 2015; 114:1158-71. [PMID: 26084912 DOI: 10.1152/jn.01003.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California;
| | - A Wren Thomas
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Helen Wills Neuroscience Graduate Program, University of California, Berkeley, Berkeley, California; and
| | - Samuel U Nummela
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California
| | - Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee
| |
Collapse
|
61
|
Bizley JK, Bajo VM, Nodal FR, King AJ. Cortico-Cortical Connectivity Within Ferret Auditory Cortex. J Comp Neurol 2015; 523:2187-210. [PMID: 25845831 PMCID: PMC4737260 DOI: 10.1002/cne.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory cortex. Injections of different tracers at frequency‐matched locations in the core areas, the primary auditory cortex (A1) and anterior auditory field (AAF), of the same animal revealed the presence of reciprocal connections with overlapping projections to and from discrete regions within the posterior pseudosylvian and suprasylvian fields (PPF and PSF), suggesting that these connections are frequency specific. In contrast, projections from the primary areas to the anterior dorsal field (ADF) on the anterior ectosylvian gyrus were scattered and non‐overlapping, consistent with the non‐tonotopic organization of this field. The relative strength of the projections originating in each of the primary fields differed, with A1 predominantly targeting the posterior bank fields PPF and PSF, which in turn project to the ventral posterior field, whereas AAF projects more heavily to the ADF, which then projects to the anteroventral field and the pseudosylvian sulcal cortex. These findings suggest that parallel anterior and posterior processing networks may exist, although the connections between different areas often overlap and interactions were present at all levels. J. Comp. Neurol. 523:2187–2210, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer K Bizley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.,Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | | | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| |
Collapse
|
62
|
Lui LL, Mokri Y, Reser DH, Rosa MGP, Rajan R. Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Front Neurosci 2015; 9:132. [PMID: 25941469 PMCID: PMC4403308 DOI: 10.3389/fnins.2015.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Interaural level differences (ILDs) are the dominant cue for localizing the sources of high frequency sounds that differ in azimuth. Neurons in the primary auditory cortex (A1) respond differentially to ILDs of simple stimuli such as tones and noise bands, but the extent to which this applies to complex natural sounds, such as vocalizations, is not known. In sufentanil/N2O anesthetized marmosets, we compared the responses of 76 A1 neurons to three vocalizations (Ock, Tsik, and Twitter) and pure tones at cells' characteristic frequency. Each stimulus was presented with ILDs ranging from 20 dB favoring the contralateral ear to 20 dB favoring the ipsilateral ear to cover most of the frontal azimuthal space. The response to each stimulus was tested at three average binaural levels (ABLs). Most neurons were sensitive to ILDs of vocalizations and pure tones. For all stimuli, the majority of cells had monotonic ILD sensitivity functions favoring the contralateral ear, but we also observed ILD sensitivity functions that peaked near the midline and functions favoring the ipsilateral ear. Representation of ILD in A1 was better for pure tones and the Ock vocalization in comparison to the Tsik and Twitter calls; this was reflected by higher discrimination indices and greater modulation ranges. ILD sensitivity was heavily dependent on ABL: changes in ABL by ±20 dB SPL from the optimal level for ILD sensitivity led to significant decreases in ILD sensitivity for all stimuli, although ILD sensitivity to pure tones and Ock calls was most robust to such ABL changes. Our results demonstrate differences in ILD coding for pure tones and vocalizations, showing that ILD sensitivity in A1 to complex sounds cannot be simply extrapolated from that to pure tones. They also show A1 neurons do not show level-invariant representation of ILD, suggesting that such a representation of auditory space is likely to require population coding, and further processing at subsequent hierarchical stages.
Collapse
Affiliation(s)
- Leo L Lui
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia
| | - Yasamin Mokri
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - David H Reser
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia ; Ear Sciences Institute of Australia Subiaco, WA, Australia
| |
Collapse
|
63
|
Cell-specific activity-dependent fractionation of layer 2/3→5B excitatory signaling in mouse auditory cortex. J Neurosci 2015; 35:3112-23. [PMID: 25698747 DOI: 10.1523/jneurosci.0836-14.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input-output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input-output functions.
