51
|
Pfeiffer C, van Elk M, Bernasconi F, Blanke O. Distinct vestibular effects on early and late somatosensory cortical processing in humans. Neuroimage 2015; 125:208-219. [PMID: 26466979 DOI: 10.1016/j.neuroimage.2015.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022] Open
Abstract
In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such vestibular-somatosensory interactions in the human brain. To address this issue, we recorded high-density electroencephalography during left median nerve electrical stimulation to obtain Somatosensory Evoked Potentials (SEPs). We analyzed SEPs during vestibular activation following sudden decelerations from constant-velocity (90°/s and 60°/s) earth-vertical axis yaw rotations and SEPs during a non-vestibular control period. SEP analysis revealed two distinct temporal effects of vestibular activation: An early effect (28-32ms post-stimulus) characterized by vestibular suppression of SEP response strength that depended on rotation velocity and a later effect (97-112ms post-stimulus) characterized by vestibular modulation of SEP topographical pattern that was rotation velocity-independent. Source estimation localized these vestibular effects, during both time periods, to activation differences in a distributed cortical network including the right postcentral gyrus, right insula, left precuneus, and bilateral secondary somatosensory cortex. These results suggest that vestibular-somatosensory interactions in humans depend on processing in specific time periods in somatosensory and vestibular cortical regions.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neuroscience, Lausanne University and University Hospital, Lausanne, Switzerland; Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Michiel van Elk
- Department of Psychology, University of Amsterdam, Netherlands
| | - Fosco Bernasconi
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Department of Neurology, University Hospital Geneva, Switzerland.
| |
Collapse
|
52
|
Moser I, Grabherr L, Hartmann M, Mast FW. Self-motion direction discrimination in the visually impaired. Exp Brain Res 2015. [PMID: 26223579 DOI: 10.1007/s00221-015-4389-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite the close interrelation between vestibular and visual processing (e.g., vestibulo-ocular reflex), surprisingly little is known about vestibular function in visually impaired people. In this study, we investigated thresholds of passive whole-body motion discrimination (leftward vs. rightward) in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the interaural axis at two different frequencies (0.33 and 2 Hz) by means of a motion platform. Superior performance of visually impaired participants was found in the 0.33 Hz roll tilt condition. No differences were observed in the other motion conditions. Roll tilts stimulate the semicircular canals and otoliths simultaneously. The results could thus reflect a specific improvement in canal-otolith integration in the visually impaired and are consistent with the compensatory hypothesis, which implies that the visually impaired are able to compensate the absence of visual input.
Collapse
Affiliation(s)
- Ivan Moser
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.
| | - Luzia Grabherr
- Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Matthias Hartmann
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
| |
Collapse
|
53
|
The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 2015; 93:72-81. [DOI: 10.1016/j.neures.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
|
54
|
Kammermeier S, Singh A, Noachtar S, Krotofil I, Bötzel K. Intermediate latency evoked potentials of cortical multimodal vestibular areas: Acoustic stimulation. Clin Neurophysiol 2015; 126:614-25. [DOI: 10.1016/j.clinph.2014.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/19/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
|
55
|
Ferrè ER, Haggard P. Vestibular–Somatosensory Interactions: A Mechanism in Search of a Function? Multisens Res 2015; 28:559-79. [DOI: 10.1163/22134808-00002487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
No unimodal vestibular cortex has been identified in the human brain. Rather, vestibular inputs are strongly integrated with signals from other sensory modalities, such as vision, touch and proprioception. This convergence could reflect an important mechanism for maintaining a perception of the body, including individual body parts, relative to the rest of the environment. Neuroimaging, electrophysiological and psychophysical studies showed evidence for multisensory interactions between vestibular and somatosensory signals. However, no convincing overall theoretical framework has been proposed for vestibular–somatosensory interactions, and it remains unclear whether such percepts are by-products of neural convergence, or a functional multimodal integration. Here we review the current literature on vestibular–multisensory interactions in order to develop a framework for understanding the functions of such multimodal interaction. We propose that the target of vestibular–somatosensory interactions is a form of self-representation.
