51
|
Wu D, Jiao F, Lu Q. Progress and Understanding of CO 2/CO Electroreduction in Flow Electrolyzers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donghuan Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
52
|
Liu YY, Wang ZS, Liao PQ, Chen XM. A stable metal-azolate framework with cyclic tetracopper(I) clusters for highly selective electroreduction of CO2 to C2 products. Chem Asian J 2022; 17:e202200764. [PMID: 36066571 DOI: 10.1002/asia.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Indexed: 11/12/2022]
Abstract
It is of great significance for constructing electrocatalysts with accurate structures and compositions to pinpoint the active sites, thereby improving the C 2 products (C 2 H 4 , C 2 H 5 OH and CH 3 COOH) selectivity during electrocatalytic CO 2 reduction raction. Here, we report a tetracopper(I) cluster-based metal-organic framework that exhibits long-term stability and remarkable performance for electroreduction CO 2 towards C 2 products in an H-type cell with a maximum Faradaic efficiency (FE) of 72%, and delivers a current density of 350 mA cm -2 with a FE(C 2 ) up to 46% in a flow cell device, outperforming most of the Cu-based electrocatalysts such as Cu derivatives and Cu nanostructured materials. Importantly, no obvious degradation was observed at 350 mA cm -2 over 20 hours of continuous operation, strengthening the practicability. In-situ infrared spectroscopy analysis showed the cooperative effect of adjacent Cu(I) ions in tetracopper(I) cluster may promote the C-C coupling to generate C 2 products.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Sun Yat-Sen University, School of Chemistry, Guang Zhou, CHINA
| | | | - Pei-Qin Liao
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, 510275, Guangzhou, CHINA
| | | |
Collapse
|
53
|
Wang Y, Wang C, Wei Y, Wei F, Kong L, Feng J, Lu J, Zhou X, Yang F. Efficient and Selective Electroreduction of CO
2
to HCOOH over Bismuth‐Based Bromide Perovskites in Acidic Electrolytes. Chemistry 2022; 28:e202201832. [DOI: 10.1002/chem.202201832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Chun Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Yi Wei
- Department of Chemistry Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Fang Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Jiuju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Ji‐Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Xiaocheng Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Fa Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China
| |
Collapse
|
54
|
Chen Z, Wang X, Wang L, Wu YA. Ag@Pd bimetallic structures for enhanced electrocatalytic CO 2 conversion to CO: an interplay between the strain effect and ligand effect. NANOSCALE 2022; 14:11187-11196. [PMID: 35904075 DOI: 10.1039/d2nr03079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical CO2 reduction reactions provide a promising path to effectively convert CO2 into valuable chemicals and fuels for industries. Among the many CO2 conversion catalysts, Pd stands out as a promising catalyst for effective CO2 to CO conversion. Here, using the misfit strain strategy, Ag@Pd bimetallic nanoparticles with different Pd overlayer contents were prepared as CO2 reduction catalysts. By varying the Pd overlayer content, all the Ag@Pd bimetallic nanoparticles exhibited superior CO2 conversion performance over their Pd and Ag nanoparticle counterparts. An optimal Pd-to-Ag ratio of 1.5 : 1 yielded the highest CO faradaic efficiency of 94.3% at -0.65 V vs. RHE with a high CO specific current density of 3.9 mA cm-2. It was found that the Pd content can substantially affect the interplay between the strain effect and ligand effect, resulting in optimized binding properties of the reaction intermediates on the catalyst surface, thereby enhancing the CO2 reduction performance.
Collapse
Affiliation(s)
- Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Lei Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
55
|
Fang M, Xu L, Zhang H, Zhu Y, Wong WY. Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO 2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm -2. J Am Chem Soc 2022; 144:15143-15154. [PMID: 35947444 DOI: 10.1021/jacs.2c05059] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.