Collapse
|
64
|
The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 2015; 93:72-81. [DOI: 10.1016/j.neures.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
|
65
|
Yokoyama C, Onoe H. Positron emission tomography imaging of the social brain of common marmosets. Neurosci Res 2015; 93:82-90. [DOI: 10.1016/j.neures.2014.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
|
66
|
Dewey RS, Hartley DEH. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear Res 2015; 325:55-63. [PMID: 25819496 DOI: 10.1016/j.heares.2015.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Evidence from functional neuroimaging studies suggests that the auditory cortex can become more responsive to visual and somatosensory stimulation following deafness, and that this occurs predominately in the right hemisphere. Extensive cross-modal plasticity in prospective cochlear implant recipients is correlated with poor speech outcomes following implantation, highlighting the potential impact of central auditory plasticity on subsequent aural rehabilitation. Conversely, the effects of hearing restoration with a cochlear implant on cortical plasticity are less well understood, since the use of most neuroimaging techniques in CI recipients is either unsafe or problematic due to the electromagnetic artefacts generated by CI stimulation. Additionally, techniques such as functional magnetic resonance imaging (fMRI) are confounded by acoustic noise produced by the scanner that will be perceived more by hearing than by deaf individuals. Subsequently it is conceivable that auditory responses to acoustic noise produced by the MR scanner may mask auditory cortical responses to non-auditory stimulation, and render inter-group comparisons less significant. Uniquely, functional near-infrared spectroscopy (fNIRS) is a silent neuroimaging technique that is non-invasive and completely unaffected by the presence of a CI. Here, we used fNIRS to study temporal-lobe responses to auditory, visual and somatosensory stimuli in thirty profoundly-deaf participants and thirty normally-hearing controls. Compared with silence, acoustic noise stimuli elicited a significant group fNIRS response in the temporal region of normally-hearing individuals, which was not seen in profoundly-deaf participants. Visual motion elicited a larger group response within the right temporal lobe of profoundly-deaf participants, compared with normally-hearing controls. However, bilateral temporal lobe fNIRS activation to somatosensory stimulation was comparable in both groups. Using fNIRS these results confirm that auditory deprivation is associated with cross-modal plasticity of visual inputs to auditory cortex. Although we found no evidence for plasticity of somatosensory inputs, it is possible that our recordings may have included activation of somatosensory cortex that masked any group differences in auditory cortical responses due to the limited spatial resolution associated with fNIRS.
Collapse
Affiliation(s)
- Rebecca S Dewey
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, 113 The Ropewalk, Nottingham, NG1 5DU, UK.
| | - Douglas E H Hartley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, 113 The Ropewalk, Nottingham, NG1 5DU, UK; MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
67
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004 DOI: 10.12688/f1000research.6175.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 03/28/2024] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobule (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and audio-visual integration. I propose that the primary role of the ADS in monkeys/apes is the perception and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Perception of contact calls occurs by the ADS detecting a voice, localizing it, and verifying that the corresponding face is out of sight. The auditory cortex then projects to parieto-frontal visuospatial regions (visual dorsal stream) for searching the caller, and via a series of frontal lobe-brainstem connections, a contact call is produced in return. Because the human ADS processes also speech production and repetition, I further describe a course for the development of speech in humans. I propose that, due to duplication of a parietal region and its frontal projections, and strengthening of direct frontal-brainstem connections, the ADS converted auditory input directly to vocal regions in the frontal lobe, which endowed early Hominans with partial vocal control. This enabled offspring to modify their contact calls with intonations for signaling different distress levels to their mother. Vocal control could then enable question-answer conversations, by offspring emitting a low-level distress call for inquiring about the safety of objects, and mothers responding with high- or low-level distress calls. Gradually, the ADS and the direct frontal-brainstem connections became more robust and vocal control became more volitional. Eventually, individuals were capable of inventing new words and offspring were capable of inquiring about objects in their environment and learning their names via mimicry.
Collapse
|
68
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004 DOI: 10.12688/f1000research.6175.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|
69
|
Poliva O. From where to what: a neuroanatomically based evolutionary model of the emergence of speech in humans. F1000Res 2015; 4:67. [PMID: 28928931 PMCID: PMC5600004.2 DOI: 10.12688/f1000research.6175.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 03/28/2024] Open
Abstract
In the brain of primates, the auditory cortex connects with the frontal lobe via the temporal pole (auditory ventral stream; AVS) and via the inferior parietal lobe (auditory dorsal stream; ADS). The AVS is responsible for sound recognition, and the ADS for sound-localization, voice detection and integration of calls with faces. I propose that the primary role of the ADS in non-human primates is the detection and response to contact calls. These calls are exchanged between tribe members (e.g., mother-offspring) and are used for monitoring location. Detection of contact calls occurs by the ADS identifying a voice, localizing it, and verifying that the corresponding face is out of sight. Once a contact call is detected, the primate produces a contact call in return via descending connections from the frontal lobe to a network of limbic and brainstem regions. Because the ADS of present day humans also performs speech production, I further propose an evolutionary course for the transition from contact call exchange to an early form of speech. In accordance with this model, structural changes to the ADS endowed early members of the genus Homo with partial vocal control. This development was beneficial as it enabled offspring to modify their contact calls with intonations for signaling high or low levels of distress to their mother. Eventually, individuals were capable of participating in yes-no question-answer conversations. In these conversations the offspring emitted a low-level distress call for inquiring about the safety of objects (e.g., food), and his/her mother responded with a high- or low-level distress call to signal approval or disapproval of the interaction. Gradually, the ADS and its connections with brainstem motor regions became more robust and vocal control became more volitional. Speech emerged once vocal control was sufficient for inventing novel calls.