Collapse
Affiliation(s)
- Elisa Raffaella Ferrè
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
56
|
Kirsch V, Keeser D, Hergenroeder T, Erat O, Ertl-Wagner B, Brandt T, Dieterich M. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct Funct 2015; 221:1291-308. [PMID: 25552315 DOI: 10.1007/s00429-014-0971-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022]
Abstract
Structural and functional interconnections of the bilateral central vestibular network have not yet been completely delineated. This includes both ipsilateral and contralateral pathways and crossing sites on the way from the vestibular nuclei via the thalamic relay stations to multiple "vestibular cortex" areas. This study investigated "vestibular" connectivity in the living human brain in between the vestibular nuclei and the parieto-insular vestibular cortex (PIVC) by combined structural and functional connectivity mapping using diffusion tensor imaging and functional connectivity magnetic resonance imaging in 24 healthy right-handed volunteers. We observed a congruent functional and structural link between the vestibular nuclei and the ipsilateral and contralateral PIVC. Five separate and distinct vestibular pathways were identified: three run ipsilaterally, while the two others cross either in the pons or the midbrain. Two of the ipsilateral projections run through the posterolateral or paramedian thalamic subnuclei, while the third bypasses the thalamus to reach the inferior part of the insular cortex directly. Both contralateral pathways travel through the posterolateral thalamus. At the cortical level, the PIVC regions of both hemispheres with a right hemispherical dominance are interconnected transcallosally through the antero-caudal splenium. The above-described bilateral vestibular circuitry in its entirety takes the form of a structure of a rope ladder extending from the brainstem to the cortex with three crossings in the brainstem (vestibular nuclei, pons, midbrain), none at thalamic level and a fourth cortical crossing through the splenium of the corpus callosum.
Collapse
Affiliation(s)
- V Kirsch
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistraße 15, 81377, Munich, Germany. .,Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany. .,German Center for Vertigo and Balance Disorders-IFBLMU, Ludwig-Maximilians University, Munich, Germany.
| | - D Keeser
- Department of Radiology, Ludwig-Maximilians University, Munich, Germany.,Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
| | - T Hergenroeder
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | - O Erat
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | - B Ertl-Wagner
- German Center for Vertigo and Balance Disorders-IFBLMU, Ludwig-Maximilians University, Munich, Germany.,Department of Radiology, Ludwig-Maximilians University, Munich, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders-IFBLMU, Ludwig-Maximilians University, Munich, Germany.,Clinical Neuroscience, Ludwig-Maximilians University, 81377, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistraße 15, 81377, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFBLMU, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
57
|
Abstract
The auditory cortex is a network of areas in the part of the brain that receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring about the conscious perception of sound and provide a basis for the comprehension and production of meaningful utterances. In this chapter, the organization of auditory cortex is described with an emphasis on its anatomic features and the flow of information within the network. These features are then used to introduce key neurophysiologic concepts that are being intensively studied in humans and animal models. The discussion is presented in the context of our working model of the primate auditory cortex and extensions to humans. The material is presented in the context of six underlying principles, which reflect distinct, but related, aspects of anatomic and physiologic organization: (1) the division of auditory cortex into regions; (2) the subdivision of regions into areas; (3) tonotopic organization of areas; (4) thalamocortical connections; (5) serial and parallel organization of connections; and (6) topographic relationships between auditory and auditory-related areas. Although the functional roles of the various components of this network remain poorly defined, a more complete understanding is emerging from ongoing studies that link auditory behavior to its anatomic and physiologic substrates.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine and Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
58
|
Self-recognition of one's own fall recruits the genuine bodily crisis-related brain activity. PLoS One 2014; 9:e115303. [PMID: 25525808 PMCID: PMC4272298 DOI: 10.1371/journal.pone.0115303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/22/2014] [Indexed: 12/04/2022] Open
Abstract
While bipedalism is a fundamental evolutionary adaptation thought to be essential for the development of the human brain, the erect body is always an inch or two away from falling. Although the neural mechanism for automatically detecting one's own body instability is an important consideration, there have thus far been few functional neuroimaging studies because of the restrictions placed on participants' movements. Here, we used functional magnetic resonance imaging to investigate the neural substrate underlying whole body instability, based on the self-recognition paradigm that uses video stimuli consisting of one's own and others' whole bodies depicted in stable and unstable states. Analyses revealed significant activity in the regions which would be activated during genuine unstable bodily states: The right parieto-insular vestibular cortex, inferior frontal junction, posterior insula and parabrachial nucleus. We argue that these right-lateralized cortical and brainstem regions mediate vestibular information processing for detection of vestibular anomalies, defensive motor responding in which the necessary motor responses are automatically prepared/simulated to protect one's own body, and sympathetic activity as a form of alarm response during whole body instability.
Collapse
|
59
|
Della-Justina HM, Gamba HR, Lukasova K, Nucci-da-Silva MP, Winkler AM, Amaro E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp Brain Res 2014; 233:237-52. [PMID: 25300959 DOI: 10.1007/s00221-014-4107-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual-vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual-vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes.