Collapse
Affiliation(s)
- Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
56
|
Buckley AK, Ma S, Huo Z, Gao TZ, Kuhl KP. Nanomaterials for carbon dioxide conversion at industrial scale. NATURE NANOTECHNOLOGY 2022; 17:811-813. [PMID: 35864169 DOI: 10.1038/s41565-022-01147-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
| | - Sichao Ma
- Twelve Benefit Corporation, Berkeley, CA, USA
| | - Ziyang Huo
- Twelve Benefit Corporation, Berkeley, CA, USA
| | | | | |
Collapse
|
57
|
Morrison AT, Ramdin M, van der Broeke LJP, de Jong W, Vlugt TJH, Kortlever R. Surface Coverage as an Important Parameter for Predicting Selectivity Trends in Electrochemical CO 2 Reduction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:11927-11936. [PMID: 35928239 PMCID: PMC9340765 DOI: 10.1021/acs.jpcc.2c00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is important for a sustainable future. Key insights into the reaction pathways have been obtained by density functional theory (DFT) analysis, but so far, DFT has been unable to give an overall understanding of selectivity trends without important caveats. We show that an unconsidered parameter in DFT models of electrocatalysts-the surface coverage of reacting species-is crucial for understanding the CO2RR selectivities for different surfaces. Surface coverage is a parameter that must be assumed in most DFT studies of CO2RR electrocatalysts, but so far, only the coverage of nonreacting adsorbates has been treated. Explicitly treating the surface coverage of reacting adsorbates allows for an investigation that can more closely mimic operating conditions. Furthermore, and of more immediate importance, the use of surface coverage-dependent adsorption energies allows for the extraction of ratios of adsorption energies of CO2RR intermediates (COOHads and HCOOads) that are shown to be predictive of selectivity and are not susceptible to systematic errors. This approach allows for categorization of the selectivity of several monometallic catalysts (Pt, Pd, Au, Ag, Zn, Cu, Rh, W, Pb, Sn, In, Cd, and Tl), even problematic ones such as Ag or Zn, and does so by only considering the adsorption energies of known intermediates. The selectivity of the further reduction of COOHads can now be explained by a preference for Tafel or Heyrovsky reactions, recontextualizing the nature of selectivity of some catalysts. In summary, this work resolves differences between DFT and experimental studies of the CO2RR and underlines the importance of surface coverage.
Collapse
Affiliation(s)
- Andrew
R. T. Morrison
- Large-Scale
Energy Storage, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Mahinder Ramdin
- Large-Scale
Energy Storage, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Leo J. P. van der Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Wiebren de Jong
- Large-Scale
Energy Storage, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Ruud Kortlever
- Large-Scale
Energy Storage, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
58
|
Photocatalytic CO2 Conversion Using Metal-Containing Coordination Polymers and Networks: Recent Developments in Material Design and Mechanistic Details. Polymers (Basel) 2022; 14:polym14142778. [PMID: 35890553 PMCID: PMC9318416 DOI: 10.3390/polym14142778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
International guidelines have progressively addressed global warming which is caused by the greenhouse effect. The greenhouse effect originates from the atmosphere’s gases which trap sunlight which, as a consequence, causes an increase in global surface temperature. Carbon dioxide is one of these greenhouse gases and is mainly produced by anthropogenic emissions. The urgency of removing atmospheric carbon dioxide from the atmosphere to reduce the greenhouse effect has initiated the development of methods to covert carbon dioxide into valuable products. One approach that was developed is the photocatalytic transformation of CO2. Photocatalysis addresses environmental issues by transferring CO2 into value added chemicals by mimicking the natural photosynthesis process. During this process, the photocatalytic system is excited by light energy. CO2 is adsorbed at the catalytic metal centers where it is subsequently reduced. To overcome several obstacles for achieving an efficient photocatalytic reduction process, the use of metal-containing polymers as photocatalysts for carbon dioxide reduction is highlighted in this review. The attention of this manuscript is directed towards recent advances in material design and mechanistic details of the process using different polymeric materials and photocatalysts.