Collapse
|
70
|
Burman KJ, Bakola S, Richardson KE, Yu HH, Reser DH, Rosa MG. Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 2015; 523:1222-47. [DOI: 10.1002/cne.23734] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen J. Burman
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Sophia Bakola
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; Monash University Node; Clayton Victoria 3800 Australia
| | - Karyn E. Richardson
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Hsin-Hao Yu
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - David H. Reser
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
| | - Marcello G.P. Rosa
- Department of Physiology; Monash University; Clayton Victoria 3800 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; Monash University Node; Clayton Victoria 3800 Australia
| |
Collapse
|
71
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
72
|
Gray DT, Engle JR, Recanzone GH. Age-related neurochemical changes in the rhesus macaque cochlear nucleus. J Comp Neurol 2014; 522:1527-41. [PMID: 24127432 DOI: 10.1002/cne.23479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 11/07/2022]
Abstract
Neurochemical changes in the expression of various proteins within the central auditory system have been associated with natural aging. These changes may compensate in part for the loss of auditory sensitivity arising from two phenomena of the aging auditory system: cochlear histopathologies and increased excitability of central auditory neurons. Recent studies in the macaque monkey have revealed age-related changes in the density of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (NADPHd) and parvalbumin (PV)-positive cells within the inferior colliculus and superior olivary complex. The cochlear nucleus (CN), which is the first central auditory nucleus, remains unstudied. Since the CN participates in the generation of the auditory brainstem response (ABR) and receives direct innervation from the cochlea, it serves as an ideal nucleus to compare the relationship between these neurochemical changes and the physiological and peripheral changes of the aging auditory system. We used stereological sampling to calculate the densities of NADPHd and PV reactive neurons within the three subdivisions of the CN in middle-aged and aged rhesus macaques. Regression analyses of these values with ABR properties and cochlear histopathologies revealed relationships between these cell types and the changing characteristics of the aging auditory system. Our results indicate that NADPHd expression does change with age in a specific subdivision of the CN, but PV does not. Conversely, PV expression correlated with ABR amplitudes and outer hair cell loss in the cochlea, but NADPHd did not. These results indicate that NADPHd and PV may take part in distinct compensatory efforts of the aging auditory system.
Collapse
Affiliation(s)
- Daniel T Gray
- Center for Neuroscience, University of California at Davis, Davis, CA, 95616
| | | | | |
Collapse
|
73
|
Niwa M, O'Connor KN, Engall E, Johnson JS, Sutter ML. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex. J Neurophysiol 2014; 113:307-27. [PMID: 25298387 DOI: 10.1152/jn.00458.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a "single mode" in A1 that relies on increased activity for AM relative to unmodulated sounds and a "dual-polar mode" in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.
Collapse
Affiliation(s)
- Mamiko Niwa
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Kevin N O'Connor
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Elizabeth Engall
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - M L Sutter
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
74
|
Fishman YI, Steinschneider M, Micheyl C. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurosci 2014; 34:12425-43. [PMID: 25209282 PMCID: PMC4160777 DOI: 10.1523/jneurosci.0025-14.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022] Open
Abstract
The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.
Collapse
Affiliation(s)
- Yonatan I Fishman
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461,
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Christophe Micheyl
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, and Starkey Hearing Research Center, Berkeley, California 94704
| |
Collapse
|
75
|
Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP. Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 2014; 522:811-43. [PMID: 23939531 DOI: 10.1002/cne.23447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
In primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys. We found that the entire extent of this area is unified by projections from the dorsocaudal and medial subdivisions of premotor cortex (areas 6DC and 6M), from somatosensory areas 3a, 3b, 1/2, and S2, and from posterior parietal area PE. While cingulate areas projected to all subdivisions, they preferentially targeted the medial part of M1. Conversely, the ventral premotor areas were preferentially connected with the lateral part of M1. Smaller but consistent inputs originated in frontal area 6DR, ventral posterior parietal cortex, the retroinsular cortex, and area TPt. Connections with intraparietal, prefrontal, and temporal areas were very sparse, and variable. Our results demonstrate that M1 is unified by a consistent pattern of major connections, but also shows regional variations in terms of minor inputs. These differences likely reflect requirements for control of voluntary movement involving different body parts.
Collapse
Affiliation(s)
- Kathleen J Burman
- Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
76
|
Cha K, Zatorre RJ, Schönwiesner M. Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex. Cereb Cortex 2014; 26:211-24. [PMID: 25183885 DOI: 10.1093/cercor/bhu193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While functional connectivity in the human cortex has been increasingly studied, its relationship to cortical representation of sensory features has not been documented as much. We used functional magnetic resonance imaging to demonstrate that voxel-by-voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels in the human auditory cortex. Thus, FC was significantly higher for voxels with similar frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective FC, measured via the correlation of residual hemodynamic activity, was not explained by generic FC that is dependent on spatial distance over the cortex. This pattern remained even when FC was computed using residual activity taken from resting epochs. Further analysis showed that voxels in the core fields in the right hemisphere have a higher frequency selectivity in within-area FC than their counterpart in the left hemisphere, or than in the noncore-fields in the same hemisphere. Frequency-selective FC is consistent with previous findings of topographically organized FC in the human visual and motor cortices. The high degree of frequency selectivity in the right core area is in line with findings and theoretical proposals regarding the asymmetry of human auditory cortex for spectral processing.