Collapse
Affiliation(s)
- Hellen M Della-Justina
- Graduate Program in Electrical and Computer Engineering, Federal University of Technology-Parana, Av. Sete de Setembro, 3165, Curitiba, PR, 80230-901, Brazil,
| | | | | | | | | | | |
Collapse
|
60
|
Mazzola L, Lopez C, Faillenot I, Chouchou F, Mauguière F, Isnard J. Vestibular responses to direct stimulation of the human insular cortex. Ann Neurol 2014; 76:609-19. [DOI: 10.1002/ana.24252] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Laure Mazzola
- Neurology Department; University Hospital; St-Etienne
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Jean Monnet University; St-Etienne
| | - Christophe Lopez
- Aix Marseille University, National Center for Scientific Research, Integrative and Adaptative Neurosciences Mixed Unit of Research 7260; Marseille
| | - Isabelle Faillenot
- Neurology Department; University Hospital; St-Etienne
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Jean Monnet University; St-Etienne
| | - Florian Chouchou
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
| | - François Mauguière
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Functional Neurology and Epilepsy Department; Neurological Hospital, Civil Hospices of Lyon; Lyon
- Claude Bernard University; Lyon France
| | - Jean Isnard
- Team “Central Integration of Pain”; Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Functional Neurology and Epilepsy Department; Neurological Hospital, Civil Hospices of Lyon; Lyon
- Claude Bernard University; Lyon France
| |
Collapse
|
61
|
Hitier M, Besnard S, Smith PF. Vestibular pathways involved in cognition. Front Integr Neurosci 2014; 8:59. [PMID: 25100954 PMCID: PMC4107830 DOI: 10.3389/fnint.2014.00059] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/30/2014] [Indexed: 01/30/2023] Open
Abstract
Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.
Collapse
Affiliation(s)
- Martin Hitier
- Inserm, U 1075 COMETE Caen, France ; Department of Pharmacology and Toxicology, Brain Health Research Center, University of Otago Dunedin, New Zealand ; Department of Anatomy, UNICAEN Caen, France ; Department of Otolaryngology Head and Neck Surgery, CHU de Caen Caen, France
| | | | - Paul F Smith
- Department of Pharmacology and Toxicology, Brain Health Research Center, University of Otago Dunedin, New Zealand
| |
Collapse
|
62
|
Pfeiffer C, Serino A, Blanke O. The vestibular system: a spatial reference for bodily self-consciousness. Front Integr Neurosci 2014; 8:31. [PMID: 24860446 PMCID: PMC4028995 DOI: 10.3389/fnint.2014.00031] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
Self-consciousness is the remarkable human experience of being a subject: the "I". Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where "I" experience the world) and self-location (the feeling where "I" am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Andrea Serino
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Department of Psychology, Alma Mater Studiorum, University of Bologna Bologna, Italy
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Department of Neurology, University Hospital Geneva Geneva, Switzerland
| |
Collapse
|
63
|
Shinder ME, Newlands SD. Sensory convergence in the parieto-insular vestibular cortex. J Neurophysiol 2014; 111:2445-64. [PMID: 24671533 DOI: 10.1152/jn.00731.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vestibular signals are pervasive throughout the central nervous system, including the cortex, where they likely play different roles than they do in the better studied brainstem. Little is known about the parieto-insular vestibular cortex (PIVC), an area of the cortex with prominent vestibular inputs. Neural activity was recorded in the PIVC of rhesus macaques during combinations of head, body, and visual target rotations. Activity of many PIVC neurons was correlated with the motion of the head in space (vestibular), the twist of the neck (proprioceptive), and the motion of a visual target, but was not associated with eye movement. PIVC neurons responded most commonly to more than one stimulus, and responses to combined movements could often be approximated by a combination of the individual sensitivities to head, neck, and target motion. The pattern of visual, vestibular, and somatic sensitivities on PIVC neurons displayed a continuous range, with some cells strongly responding to one or two of the stimulus modalities while other cells responded to any type of motion equivalently. The PIVC contains multisensory convergence of self-motion cues with external visual object motion information, such that neurons do not represent a specific transformation of any one sensory input. Instead, the PIVC neuron population may define the movement of head, body, and external visual objects in space and relative to one another. This comparison of self and external movement is consistent with insular cortex functions related to monitoring and explains many disparate findings of previous studies.
Collapse
Affiliation(s)
- Michael E Shinder
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | - Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
64
|
Cutfield NJ, Scott G, Waldman AD, Sharp DJ, Bronstein AM. Visual and proprioceptive interaction in patients with bilateral vestibular loss. NEUROIMAGE-CLINICAL 2014; 4:274-82. [PMID: 25061564 PMCID: PMC4107374 DOI: 10.1016/j.nicl.2013.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022]
Abstract
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. A novel air turbine vibrotactile device for the MRI environment is developed. Neck proprioception and visual motion are applied in a factorial fMRI experiment. A cervico-visual fMRI interaction is shown in bilateral vestibular loss patients (BVL). This cervico-visual interaction in BVL mimics the normal visuo-vestibular interaction.
Collapse
Affiliation(s)
- Nicholas J Cutfield
- Department of Medicine & Brain Health Research Centre, University of Otago & Neurology, Dunedin Hospital, Southern District Health Board, Dunedin, New Zealand ; Neuro-otology Unit, Division of Brain Sciences, Imperial College London, UK
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, UK
| | - Adam D Waldman
- Department of Imaging, Division of Brain Sciences, Imperial College London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, UK
| | - Adolfo M Bronstein
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
65
|
Best C, Lange E, Buchholz HG, Schreckenberger M, Reuss S, Dieterich M. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats. Brain Struct Funct 2013; 219:2141-58. [PMID: 23979449 DOI: 10.1007/s00429-013-0628-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.