Collapse
|
59
|
Ma L, Liu N, Mei B, Yang K, Liu B, Deng K, Zhang Y, Feng H, Liu D, Duan J, Jiang Z, Yang H, Li Q. In Situ-Activated Indium Nanoelectrocatalysts for Highly Active and Selective CO 2 Electroreduction around the Thermodynamic Potential. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lushan Ma
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ning Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingbao Mei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kang Yang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingxin Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kai Deng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingjing Duan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Qiang Li
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
60
|
Lee J, Ryu KH, Lee JH. Optimal design and evaluation of electrochemical CO2 reduction system with renewable energy generation using two-stage stochastic programming. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Liu C, Mei X, Han C, Gong X, Song P, Xu W. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Du J, Fiorani A, Inagaki T, Otake A, Murata M, Hatanaka M, Einaga Y. A New Pathway for CO 2 Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode. JACS AU 2022; 2:1375-1382. [PMID: 35783183 PMCID: PMC9241156 DOI: 10.1021/jacsau.2c00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
By means of an initial electrochemical carbon dioxide reduction reaction (eCO2RR), both the reaction current and Faradaic efficiency of the eCO2RR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO2 •-) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products. However, the self-activation process enabled the eCO2RR to take place at a low potential, that is, a low energy, where CO2 •- is hardly produced. In this work, we found that unidentate carbonate and carboxylic groups were identified as intermediates during self-activation. Increasing the amount of these intermediates via the self-activation process enhances the performance of eCO2RR. We further evaluated this effect in long-term experiments using a CO2 electrolyzer for formic acid production and found that the electrical-to-chemical energy conversion efficiency reached 50.2% after the BDD self-activation process.
Collapse
|
63
|
Sassenburg M, de Rooij R, Nesbitt NT, Kas R, Chandrashekar S, Firet NJ, Yang K, Liu K, Blommaert MA, Kolen M, Ripepi D, Smith WA, Burdyny T. Characterizing CO 2 Reduction Catalysts on Gas Diffusion Electrodes: Comparing Activity, Selectivity, and Stability of Transition Metal Catalysts. ACS APPLIED ENERGY MATERIALS 2022; 5:5983-5994. [PMID: 35647494 PMCID: PMC9131424 DOI: 10.1021/acsaem.2c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Continued advancements in the electrochemical reduction of CO2 (CO2RR) have emphasized that reactivity, selectivity, and stability are not explicit material properties but combined effects of the catalyst, double-layer, reaction environment, and system configuration. These realizations have steadily built upon the foundational work performed for a broad array of transition metals performed at 5 mA cm-2, which historically guided the research field. To encompass the changing advancements and mindset within the research field, an updated baseline at elevated current densities could then be of value. Here we seek to re-characterize the activity, selectivity, and stability of the five most utilized transition metal catalysts for CO2RR (Ag, Au, Pd, Sn, and Cu) at elevated reaction rates through electrochemical operation, physical characterization, and varied operating parameters to provide a renewed resource and point of comparison. As a basis, we have employed a common cell architecture, highly controlled catalyst layer morphologies and thicknesses, and fixed current densities. Through a dataset of 88 separate experiments, we provide comparisons between CO-producing catalysts (Ag, Au, and Pd), highlighting CO-limiting current densities on Au and Pd at 72 and 50 mA cm-2, respectively. We further show the instability of Sn in highly alkaline environments, and the convergence of product selectivity at elevated current densities for a Cu catalyst in neutral and alkaline media. Lastly, we reflect upon the use and limits of reaction rates as a baseline metric by comparing catalytic selectivity at 10 versus 200 mA cm-2. We hope the collective work provides a resource for researchers setting up CO2RR experiments for the first time.
Collapse
Affiliation(s)
- Mark Sassenburg
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Reinier de Rooij
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Nathan T. Nesbitt
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Recep Kas
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado 80303, United States
| | - Sanjana Chandrashekar
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Nienke J. Firet
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Kailun Yang
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Kai Liu
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Marijn A. Blommaert
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Martin Kolen
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Davide Ripepi
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZH Delft, The Netherlands
| |
Collapse
|
64
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
65
|
Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly. SUSTAINABILITY 2022. [DOI: 10.3390/su14095579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electro-conversion of carbon dioxide (CO2) into valuable chemicals is an efficient method to deal with excessive CO2 in the atmosphere. However, undesirable CO2 reaction kinetics in the bulk solution strongly limit current density, and thus it is incompetent in market promotion. Flow cell technology provides an insight into uplifting current density. As an efficient flow cell configuration, membrane electrode assembly (MEA) has been proposed and proven as a viable technology for scalable CO2 electro-conversion, promoting current density to several hundred mA/cm2. In this review, we systematically reviewed recent perspectives and methods to put forward the utilization of state-of-the-art MEA to convert CO2 into valuable chemicals. Configuration design, catalysts nature, and flow media were discussed. At the end of this review, we also presented the current challenges and the potential directions for potent MEA design. We hope this review could offer some clear, timely, and valuable insights on the development of MEA for using wastewater-produced CO2.