Collapse
Affiliation(s)
- Kuwook Cha
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Marc Schönwiesner
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada H2V 2S9 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| |
Collapse
|
77
|
Cammoun L, Thiran JP, Griffa A, Meuli R, Hagmann P, Clarke S. Intrahemispheric cortico-cortical connections of the human auditory cortex. Brain Struct Funct 2014; 220:3537-53. [PMID: 25173473 DOI: 10.1007/s00429-014-0872-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions.
Collapse
Affiliation(s)
- Leila Cammoun
- Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Université de Lausanne, Lausanne, Switzerland.
| | | | | | - Reto Meuli
- Service de Radiodiagnostic et Radiologie Interventionnelle, CHUV, Université de Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Service de Radiodiagnostic et Radiologie Interventionnelle, CHUV, Université de Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
78
|
Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP. Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 2014; 522:3683-716. [PMID: 24888737 DOI: 10.1002/cne.23633] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 11/11/2022]
Abstract
Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal-directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys.
Collapse
Affiliation(s)
- Kathleen J Burman
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | | | | | | | | |
Collapse
|
79
|
Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosci 2014; 8:72. [PMID: 24795550 PMCID: PMC4001064 DOI: 10.3389/fnins.2014.00072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022] Open
Abstract
Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt), subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML); caudomedial belt (CM); and caudal parabelt (CPB). Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: (1) feedforward projection from ML and CM terminated in CPB; (2) feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and (3) feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO) in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | - Corrie R Camalier
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine Nashville, TN, USA ; Laboratory of Neuropsychology, National Institutes of Mental Health Bethesda, MD, USA
| | - Arnaud Falchier
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Peter Lakatos
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Yoshinao Kajikawa
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Charles E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| |
Collapse
|
80
|
Engle JR, Gray DT, Turner H, Udell JB, Recanzone GH. Age-related neurochemical changes in the rhesus macaque inferior colliculus. Front Aging Neurosci 2014; 6:73. [PMID: 24795627 PMCID: PMC4001037 DOI: 10.3389/fnagi.2014.00073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/31/2014] [Indexed: 01/19/2023] Open
Abstract
Age-related hearing loss (ARHL) is marked by audiometric hearing deficits that propagate along the auditory pathway. Neurochemical changes as a function of aging have also been identified in neurons along the auditory pathway in both rodents and carnivores, however, very little is known about how these neurochemicals change in the non-human primate. To examine how these compensatory neurochemical changes relate to normal aging and audiometric sensitivity along the auditory pathway, we collected auditory brainstem responses (ABRs) and brain specimens from seven rhesus monkeys spanning in age from 15 to 35 years old, and examined the relationship between click evoked ABR thresholds and the ABR evoked pure tone average (PTA) and changes in the number of parvalbumin and NADPH-diaphorase positive cells in the auditory midbrain. We found that the number of parvalbumin positive cells in the central nucleus and the surrounding cortex regions of the inferior colliculus were strongly correlated with advancing age and ABR PTA. We also found that the numbers of NADPHd positive cells in these same regions were not associated with normal aging or changes in the ABR thresholds. These findings suggest that the auditory midbrain undergoes an up-regulation of parvalbumin expressing neurons with aging that is related to changes in the processing of frequencies across the audiometric range.
Collapse
Affiliation(s)
- James R Engle
- Evelyn F. McKnight Brain Institute, University of Arizona at Tucson Tucson, AZ, USA ; Center for Neuroscience, University of California at Davis Davis, CA, USA ; Department of Psychology, University of California at Davis Davis, CA, USA
| | - Daniel T Gray
- Center for Neuroscience, University of California at Davis Davis, CA, USA
| | - Heather Turner
- Center for Neuroscience, University of California at Davis Davis, CA, USA
| | - Julia B Udell
- Center for Neuroscience, University of California at Davis Davis, CA, USA
| | - Gregg H Recanzone
- Center for Neuroscience, University of California at Davis Davis, CA, USA ; Department of Psychology, University of California at Davis Davis, CA, USA ; Department of Neurobiology, Physiology and Behavior, University of California at Davis Davis, CA USA
| |
Collapse
|
81
|
Zhou Y, Wang X. Spatially extended forward suppression in primate auditory cortex. Eur J Neurosci 2013; 39:919-933. [PMID: 24372934 DOI: 10.1111/ejn.12460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/22/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
When auditory neurons are stimulated with a pair of sounds, the preceding sound can inhibit the neural responses to the succeeding sound. This phenomenon, referred to as 'forward suppression', has been linked to perceptual forward masking. Previous studies investigating forward suppression typically measured the interaction between masker and probe sounds using a fixed sound location. However, in natural environments, interacting sounds often come from different spatial locations. The present study investigated two questions regarding forward suppression in the primary auditory cortex and adjacent caudal field of awake marmoset monkeys. First, what is the relationship between the location of a masker and its effectiveness in inhibiting neural response to a probe? Second, does varying the location of a masker change the spectral profile of forward suppression? We found that a masker can inhibit a neuron's response to a probe located at a preferred location even when the masker is located at a non-preferred location of a neuron. This is especially so for neurons in the caudal field. Furthermore, we found that the strongest forward suppression is observed when a masker's frequency is close to the best frequency of a neuron, regardless of the location of the masker. These results reveal, for the first time, the stability of forward masking in cortical processing of multiple sounds presented from different locations. They suggest that forward suppression in the auditory cortex is spectrally specific and spatially broad with respect to the frequency and location of the masker, respectively.