Collapse
Affiliation(s)
- Christoph Best
- Department of Neurology, Vestibular Research Unit, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany,
| | | | | | | | | | | |
Collapse
|
66
|
zu Eulenburg P, Baumgärtner U, Treede RD, Dieterich M. Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations. Neuroimage 2013; 83:75-86. [PMID: 23800791 DOI: 10.1016/j.neuroimage.2013.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 01/15/2023] Open
Abstract
The operculo-insular cortex has been termed the 'homeostatic control center' or 'general magnitude estimator' of the human mind. In this study, somatosensory, nociceptive and caloric vestibular stimuli were applied to reveal, whether there are mainly common, or possibly specific regions activated by one modality alone and whether lateralization effects, time pattern differences or influences of the aversive nature of the stimuli could be observed. Activation of the dorsal posterior insula was caused by all stimuli alike thus terming this area multimodal. Early phases of the noxious heat and caloric vestibular stimulation led to responses in the anterior insula. Using conjunction analyses we found that left- and right-sided tactile stimulation, but not nociceptive stimulation, caused a joint activation of the cytoarchitectonic area OP1 and nociceptive but not tactile stimulation of the anterior insula bilaterally. Tactile activation in the parietal operculum (SII, OP1) was distinct from nociceptive activation (OP3 and frontal operculum). The joint activation by all three stimuli located in the dorsal posterior insula argues for the presence of multisensory structures. The distinct activation of the anterior insula by aversive stimuli and the posterior insula by multisensory signals supports the concept of a partitioned insular cortex recently introduced based on connectivity studies and meta-analyses.
Collapse
Affiliation(s)
- P zu Eulenburg
- Department of Neurology, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | |
Collapse
|
67
|
Ferrè ER, Bottini G, Iannetti GD, Haggard P. The balance of feelings: Vestibular modulation of bodily sensations. Cortex 2013; 49:748-58. [DOI: 10.1016/j.cortex.2012.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
|
68
|
Jacobson GP, Piker EG, Do C, McCaslin DL, Hood L. Suppression of the vestibulo-ocular reflex using visual and nonvisual stimuli. Am J Audiol 2012; 21:226-31. [PMID: 23221302 PMCID: PMC7811825 DOI: 10.1044/1059-0889(2012/12-0021)] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine to what extent attention directed toward visual, auditory, somesthetic, and imaginary sources would attenuate the vestibulo-ocular reflex (VOR). METHOD Two prospective studies included 16 (Investigation 1) and 5 (Investigation 2) healthy participants (mean age of 24 years in Investigation 1 and 37 years in Investigation 2). VOR gain was assessed with a commercially available rotary chair and was measured in dark both while the subject was tasked with mental alerting exercises and while not being tasked. VOR suppression was measured for the following conditions: (a) visual suppression, (b) auditory suppression, (c) somatosensory suppression, (d) imaginary visual target suppression, and (e) combined auditory and somatosensory suppression. RESULTS Attention directed to visual source attenuated the VOR by approximately 85%. Attention directed toward auditory and somatosensory targets (both separately and combined) and attention directed toward an imaginary target suppressed the VOR between 28% and 44%. The extent of VOR suppression that occurred with attention directed toward various nonvisual stimuli was significantly less than the visual suppression of the VOR. The various nonvisual conditions were not statistically different from one another. CONCLUSION The data suggest that it is possible for typical adults to suppress the VOR in the absence of a visual target. That is, the VOR can be attenuated with attention directed toward chair-fixed visual, auditory, somatosensory, and imaginary targets.
Collapse
|
69
|
|
70
|
zu Eulenburg P, Caspers S, Roski C, Eickhoff S. Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 2012; 60:162-9. [PMID: 22209784 DOI: 10.1016/j.neuroimage.2011.12.032] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/25/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022] Open
|
71
|
Cooke DF, Padberg J, Zahner T, Krubitzer L. The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 2011; 22:1959-78. [PMID: 22021916 DOI: 10.1093/cercor/bhr228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, 95618, USA
| | | | | | | |
Collapse
|
72
|
Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. J Neurosci 2011; 31:11617-27. [PMID: 21832191 DOI: 10.1523/jneurosci.1266-11.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Convergence of visual motion information (optic flow) and vestibular signals is important for self-motion perception, and such convergence has been observed in the dorsal medial superior temporal (MSTd) and ventral intraparietal areas. In contrast, the parieto-insular vestibular cortex (PIVC), a cortical vestibular area in the sylvian fissure, is not responsive to optic flow. Here, we explore optic flow and vestibular convergence in the visual posterior sylvian area (VPS) of macaque monkeys. This area is located at the posterior end of the sylvian fissure, is strongly interconnected with PIVC, and receives projections from MSTd. We found robust optic flow and vestibular tuning in more than one-third of VPS cells, with all motion directions being represented uniformly. However, visual and vestibular direction preferences for translation were mostly opposite, unlike in area MSTd where roughly equal proportions of neurons have visual/vestibular heading preferences that are congruent or opposite. Overall, optic flow responses in VPS were weaker than those in MSTd, whereas vestibular responses were stronger in VPS than in MSTd. When visual and vestibular stimuli were presented together, VPS responses were dominated by vestibular signals, in contrast to MSTd, where optic flow tuning typically dominates. These findings suggest that VPS is proximal to MSTd in terms of vestibular processing, but distal to MSTd in terms of optic flow processing. Given the preponderance of neurons with opposite visual/vestibular heading preferences in VPS, this area may not play a major role in multisensory heading perception.