Collapse
|
66
|
Iqbal MZ, Imteyaz S, Ghanty C, Sarkar S. A review on electrochemical conversion of CO2 to CO: Ag-based electrocatalyst and cell configuration for industrial application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
67
|
Alinejad S, Quinson J, Wiberg GKH, Schlegel N, Zhang D, Li Y, Reichenberger S, Barcikowski S, Arenz M. Electrochemical Reduction of CO2 on Au Electrocatalysts in a Zero‐Gap, Half‐Cell Gas Diffusion Electrode Setup:a Systematic Performance Evaluation and Comparison to an H‐cell Setup. ChemElectroChem 2022. [DOI: 10.1002/celc.202200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shima Alinejad
- University of Bern chemistry and biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| | - Jonathan Quinson
- University of Copenhagen: Kobenhavns Universitet chemistry DENMARK
| | - Gustav K. H. Wiberg
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Nicolas Schlegel
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Damin Zhang
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Yao Li
- Universitat-GH Duisburg: Universitat Duisburg-Essen chemistry GERMANY
| | | | | | - Matthias Arenz
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
68
|
Abstract
Carbon dioxide (CO2) electroreduction offers an attractive pathway for converting CO2 to valuable fuels and chemicals. Despite the existence of some excellent electrocatalysts with superior selectivity for specific products, these reactions are conducted at low current densities ranging from several mA cm−2 to tens of mA cm−2, which are far from commercially desirable values. To extend the applications of CO2 electroreduction technology to an industrial scale, long-term operations under high current densities (over 200 mA cm−2) are desirable. In this paper, we review recent major advances toward higher current density in CO2 reduction, including: (1) innovations in electrocatalysts (engineering the morphology, modulating the electronic structure, increasing the active sites, etc.); (2) the design of electrolyzers (membrane electrode assemblies, flow cells, microchannel reactors, high-pressure cells, etc.); and (3) the influence of electrolytes (concentration, pH, anion and cation effects). Finally, we discuss the current challenges and perspectives for future development toward high current densities.
Collapse
|
69
|
Exploring dopant effects in stannic oxide nanoparticles for CO 2 electro-reduction to formate. Nat Commun 2022; 13:2205. [PMID: 35459916 PMCID: PMC9033853 DOI: 10.1038/s41467-022-29783-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
The electrosynthesis of formate from CO2 can mitigate environmental issues while providing an economically valuable product. Although stannic oxide is a good catalytic material for formate production, a metallic phase is formed under high reduction overpotentials, reducing its activity. Here, using a fluorine-doped tin oxide catalyst, a high Faradaic efficiency for formate (95% at 100 mA cm−2) and a maximum partial current density of 330 mA cm−2 (at 400 mA cm−2) is achieved for the electroreduction of CO2. Furthermore, the formate selectivity (≈90%) is nearly constant over 7 days of operation at a current density of 100 mA cm−2. In-situ/operando spectroscopies reveal that the fluorine dopant plays a critical role in maintaining the high oxidation state of Sn, leading to enhanced durability at high current densities. First-principle calculation also suggests that the fluorine-doped tin oxide surface could provide a thermodynamically stable environment to form HCOO* intermediate than tin oxide surface. These findings suggest a simple and efficient approach for designing active and durable electrocatalysts for the electrosynthesis of formate from CO2. Though stannic oxides can catalyze CO2 electroreduction to formate, the stability of these catalysts has been limited. Here, the authors demonstrate stable fluorine-doped SnO2 materials toward formate production at current densities of >300 mA/cm2.