Collapse
Affiliation(s)
- Yi Zhou
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
82
|
Gray DT, Engle JR, Recanzone GH. Age-related neurochemical changes in the rhesus macaque superior olivary complex. J Comp Neurol 2013; 522:573-91. [PMID: 25232570 DOI: 10.1002/cne.23427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Positive immunoreactivity to the calcium-binding protein parvalbumin (PV) and nitric oxide synthase NADPH diaphorase (NADPHd) is well documented within neurons of the central auditory system of both rodents and primates. These proteins are thought to play roles in the regulation of auditory processing. Studies examining the age-related changes in expression of these proteins have been conducted primarily in rodents but are sparse in primate models. In the brainstem, the superior olivary complex (SOC) is crucial for the computation of sound source localization in azimuth, and one hallmark of age-related hearing deficits is a reduced ability to localize sounds. To investigate how these histochemical markers change as a function of age and hearing loss, we studied eight rhesus macaques ranging in age from 12 to 35 years. Auditory brainstem responses (ABRs) were obtained in anesthetized animals for click and tone stimuli. The brainstems of the sesame animals were then stained for PV and NADPHd reactivity. Reactive neurons in the three nuclei of the SOC were counted, and the densities of each cell type were calculated. We found that PV and NADPHd expression increased with both age and ABR thresholds in the medial superior olive but not in either the medial nucleus of the trapezoid body or the lateral superior olive. Together these results suggest that the changes in protein expression employed by the SOC may compensate for the loss of efficacy of auditory sensitivity in the aged primate.
Collapse
Affiliation(s)
- Daniel T Gray
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | | | | |
Collapse
|
83
|
Gray DT, Rudolph ML, Engle JR, Recanzone GH. Parvalbumin increases in the medial and lateral geniculate nuclei of aged rhesus macaques. Front Aging Neurosci 2013; 5:69. [PMID: 24265617 PMCID: PMC3821177 DOI: 10.3389/fnagi.2013.00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022] Open
Abstract
Subcortical auditory structures in the macaque auditory system increase their densities of neurons expressing the calcium binding protein parvalbumin (PV) with age. However, it is unknown whether these increases occur in the thalamic division of the auditory system, the medial geniculate nucleus (MGN). Furthermore, it is also unclear whether these age-related changes are specific to the macaque auditory system or are generalized to other sensory systems. To address these questions, the PV immunoreactivity of the medial and lateral geniculate nuclei (LGN) from seven rhesus macaques ranging in age from 15 to 35 was assessed. Densities of PV expressing neurons in the three subdivisions of the MGN and the six layers of the LGN were calculated separately using unbiased stereological sampling techniques. We found that the ventral and magnocellular subdivisions of the MGN and all six layers of the LGN increased their expressions of PV with age, although increases in the MGN were greater in magnitude than in the LGN. Together, these results suggest that the MGN shows age-related increases in PV expression as is seen throughout the macaque ascending auditory system, and that the analogous region of the visual system shows smaller increases. We conclude that, while there are some similarities between sensory systems, the age-related neurochemical changes seen throughout the macaque auditory system cannot be fully generalized to other sensory systems.
Collapse
Affiliation(s)
- Daniel T. Gray
- Center for Neuroscience, University of California at DavisDavis, CA, USA
| | - Megan L. Rudolph
- Center for Neuroscience, University of California at DavisDavis, CA, USA
| | - James R. Engle
- Evelyn F. McKnight Brain Institute, University of ArizonaTucson, AZ, USA
| | - Gregg H. Recanzone
- Center for Neuroscience, University of California at DavisDavis, CA, USA
- Department of Neurobiology, Physiology and Behavior, University of California at DavisDavis, CA, USA
| |
Collapse
|
84
|
Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson's disease? Neurosci Biobehav Rev 2013; 37:2564-70. [PMID: 24012774 DOI: 10.1016/j.neubiorev.2013.08.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/17/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Previous research has noted that music can improve gait in several pathological conditions, including Parkinson's disease, Huntington's disease and stroke. Current research into auditory-motor interactions and the neural bases of musical rhythm perception has provided important insights for developing potential movement therapies. Specifically, neuroimaging studies show that rhythm perception activates structures within key motor networks, such as premotor and supplementary motor areas, basal ganglia and the cerebellum - many of which are compromised to varying degrees in Parkinson's disease. It thus seems likely that automatic engagement of motor areas during rhythm perception may be the connecting link between music and motor improvements in Parkinson's disease. This review seeks to describe the link, address core questions about its underlying mechanisms, and examine whether it can be utilized as a compensatory mechanism.