Collapse
|
73
|
DeAngelis G, Angelaki D. Visual–Vestibular Integration for Self-Motion Perception. Front Neurosci 2011. [DOI: 10.1201/b11092-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
74
|
|
75
|
A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area. J Neurosci 2011; 31:3082-94. [PMID: 21414929 DOI: 10.1523/jneurosci.4476-10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vestibular responses have been reported in the parietoinsular vestibular cortex (PIVC), the ventral intraparietal area (VIP), and the dorsal medial superior temporal area (MSTd) of macaques. However, differences between areas remain largely unknown, and it is not clear whether there is a hierarchy in cortical vestibular processing. We examine the spatiotemporal characteristics of macaque vestibular responses to translational motion stimuli using both empirical and model-based analyses. Temporal dynamics of direction selectivity were similar across areas, although there was a gradual shift in the time of peak directional tuning, with responses in MSTd typically being delayed by 100-150 ms relative to responses in PIVC (VIP was intermediate). Responses as a function of both stimulus direction and time were fit with a spatiotemporal model consisting of separable spatial and temporal response profiles. Temporal responses were characterized by a Gaussian function of velocity, a weighted sum of velocity and acceleration, or a weighted sum of velocity, acceleration, and position. Velocity and acceleration components contributed most to response dynamics, with a gradual shift from acceleration dominance in PIVC to velocity dominance in MSTd. The position component contributed little to temporal responses overall, but was substantially larger in MSTd than PIVC or VIP. The overall temporal delay in model fits also increased substantially from PIVC to VIP to MSTd. This gradual transformation of temporal responses suggests a hierarchy in cortical vestibular processing, with PIVC being most proximal to the vestibular periphery and MSTd being most distal.
Collapse
|
76
|
Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. ACTA ACUST UNITED AC 2011; 67:119-46. [PMID: 21223979 DOI: 10.1016/j.brainresrev.2010.12.002] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 02/06/2023]
Abstract
The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data from electrophysiology and neuroanatomy in animals by comparing them with data from neuroimagery and neurology in humans. Multiple thalamic nuclei are involved in vestibular processing, including the ventroposterior complex, the ventroanterior-ventrolateral complex, the intralaminar nuclei and the posterior nuclear group (medial and lateral geniculate nuclei, pulvinar). These nuclei contain multisensory neurons that process and relay vestibular, proprioceptive and visual signals to the vestibular cortex. In non-human primates, the parieto-insular vestibular cortex (PIVC) has been proposed as the core vestibular region. Yet, vestibular responses have also been recorded in the somatosensory cortex (area 2v, 3av), intraparietal sulcus, posterior parietal cortex (area 7), area MST, frontal cortex, cingulum and hippocampus. We analyze the location of the corresponding regions in humans, and especially the human PIVC, by reviewing neuroimaging and clinical work. The widespread vestibular projections to the multimodal human PIVC, somatosensory cortex, area MST, intraparietal sulcus and hippocampus explain the large influence of vestibular signals on self-motion perception, spatial navigation, internal models of gravity, one's body perception and bodily self-consciousness.
Collapse
Affiliation(s)
- Christophe Lopez
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
77
|
How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Exp Brain Res 2010; 208:29-38. [DOI: 10.1007/s00221-010-2450-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
|
78
|
Abstract
Non-sensory (cognitive) inputs can play a powerful role in monitoring one's self-motion. Previously, we showed that access to spatial memory dramatically increases response precision in an angular self-motion updating task [1]. Here, we examined whether spatial memory also enhances a particular type of self-motion updating - angular path integration. "Angular path integration" refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. It was hypothesized that remembered spatial frameworks derived from vision and spatial language should facilitate angular path integration by decreasing the uncertainty of self-location estimates. To test this we implemented a whole-body rotation paradigm with passive, non-visual body rotations (ranging 40 degrees -140 degrees ) administered about the yaw axis. Prior to the rotations, visual previews (Experiment 1) and verbal descriptions (Experiment 2) of the surrounding environment were given to participants. Perceived angular displacement was assessed by open-loop pointing to the origin (0 degrees ). We found that within-subject response precision significantly increased when participants were provided a spatial context prior to whole-body rotations. The present study goes beyond our previous findings by first establishing that memory of the environment enhances the processing of idiothetic self-motion signals. Moreover, we show that knowledge of one's immediate environment, whether gained from direct visual perception or from indirect experience (i.e., spatial language), facilitates the integration of incoming self-motion signals.