Collapse
|
70
|
Loipersberger M, Derrick JS, Chang CJ, Head-Gordon M. Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO 2 Reduction Catalyzed by an Iron-Terpyridine Complex. Inorg Chem 2022; 61:6919-6933. [PMID: 35452213 DOI: 10.1021/acs.inorgchem.2c00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
[Fe(tpyPY2Me)]2+ ([Fe]2+) is a homogeneous electrocatalyst for converting CO2 into CO featuring low overpotentials of <100 mV, near-unity selectivity, and high activity with turnover frequencies faster than 100 000 s-1. To identify the origins of its exceptional performance and inform future catalyst design, we report a combined computational and experimental study that establishes two distinct mechanistic pathways for electrochemical CO2 reduction catalyzed by [Fe]2+ as a function of applied overpotential. Electrochemical data shows the formation of two catalytic regimes at low (ηTOF/2 of 160 mV) and high (ηTOF/2 of 590 mV) overpotential plateaus. We propose that at low overpotentials [Fe]2+ undergoes a two-electron reduction, two-proton-transfer mechanism (electrochemical-electrochemical-chemical-chemical, EECC), where turnover occurs through the dicationic iron complex, [Fe]2+. Computational analysis supports the importance of the singlet ground-state electronic structure for CO2 binding and that the rate-limiting step is the second protonation in this low-overpotential regime. When more negative potentials are applied, an additional electron-transfer event occurs through either a stepwise or proton-coupled electron-transfer (PCET) pathway, enabling catalytic turnover from the monocationic iron complex ([Fe]+) via an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism. Comparison of experimental kinetic data obtained from variable controlled potential electrolysis (CPE) experiments with direct product detection with calculated rates obtained from the energetic span model supports the PCET pathway as the most likely mechanism. Moreover, we build upon this mechanistic understanding to propose the design of an improved ligand framework that is predicted to stabilize the key transition states identified in our study and explore their electronic structures using an energy decomposition analysis. Taken together, this work highlights the value of synergistic computational/experimental approaches to decipher mechanisms of new electrocatalysts and direct the rational design of improved platforms.
Collapse
Affiliation(s)
- Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
71
|
Abstract
Electrocatalytic reduction of CO2 to fuels and chemicals is one of the most attractive routes for CO2 utilization. However, low efficiency and poor stability restrict the practical application of most conventional electrocatalysts. Here, a silver hollow fiber electrode is presented as a novel self-supported gas diffusion electrode for efficient and stable CO2 electroreduction to CO. A CO faradaic efficiency of over 92% at current densities of above 150 mA∙cm−2 is achieved in 0.5 M KHCO3 for over 100 h, which is comparable to the most outstanding Ag-based electrocatalysts. The electrochemical results suggest the excellent electrocatalytic performance of silver hollow fiber electrode is attributed to the unique pore structures providing abundant active sites and favorable mass transport, which not only suppresses the competitive hydrogen evolution reaction (HER) but also facilitates the CO2 reduction kinetics.
Collapse
|
72
|
Lebedev YA, Shakhatov VA. Decomposition of Carbon Dioxide in Microwave Discharges (an Analytical Review). RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Abdinejad M, Tang K, Dao C, Saedy S, Burdyny T. Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO 2. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:7626-7636. [PMID: 35444810 PMCID: PMC8981215 DOI: 10.1039/d2ta00876a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The ever-growing level of carbon dioxide (CO2) in our atmosphere, is at once a threat and an opportunity. The development of sustainable and cost-effective pathways to convert CO2 to value-added chemicals is central to reducing its atmospheric presence. Electrochemical CO2 reduction reactions (CO2RRs) driven by renewable electricity are among the most promising techniques to utilize this abundant resource; however, in order to reach a system viable for industrial implementation, continued improvements to the design of electrocatalysts is essential to improve the economic prospects of the technology. This review summarizes recent developments in heterogeneous porphyrin-based electrocatalysts for CO2 capture and conversion. We specifically discuss the various chemical modifications necessary for different immobilization strategies, and how these choices influence catalytic properties. Although a variety of molecular catalysts have been proposed for CO2RRs, the stability and tunability of porphyrin-based catalysts make their use particularly promising in this field. We discuss the current challenges facing CO2RRs using these catalysts and our own solutions that have been pursued to address these hurdles.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Caitlin Dao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Saeed Saedy
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Tom Burdyny
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
74
|