Collapse
Affiliation(s)
- Cristina Nombela
- Clinical Neuroscience Department, Cambridge Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom.
| | | | | | | |
Collapse
|
85
|
Kral A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013; 247:117-33. [DOI: 10.1016/j.neuroscience.2013.05.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
|
86
|
Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey. J Neurosci 2013; 33:10312-23. [PMID: 23785145 DOI: 10.1523/jneurosci.0020-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many natural sounds are periodic and consist of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0, which plays a key role in the perception of speech and music. "Pitch-selective" neurons have been identified in non-primary auditory cortex of marmoset monkeys. Noninvasive studies point to a putative "pitch center" located in a homologous cortical region in humans. It remains unclear whether there is sufficient spectral and temporal information available at the level of primary auditory cortex (A1) to enable reliable pitch extraction in non-primary auditory cortex. Here we evaluated multiunit responses to HCTs in A1 of awake macaques using a stimulus design employed in auditory nerve studies of pitch encoding. The F0 of the HCTs was varied in small increments, such that harmonics of the HCTs fell either on the peak or on the sides of the neuronal pure tone tuning functions. Resultant response-amplitude-versus-harmonic-number functions ("rate-place profiles") displayed a periodic pattern reflecting the neuronal representation of individual HCT harmonics. Consistent with psychoacoustic findings in humans, lower harmonics were better resolved in rate-place profiles than higher harmonics. Lower F0s were also temporally represented by neuronal phase-locking to the periodic waveform of the HCTs. Findings indicate that population responses in A1 contain sufficient spectral and temporal information for extracting the pitch of HCTs by neurons in downstream cortical areas that receive their input from A1.
Collapse
|
87
|
Differences between primary auditory cortex and auditory belt related to encoding and choice for AM sounds. J Neurosci 2013; 33:8378-95. [PMID: 23658177 DOI: 10.1523/jneurosci.2672-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We recorded from middle-lateral (ML) and primary (A1) auditory cortex while macaques discriminated amplitude-modulated (AM) noise from unmodulated noise. Compared with A1, ML had a higher proportion of neurons that encoded increasing AM depth by decreasing their firing rates ("decreasing" neurons), particularly with responses that were not synchronized to the modulation. Choice probability (CP) analysis revealed that A1 and ML activity were different during the first half of the test stimulus. In A1, significant CP began before the test stimulus, remained relatively constant (or increased slightly) during the stimulus, and increased greatly within 200 ms of lever release. Neurons in ML behaved similarly, except that significant CP disappeared during the first half of the stimulus and reappeared during the second half and prerelease periods. CP differences between A1 and ML depend on neural response type. In ML (but not A1), when activity was lower during the first half of the stimulus in nonsynchronized, decreasing neurons, the monkey was more likely to report AM. Neurons that both increased firing rate with increasing modulation depth ("increasing" neurons) and synchronized their responses to AM had similar choice-related activity dynamics in ML and A1. These results suggest that, when ascending the auditory system, there is a transformation in coding AM from primarily synchronized increasing responses in A1 to nonsynchronized and dual (increasing/decreasing) coding in ML. This sensory transformation is accompanied by changes in the timing of activity related to choice, suggesting functional differences between A1 and ML related to attention and/or behavior.
Collapse
|
88
|
Lee CC. Thalamic and cortical pathways supporting auditory processing. BRAIN AND LANGUAGE 2013; 126:22-28. [PMID: 22728130 PMCID: PMC3483386 DOI: 10.1016/j.bandl.2012.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/30/2012] [Accepted: 05/19/2012] [Indexed: 05/28/2023]
Abstract
The neural processing of auditory information engages pathways that begin initially at the cochlea and that eventually reach forebrain structures. At these higher levels, the computations necessary for extracting auditory source and identity information rely on the neuroanatomical connections between the thalamus and cortex. Here, the general organization of these connections in the medial geniculate body (thalamus) and the auditory cortex is reviewed. In addition, we consider two models organizing the thalamocortical pathways of the non-tonotopic and multimodal auditory nuclei. Overall, the transfer of information to the cortex via the thalamocortical pathways is complemented by the numerous intracortical and corticocortical pathways. Although interrelated, the convergent interactions among thalamocortical, corticocortical, and commissural pathways enable the computations necessary for the emergence of higher auditory perception.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| |
Collapse
|
89
|
Rajan R, Dubaj V, Reser DH, Rosa MGP. Auditory cortex of the marmoset monkey - complex responses to tones and vocalizations under opiate anaesthesia in core and belt areas. Eur J Neurosci 2012; 37:924-41. [PMID: 23278961 DOI: 10.1111/ejn.12092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 11/06/2012] [Accepted: 11/16/2012] [Indexed: 11/28/2022]
Abstract
Many anaesthetics commonly used in auditory research severely depress cortical responses, particularly in the supragranular layers of the primary auditory cortex and in non-primary areas. This is particularly true when stimuli other than simple tones are presented. Although awake preparations allow better preservation of the neuronal responses, there is an inherent limitation to this approach whenever the physiological data need to be combined with histological reconstruction or anatomical tracing. Here we tested the efficacy of an opiate-based anaesthetic regime to study physiological responses in the primary auditory cortex and middle lateral belt area. Adult marmosets were anaesthetized using a combination of sufentanil (8 μg/kg/h, i.v.) and N2 O (70%). Unit activity was recorded throughout the cortical layers, in response to auditory stimuli presented binaurally. Stimuli consisted of a battery of tones presented at different intensities, as well as two marmoset calls ('Tsik' and 'Twitter'). In addition to robust monotonic and non-monotonic responses to tones, we found that the neuronal activity reflected various aspects of the calls, including 'on' and 'off' components, and temporal fluctuations. Both phasic and tonic activities, as well as excitatory and inhibitory components, were observed. Furthermore, a late component (100-250 ms post-offset) was apparent. Our results indicate that the sufentanil/N2 O combination allows better preservation of response patterns in both the core and belt auditory cortex, in comparison with anaesthetics usually employed in auditory physiology. This anaesthetic regime holds promise in enabling the physiological study of complex auditory responses in acute preparations, combined with detailed anatomical and histological investigation.