Collapse
Affiliation(s)
- Joeanna C Arthur
- Department of Psychology, The George Washington University, 2125 G. Street NW, The George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
79
|
Liu S, Dickman JD, Angelaki DE. Response dynamics and tilt versus translation discrimination in parietoinsular vestibular cortex. Cereb Cortex 2010; 21:563-73. [PMID: 20624839 DOI: 10.1093/cercor/bhq123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The parietoinsular vestibular cortex (PIVC) is a large area in the lateral sulcus with neurons that respond to vestibular stimulation. Here we compare the properties of PIVC cells with those of neurons in brain stem, cerebellum, and thalamus. Most PIVC cells modulated during both translational and rotational head motion. Translation acceleration gains showed a modest decrease as stimulus frequency increased, with a steeper slope than that reported previously for thalamic and cerebellar nuclei neurons. Response dynamics during yaw rotation were similar to those reported for vestibular neurons in brain stem and thalamus: velocity gains were relatively flat through the mid-frequency range, increased at high frequencies, and decreased at low frequencies. Tilt dynamics were more variable: PIVC neurons responsive only to rotation had gains that decreased with increased frequency, whereas neurons responsive during both translation and rotation (convergent neurons) actually increased their modulation magnitude at high frequencies. Using combinations of translation and tilt, most PIVC neurons were better correlated with translational motion; only 14% were better correlated with net acceleration. Thus, although yaw rotation responses in PIVC appear little processed compared with other central vestibular neurons, translation and tilt responses suggest a further processing of linear acceleration signals in thalamocortical circuits.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
80
|
Abstract
The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed approximately uniformly for translation, but showing a preference for roll rotation. Spatiotemporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception.
Collapse
|
81
|
Best C, Stefan H, Hopfengaertner R, Dieterich M. Effects of electrical stimulation in vestibular cortex areas in humans. J Neurol Sci 2010; 290:157-62. [DOI: 10.1016/j.jns.2009.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/29/2022]
|
82
|
|
83
|
|
84
|
|
85
|
Abstract
AbstractAccording to the traditional inferential theory of perception, percepts of object motion or stationarity stem from an evaluation of afferent retinal signals (which encode image motion) with the help of extraretinal signals (which encode eye movements). According to direct perception theory, on the other hand, the percepts derive from retinally conveyed information only. Neither view is compatible with a perceptual phenomenon that occurs during visually induced sensations of ego motion (vection). A modified version of inferential theory yields a model in which the concept of extraretinal signals is replaced by that of reference signals, which do not encode how the eyes move in their orbits but how they move in space. Hence reference signals are produced not only during eye movements but also during ego motion (i.e., in response to vestibular stimulation and to retinal image flow, which may induce vection). The present theory describes the interface between self-motion and object-motion percepts. An experimental paradigm that allows quantitative measurement of the magnitude and gain of reference signals and the size of the just noticeable difference (JND) between retinal and reference signals reveals that the distinction between direct and inferential theories largely depends on: (1) a mistaken belief that perceptual veridicality is evidence that extraretinal information is not involved, and (2) a failure to distinguish between (the perception of) absolute object motion in space and relative motion of objects with respect to each other. The model corrects these errors, and provides a new, unified framework for interpreting many phenomena in the field of motion perception.
Collapse
|
86
|
|
87
|
|
88
|
|
89
|
Meng H, Angelaki DE. Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation. J Neurophysiol 2010; 103:817-26. [PMID: 19955294 PMCID: PMC2822684 DOI: 10.1152/jn.00729.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022] Open
Abstract
Multisensory neurons tuned to both vestibular and visual motion (optic flow) signals are found in several cortical areas in the dorsal visual stream. Here we examine whether such convergence occurs subcortically in the macaque thalamus. We searched the ventral posterior nuclei, including the anterior pulvinar, as well as the ventro-lateral and ventral posterior lateral nuclei, areas that receive vestibular signals from brain stem and deep cerebellar nuclei. Approximately a quarter of cells responded to three-dimensional (3D) translational and/or rotational motion. More than half of the responsive cells were convergent, thus responded during both rotation and translation. The preferred axes of translation/rotation were distributed throughout 3D space. The majority of the neurons were excited, but some were inhibited, during rotation/translation in darkness. Only a couple of neurons were multisensory being tuned to both vestibular and optic flow stimuli. We conclude that multisensory vestibular/optic flow neurons, which are commonly found in cortical visual and visuomotor areas, are rare in the ventral posterior thalamus.