Andreu T, Mallafré M, Molera M, Sarret M, Oriol R, Sirés I. Effect of thermal treatment of nickel‐cobalt electrocatalyst for glycerol oxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Teresa Andreu
- Universidad de Barcelona: Universitat de Barcelona Materials Science & Physical Chemistry Martí i Franquès, 1 … Barcelona SPAIN
| | - Maria Mallafré
- Universitat de Barcelona Materials Science & Physical Chemistry SPAIN
| | - Martí Molera
- Universitat de Barcelona Materials Science & Physical Chemistry SPAIN
| | - Maria Sarret
- Universitat de Barcelona Materials Science & Physical Chemistry SPAIN
| | - Roger Oriol
- Universitat de Barcelona Quimica Fisica SPAIN
| | | |
Collapse
|
75
|
Shang L, Lv X, Zhong L, Li S, Zheng G. Efficient CO 2 Electroreduction to Ethanol by Cu 3 Sn Catalyst. SMALL METHODS 2022; 6:e2101334. [PMID: 35174990 DOI: 10.1002/smtd.202101334] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Electrochemical carbon dioxide reduction to ethanol suggests a potential strategy to reduce the CO2 level and generate valuable liquid fuels, while the development of low-cost catalysts with high activity and selectivity remains a major challenge. In this work, a bimetallic, low-entropy state Cu3 Sn catalyst featuring efficient electrocatalytic CO2 reduction to ethanol is developed. This low-entropy state Cu3 Sn catalyst allows a high Faradaic efficiency of 64% for ethanol production, distinctively from the high-entropy state Cu6 Sn5 catalyst with the main selectivity toward producing formate. At an industry-level current density of -900 mA cm-2 , the Cu3 Sn catalyst exhibited excellent stability for over 48 h in a membrane-electrode based electrolyzer. Theoretical calculations indicate that the high ethanol selectivity on Cu3 Sn is attributed to its enhanced adsorption of several key intermediates in the ethanol production pathway. Moreover, the life-cycle assessment reveals that using the Cu3 Sn electrocatalyst, an electrochemical CO2 -to-ethanol electrolysis system powered by wind electricity can lead to a global warming potential of 120 kgCO2-eq for producing 1 ton of ethanol, corresponding to a 55% reduction of carbon emissions compared to the conventional bio-ethanol process.
Collapse
Affiliation(s)
- Longmei Shang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
76
|
Soucy TL, Dean WS, Zhou J, Rivera Cruz KE, McCrory CCL. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO 2 Reduction Reaction. Acc Chem Res 2022; 55:252-261. [PMID: 35044745 DOI: 10.1021/acs.accounts.1c00633] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method for capturing intermittent renewable energy sources in chemical bonds, and converting waste CO2 into value-added products with a goal of carbon neutrality. Our group has focused on developing polymer-encapsulated molecular catalysts, specifically cobalt phthalocyanine (CoPc), as active and selective electrocatalysts for the CO2RR. When CoPc is adsorbed onto a carbon electrode and encapsulated in poly(4-vinylpyridine) (P4VP), its activity and reaction selectivity over the competitive hydrogen evolution reaction (HER) are enhanced by three synergistic effects: a primary axial coordination effect, a secondary reaction intermediate stabilization effect, and an outer-coordination proton transport effect. We have studied multiple aspects of this system using electrochemical, spectroscopic, and computational tools. Specifically, we have used X-ray absorption spectroscopy measurements to confirm that the pyridyl residues from the polymer are axially coordinated to the CoPc metal center, and we have shown that increasing the σ-donor ability of nitrogen-containing axial ligands results in increased activity for the CO2RR. Using proton inventory studies, we showed that proton delivery in the CoPc-P4VP system is controlled via a proton relay through the polymer matrix. Additionally, we studied the effect of catalyst, polymer, and graphite powder loading on CO2RR activity and determined best practices for incorporating carbon supports into catalyst-polymer composite films.In this Account, we describe these studies in detail, organizing our discussion by three types of microenvironmental interactions that affect the catalyst performance: ligand effects of the primary and secondary sphere, substrate transport of protons and CO2, and charge transport from the electrode surface to the catalyst sites. Our work demonstrates that careful electroanalytical study and interpretation can be valuable in developing a robust and comprehensive understanding of catalyst performance. In addition to our work with polymer encapsulated CoPc, we provide examples of similar surface-adsorbed molecular and solid-state systems that benefit from interactions between active catalytic sites and a polymer system. We also compare the activity results from our systems to other results in the CoPc literature, and other examples of molecular CO2RR catalysts on modified electrode surfaces. Finally, we speculate how the insights gained from studying CoPc could guide the field in designing other polymer-electrocatalyst systems. As CO2RR technologies become commercially viable and expand into the space of flow cells and gas-diffusion electrodes, we propose that overall device efficiency may benefit from understanding and promoting synergistic polymer-encapsulation effects in the microenvironment of these catalyst systems.