Collapse
Affiliation(s)
- Ramesh Rajan
- Department of Physiology, Monash University, Clayton, Vic., 3800, Australia.
| | | | | | | |
Collapse
|
90
|
Tokuno H, Moriya-Ito K, Tanaka I. Experimental techniques for neuroscience research using common marmosets. Exp Anim 2012; 61:389-97. [PMID: 22850638 DOI: 10.1538/expanim.61.389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a species of New World monkeys. Because of its ease of maintenance and breeding in laboratories, use of the marmoset is growing rapidly in biomedical research. In neuroscience, the marmosets are attracting more attention, since they have the developed cerebral cortex which plays a key role in higher brain functions. In this review on neuroscience research using the marmoset, experimental techniques developed in our laboratory are summarized. We introduce artificial rearing of neonates, stereotaxic surgery, neuroanatomy including virtual microscopy based on the Internet technology, behavioral study using a large number of marmosets, and primary neuron culture study.
Collapse
Affiliation(s)
- Hironobu Tokuno
- Laboratory of Brain Structure, Tokyo Metropolitan Institute of Medical Science, 2–1–6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | | | | |
Collapse
|
91
|
Abstract
The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.
Collapse
|
92
|
Remington ED, Osmanski MS, Wang X. An operant conditioning method for studying auditory behaviors in marmoset monkeys. PLoS One 2012; 7:e47895. [PMID: 23110123 PMCID: PMC3480461 DOI: 10.1371/journal.pone.0047895] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a small New World primate that has increasingly been used as a non-human model in the fields of sensory, motor, and cognitive neuroscience. However, little knowledge exists regarding behavioral methods in this species. Developing an understanding of the neural basis of perception and cognition in an animal model requires measurement of both brain activity and behavior. Here we describe an operant conditioning behavioral training method developed to allow controlled psychoacoustic measurements in marmosets. We demonstrate that marmosets can be trained to consistently perform a Go/No-Go auditory task in which a subject licks at a feeding tube when it detects a sound. Correct responses result in delivery of a food reward. Crucially, this operant conditioning task generates little body movement and is well suited for pairing behavior with single-unit electrophysiology. Successful implementation of an operant conditioning behavior opens the door to a wide range of new studies in the field of auditory neuroscience using the marmoset as a model system.
Collapse
Affiliation(s)
- Evan D Remington
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
93
|
Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci U S A 2012; 109:18168-73. [PMID: 23074251 DOI: 10.1073/pnas.1206387109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory systems across the brain are specialized for their input, yet some principles of neural organization are conserved across modalities. The pattern of anatomical connections from the primate auditory cortex to the temporal, parietal, and prefrontal lobes suggests a possible division into dorsal and ventral auditory processing streams, with the dorsal stream originating from more caudal areas of the auditory cortex, and the ventral stream originating from more rostral areas. These streams are hypothesized to be analogous to the well-established dorsal and ventral streams of visual processing. In the visual system, the dorsal processing stream shows substantially faster neural response latencies than does the ventral stream. However, the relative timing of putative dorsal and ventral stream processing has yet to be explored in other sensory modalities. Here, we compare distributions of neural response latencies from 10 different areas of macaque auditory cortex, confirmed by individual anatomical reconstructions, to determine whether a similar timing advantage is found for the hypothesized dorsal auditory stream. Across three varieties of auditory stimuli (clicks, noise, and pure tones), we find that latencies increase with hierarchical level, as predicted by anatomical connectivity. Critically, we also find a pronounced timing differential along the caudal-to-rostral axis within the same hierarchical level, with caudal (dorsal stream) latencies being faster than rostral (ventral stream) latencies. This observed timing differential mirrors that found for the dorsal stream of the visual system, suggestive of a common timing advantage for the dorsal stream across sensory modalities.
Collapse
|
94
|
Peelle JE, Gross J, Davis MH. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cereb Cortex 2012; 23:1378-87. [PMID: 22610394 PMCID: PMC3643716 DOI: 10.1093/cercor/bhs118] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners’ ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.