Collapse
Affiliation(s)
- Hui Meng
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis MO 63110, USA
| | | |
Collapse
|
90
|
Fukushima K, Akao T, Saito H, Kurkin SA, Fukushima J, Peterson BW. Representation of neck velocity and neck-vestibular interactions in pursuit neurons in the simian frontal eye fields. Cereb Cortex 2009; 20:1195-207. [PMID: 19710358 PMCID: PMC2852504 DOI: 10.1093/cercor/bhp180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The smooth pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space (i.e., gaze-movement) during head movement. Normally, the head moves on the stationary trunk. Vestibular signals cannot distinguish whether the head or whole body is moving. Neck proprioceptive inputs provide information about head movements relative to the trunk. Previous studies have shown that the majority of pursuit neurons in the frontal eye fields (FEF) carry visual information about target velocity, vestibular information about whole-body movements, and signal eye- or gaze-velocity. However, it is unknown whether FEF neurons carry neck proprioceptive signals. By passive trunk-on-head rotation, we tested neck inputs to FEF pursuit neurons in 2 monkeys. The majority of FEF pursuit neurons tested that had horizontal preferred directions (87%) responded to horizontal trunk-on-head rotation. The modulation consisted predominantly of velocity components. Discharge modulation during pursuit and trunk-on-head rotation added linearly. During passive head-on-trunk rotation, modulation to vestibular and neck inputs also added linearly in most neurons, although in half of gaze-velocity neurons neck responses were strongly influenced by the context of neck rotation. Our results suggest that neck inputs could contribute to representing eye- and gaze-velocity FEF signals in trunk coordinates.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|
91
|
Fukushima K, Kasahara S, Akao T, Saito H, Kurkin S, Fukushima J, Peterson BW. Reafferent head-movement signals carried by pursuit neurons of the simian frontal eye fields during head movements. Ann N Y Acad Sci 2009; 1164:194-200. [PMID: 19645899 DOI: 10.1111/j.1749-6632.2008.03738.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The smooth-pursuit system is important to precisely track a slowly moving object and maintain its image on the foveae during movement. During whole-body rotation, the smooth-pursuit system interacts with the vestibular system. The caudal part of the frontal eye fields (FEF) contains smooth pursuit-related neurons that signal eye velocity during pursuit. The majority of them receives vestibular inputs and signal gaze-velocity during passive whole-body rotation. It was asked whether discharge modulation of FEF pursuit neurons during head rotation on the stationary trunk could be accounted for by vestibular inputs only or if both vestibular and neck proprioceptive inputs contributed to the modulation. Discharge modulation during active head pursuit, passive head rotation on the stationary trunk, passive whole-body rotation, and passive trunk rotation against the stationary head were compared. The results indicate that both vestibular and neck proprioceptive inputs contributed to the discharge modulation of FEF pursuit neurons during head movements.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
92
|
Smiley JF, Falchier A. Multisensory connections of monkey auditory cerebral cortex. Hear Res 2009; 258:37-46. [PMID: 19619628 DOI: 10.1016/j.heares.2009.06.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/16/2022]
Abstract
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources.
Collapse
Affiliation(s)
- John F Smiley
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
93
|
Liu S, Angelaki DE. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 2009; 29:8936-45. [PMID: 19605631 PMCID: PMC2728346 DOI: 10.1523/jneurosci.1607-09.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/23/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022] Open
Abstract
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those resulting from changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Dora E. Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
94
|
Abstract
The navigational system of the mammalian cortex comprises a number of interacting brain regions. Grid cells in the medial entorhinal cortex and place cells in the hippocampus are thought to participate in the formation of a dynamic representation of the animal's current location, and these cells are presumably critical for storing the representation in memory. To traverse the environment, animals must be able to translate coordinate information from spatial maps in the entorhinal cortex and hippocampus into body-centered representations that can be used to direct locomotion. How this is done remains an enigma. We propose that the posterior parietal cortex is critical for this transformation.
Collapse
|
95
|
Coding of self-motion signals in ventro-posterior thalamus neurons in the alert squirrel monkey. Exp Brain Res 2008; 189:463-72. [PMID: 18535821 DOI: 10.1007/s00221-008-1442-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 05/25/2008] [Indexed: 10/22/2022]
Abstract
The firing behavior of 47 ventro-posterior thalamus neurons was studied in two alert squirrel monkeys during rotations of whole body, head and trunk. A total of 27 of these neurons (57%) were sensitive to spatial motion of the head irrespective of the mode of motion. These neurons responded similarly when the head moved simultaneously with the trunk, and when the head voluntarily or involuntarily moved on the stationary trunk. These neurons did not respond to rotation of the trunk when the spatial position of the head was fixed. Five neurons (11%) responded only to involuntary movement of the head produced by external force, but were insensitive to voluntary spatial head movement. They also did not respond to spatial motion of the trunk. Totally 15 neurons (32%) were sensitive to spatial motion, which included rotation of the trunk. These neurons responded when the trunk moved alone, and when the trunk moved simultaneously with the head, but were not responsive to spatial movement of the head while the trunk was stationary. We suggest that the vestibulo-thalamo-cortical pathway comprises two distinct functional channels. In one of these channels, cephalokinetic, spatial motion of the head is coded. In the other channel, somatokinetic, motion of the body in space is coded. Each of these channels further consists of two divisions. In the principal division the motion signal is conveyed continuously, irrespective of the behavioral context of motion. In the other auxiliary division the signal only codes movement caused by externally applied force.