Collapse
Affiliation(s)
- Taylor L. Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - William S. Dean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jukai Zhou
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kevin E. Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
77
|
Kong Y, Hu H, Liu M, Hou Y, Kolivoška V, Vesztergom S, Broekmann P. Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical CO2 reduction: A combined EDX/ICP–MS approach. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
78
|
Evaluation of novel ZnO–Ag cathode for CO2 electroreduction in solid oxide electrolyser. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractCO2 and steam/CO2 electroreduction to CO and methane in solid oxide electrolytic cells (SOEC) has gained major attention in the past few years. This work evaluates, for the very first time, the performance of two different ZnO–Ag cathodes: one where ZnO nanopowder was mixed with Ag powder for preparing the cathode ink (ZnOmix–Ag cathode) and the other one where Ag cathode was infiltrated with a zinc nitrate solution (ZnOinf –Ag cathode). ZnOmix–Ag cathode had a better distribution of ZnO particles throughout the cathode, resulting in almost double CO generation while electrolysing both dry CO2 and H2/CO2 (4:1 v/v). A maximum overall CO2 conversion of 48% (in H2/CO2) at 1.7 V and 700 °C clearly indicated that as low as 5 wt% zinc loading is capable of CO2 electroreduction. It was further revealed that for ZnOinf –Ag cathode, most of CO generation took place through RWGS reaction, but for ZnOmix–Ag cathode, it was the synergistic effect of both RWGS reaction and CO2 electrolysis. Although ZnOinf –Ag cathode produced trace amount of methane at higher voltages, with ZnOmix–Ag cathode, there was absolutely no methane. This seems to be due to strong electronic interaction between Zn and Ag that might have suppressed the catalytic activity of the cathode towards methanation.
Collapse
|
79
|
Lou W, Peng L, He R, Liu Y, Qiao J. CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO 2-to-formate conversion. J Colloid Interface Sci 2022; 606:994-1003. [PMID: 34487946 DOI: 10.1016/j.jcis.2021.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Electrochemical reduction of CO2 to fuels and chemicals is an effective way to reduce greenhouse gas emissions and alleviate the energy crisis, but the highly active catalysts necessary for this reaction under mild conditions are still rare. In this work, we grew CuBi bimetallic catalysts on derived copper foam substrates by co-electrodeposition, and then investigated the correlation between co-electrodeposition potential and electrochemical performance in CO2-to-formate conversion. Results showed that the bimetallic catalyst formed at a low potential of - 0.6 V vs. AgCl/Ag electrode achieved the highest formate Faradaic efficiency (FEformate) of 94.4% and a current density of 38.5 mA/cm2 at a low potential of - 0.97 V vs. reversible hydrogen electrode (RHE). Moreover, a continuous-flow membrane electrode assembly reactor also enabled the catalyst to show better performance (a FEformate of 98.3% at 56.6 mA/cm2) than a traditional H-type reaction cell. This work highlights the vital impact of co-electrodeposition potential on catalyst performance and provides a basis for the modulated growth of bimetallic catalysts on substrates. It also shows the possibility of preparing Bi-based catalysts with no obvious decrease in catalytic activity that have been partially replaced with more economic copper.