Collapse
|
95
|
Zhou Y, Wang X. Level dependence of spatial processing in the primate auditory cortex. J Neurophysiol 2012; 108:810-26. [PMID: 22592309 DOI: 10.1152/jn.00500.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sound localization in both humans and monkeys is tolerant to changes in sound levels. The underlying neural mechanism, however, is not well understood. This study reports the level dependence of individual neurons' spatial receptive fields (SRFs) in the primary auditory cortex (A1) and the adjacent caudal field in awake marmoset monkeys. We found that most neurons' excitatory SRF components were spatially confined in response to broadband noise stimuli delivered from the upper frontal sound field. Approximately half the recorded neurons exhibited little change in spatial tuning width over a ~20-dB change in sound level, whereas the remaining neurons showed either expansion or contraction in their tuning widths. Increased sound levels did not alter the percent distribution of tuning width for neurons collected in either cortical field. The population-averaged responses remained tuned between 30- and 80-dB sound pressure levels for neuronal groups preferring contralateral, midline, and ipsilateral locations. We further investigated the spatial extent and level dependence of the suppressive component of SRFs using a pair of sequentially presented stimuli. Forward suppression was observed when the stimuli were delivered from "far" locations, distant to the excitatory center of an SRF. In contrast to spatially confined excitation, the strength of suppression typically increased with stimulus level at both the excitatory center and far regions of an SRF. These findings indicate that although the spatial tuning of individual neurons varied with stimulus levels, their ensemble responses were level tolerant. Widespread spatial suppression may play an important role in limiting the sizes of SRFs at high sound levels in the auditory cortex.
Collapse
Affiliation(s)
- Yi Zhou
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205-2195, USA.
| | | |
Collapse
|
96
|
Johnson LA, Della Santina CC, Wang X. Temporal bone characterization and cochlear implant feasibility in the common marmoset (Callithrix jacchus). Hear Res 2012; 290:37-44. [PMID: 22583919 DOI: 10.1016/j.heares.2012.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/28/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
The marmoset (Callithrix jacchus) is a valuable non-human primate model for studying behavioral and neural mechanisms related to vocal communication. It is also well suited for investigating neural mechanisms related to cochlear implants. The purpose of this study was to characterize marmoset temporal bone anatomy and investigate the feasibility of implanting a multi-channel intracochlear electrode into the marmoset scala tympani. Micro computed tomography (microCT) was used to create high-resolution images of marmoset temporal bones. Cochlear fluid spaces, middle ear ossicles, semicircular canals and the surrounding temporal bone were reconstructed in three-dimensional space. Our results show that the marmoset cochlea is ∼16.5 mm in length and has ∼2.8 turns. The cross-sectional area of the scala tympani is greatest (∼0.8 mm(2)) at ∼1.75 mm from the base of the scala, reduces to ∼0.4 mm(2) at 5 mm from the base, and decreases at a constant rate for the remaining length. Interestingly, this length-area profile, when scaled 2.5 times, is similar to the scala tympani of the human cochlea. Given these dimensions, a compatible multi-channel implant electrode was identified. In a cadaveric specimen, this electrode was inserted ¾ turn into the scala tympani through a cochleostomy at ∼1 mm apical to the round window. The depth of the most apical electrode band was ∼8 mm. Our study provides detailed structural anatomy data for the middle and inner ear of the marmoset, and suggests the potential of the marmoset as a new non-human primate model for cochlear implant research.
Collapse
Affiliation(s)
- Luke A Johnson
- Biomedical Engineering Dept., Johns Hopkins University, 412 Traylor Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
97
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:822-36. [PMID: 22467603 DOI: 10.1002/ar.22454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 11/11/2022]
Abstract
The primate auditory cortex is comprised of a core region of three primary areas, surrounded by a belt region of secondary areas and a parabelt region lateral to the belt. The main sources of thalamocortical inputs to the auditory cortex are the medial geniculate complex (MGC), medial pulvinar (PM), and several adjoining nuclei in the posterior thalamus. The distribution of inputs varies topographically by cortical area and thalamic nucleus, but in a manner that has not been fully characterized in primates. In this study, the thalamocortical connections of the lateral belt and parabelt were determined by placing retrograde tracer injections into various areas of these regions in the marmoset monkey. Both regions received projections from the medial (MGm) and posterodorsal (MGpd) divisions of the medial geniculate complex (MGC); however, labeled cells in the anterodorsal (MGad) division were present only from injections into the caudal belt. Thalamic inputs to the lateral belt appeared to come mainly from the MGC, whereas the parabelt also received a strong projection from the PM, consistent with its position as a later stage of auditory cortical processing. The results of this study also indicate that the organization of the marmoset auditory cortex is similar to other primates.
Collapse
Affiliation(s)
- Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
98
|
Wild CJ, Davis MH, Johnsrude IS. Human auditory cortex is sensitive to the perceived clarity of speech. Neuroimage 2012; 60:1490-502. [PMID: 22248574 DOI: 10.1016/j.neuroimage.2012.01.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/23/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Conor J Wild
- Centre for Neuroscience Studies, Queen's University, Kingston ON, Canada.
| | | | | |
Collapse
|
99
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:800-21. [PMID: 22461313 DOI: 10.1002/ar.22451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/01/2012] [Indexed: 11/12/2022]
Abstract
The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.
Collapse
Affiliation(s)
- Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee 37209, USA
| | | | | | | |
Collapse
|
100
|
Lehongre K, Ramus F, Villiermet N, Schwartz D, Giraud AL. Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia. Neuron 2011; 72:1080-90. [PMID: 22196341 DOI: 10.1016/j.neuron.2011.11.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2011] [Indexed: 10/14/2022]
|