Collapse
|
96
|
Lopez C, Halje P, Blanke O. Body ownership and embodiment: Vestibular and multisensory mechanisms. Neurophysiol Clin 2008; 38:149-61. [PMID: 18539248 DOI: 10.1016/j.neucli.2007.12.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 12/03/2007] [Accepted: 12/31/2007] [Indexed: 11/16/2022] Open
Affiliation(s)
- C Lopez
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, école polytechnique fédérale de Lausanne (EPFL), Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | |
Collapse
|
97
|
Change of extracellular ascorbic acid in the brain cortex following ice water vestibular stimulation: an on-line electrochemical detection coupled with in vivo microdialysis sampling for guinea pigs. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200806020-00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
98
|
Reynolds JS, Blum D, Gdowski GT. Reweighting sensory signals to maintain head stability: adaptive properties of the cervicocollic reflex. J Neurophysiol 2008; 99:3123-35. [PMID: 18436637 DOI: 10.1152/jn.00793.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major goal of this study was to characterize the cervicocollic reflexes (CCRs) in awake squirrel monkeys and compare it to observations in cat. This was carried out by stabilizing the head in space while rotating the lower body. The magnitude and phase of the torque produced between the head and the restraint system was used as an indicator of the CCR. Many properties of the squirrel monkey's CCR were found to be similar to those of the cat. The torque decreased as a function of frequency and amplitude. In addition, the static level of torque increased with head eccentricity. One difference was that the torque was 90x smaller in squirrel monkeys. Biomechanical differences, such as differences in head inertia, could account for these differences. The second goal was to determine if the CCR was sensitive to increases in the head's inertia. To test this, we increased the head's inertia by a factor of 36 and allowed the reflexes to adapt by rotating the whole body while the head was free to move. The CCR was rapidly assessed by periodically stabilizing the head in space during whole-body rotations. The magnitude of the torque increased by nearly 60%, suggesting that the CCR may adapt when changes in the head's inertia are imposed. Changes in the torque were also consistent with changes in head-movement kinematics during whole-body rotation. This suggests that the collic reflexes may dynamically adapt to maintain the performance and kinematics of reflexive head movement.
Collapse
Affiliation(s)
- J S Reynolds
- Department of Biomedical Engineering and Neurobiology and Anatomy, University of Rochester, 601 Elmwood Ave., Box 603, Rochester, NY 14642, USA
| | | | | |
Collapse
|
99
|
Hackett TA, Smiley JF, Ulbert I, Karmos G, Lakatos P, de la Mothe LA, Schroeder CE. Sources of somatosensory input to the caudal belt areas of auditory cortex. Perception 2008; 36:1419-30. [PMID: 18265825 DOI: 10.1068/p5841] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The auditory cortex of nonhuman primates is comprised of a constellation of at least twelve interconnected areas distributed across three major regions on the superior temporal gyrus: core, belt, and parabelt. Individual areas are distinguished on the basis of unique profiles comprising architectonic features, thalamic and cortical connections, and neuron response properties. Recent demonstrations of convergent auditory-somatosensory interactions in the caudomedial (CM) and caudolateral (CL) belt areas prompted us to pursue anatomical studies to identify the source(s) of somatic input to auditory cortex. Corticocortical and thalamocortical connections were revealed by injecting neuroanatomical tracers into CM, CL, and adjoining fields of marmoset (Callithrix jacchus jacchus) and macaque (Macaca mulatta) monkeys. In addition to auditory cortex, the cortical connections of CM and CL included somatosensory (retroinsular, Ri; granular insula, Ig) and multisensory areas (temporal parietal occipital, temporal parietal temporal). Thalamic inputs included the medial geniculate complex and several multisensory nuclei (suprageniculate, posterior, limitans, medial pulvinar), but not the ventroposterior complex. Injections of the core (A1, R) and rostromedial areas of auditory cortex revealed sparse multisensory connections. The results suggest that areas Ri and Ig are the principle sources of somatosensory input to the caudal belt, while multisensory regions of cortex and thalamus may also contribute. The present data add to growing evidence of multisensory convergence in cortical areas previously considered to be 'unimodal', and also indicate that auditory cortical areas differ in this respect.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37203, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Fasold O, Heinau J, Trenner MU, Villringer A, Wenzel R. Proprioceptive head posture-related processing in human polysensory cortical areas. Neuroimage 2008; 40:1232-42. [DOI: 10.1016/j.neuroimage.2007.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/25/2007] [Accepted: 12/24/2007] [Indexed: 11/29/2022] Open
|