Collapse
Affiliation(s)
- Wenshuang Lou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Ruinan He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
80
|
Kose T, O'Brien C, Wicks J, Abed J, Xiao YC, Sutherland B, Sarkar A, Jaffer SA, Sargent EH, Sinton D. High-throughput parallelized testing of membrane electrode assemblies for CO 2 reduction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-throughput characterization of electrochemical reactions can accelerate discovery and optimization cycles, and provide the data required for further acceleration via machine-learning guided experiment planning. There are a range of high...
Collapse
|
81
|
Hernandez-Aldave S, Andreoli E. Oxygen depolarised cathode as a learning platform for CO 2 gas diffusion electrodes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen depolarised cathode technology in support of achieving CO2 gas diffusion electrodes industrial performance.
Collapse
Affiliation(s)
| | - Enrico Andreoli
- Energy Safety Research Institute, Swansea University, Swansea SA1 8EN, UK
- Department of Chemical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| |
Collapse
|
82
|
Senthilkumar P, Mohapatra M, Basu S. The inchoate horizon of electrolyzer designs, membranes and catalysts towards highly efficient electrochemical reduction of CO2 to formic acid. RSC Adv 2022; 12:1287-1309. [PMID: 35425201 PMCID: PMC8979072 DOI: 10.1039/d1ra05062a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022] Open
Abstract
This review explores the recent advances in CO2 reactor configurations, components, membranes and electrocatalysts for HCOOH generation and draw readers attention to construct the economic, scalable and energy efficient CO2R electrolyzers.
Collapse
Affiliation(s)
- P. Senthilkumar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India-751013
| | - Mamata Mohapatra
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India-751013
| | - Suddhasatwa Basu
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India-751013
| |
Collapse
|
83
|
Reinisch D, Reichbauer T, Vetter KM, Martić N, Mayrhofer KJJ, Schmid G. Electrochemical reaction of CO 2 to CO on a catalyst coated cation exchange membrane enabled by ammonium proton shuttling. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 reduction (CO2RR) can convert CO2 into feedstock for the chemical industry. In a novel operation mode NH4+ ions locally buffer the pH on a cation exchange membrane (CEM) and thereby enable efficient CO2RR on an Ag-coated CEM cathode.
Collapse
Affiliation(s)
- D. Reinisch
- New Energy Business – SE NEB TP, Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 3, Erlangen, Germany
| | - T. Reichbauer
- New Energy Business – SE NEB TP, Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, Erlangen, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, Erlangen, Germany
| | - K. M. Vetter
- New Energy Business – SE NEB TP, Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, Erlangen, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching, Germany
| | - N. Martić
- New Energy Business – SE NEB TP, Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 3, Erlangen, Germany
| | - K. J. J. Mayrhofer
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 3, Erlangen, Germany
- Helmholtz Institute Erlangen-Nuremberg for Renewable Energy, IEK-11, Egerlandstr. 3, Erlangen, Germany
| | - G. Schmid
- New Energy Business – SE NEB TP, Siemens Energy Global GmbH & Co. KG, Freyeslebenstr. 1, Erlangen, Germany
| |
Collapse
|
84
|
Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
85
|
Lamaison S, Wakerley D, Kracke F, Moore T, Zhou L, Lee DU, Wang L, Hubert MA, Aviles Acosta JE, Gregoire JM, Duoss EB, Baker S, Beck VA, Spormann AM, Fontecave M, Hahn C, Jaramillo TF. Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO 2 Conversion to CO and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103963. [PMID: 34672402 DOI: 10.1002/adma.202103963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Indexed: 06/13/2023]
Abstract
CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dispersed Ag sites in a low-cost Zn matrix. This catalyst shows unprecedented Ag mass activity for CO production: -614 mA cm-2 at 0.17 mg of Ag. Subsequent electrolyte engineering demonstrates that halide anions can further improve stability and activity of the Zn-Ag catalyst, outperforming pure Ag and Au. Membrane electrode assemblies are constructed and coupled to a microbial process that converts the CO to acetate and ethanol. Combined, these concepts present pathways to design catalysts and systems for CO2 conversion toward sought-after products.
Collapse
Affiliation(s)
- Sarah Lamaison
- Collège de France, Sorbonne University, Laboratory of the Chemistry of Biological Processes, CNRS UMR 8229, Paris, 75231, France
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - David Wakerley
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Frauke Kracke
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Moore
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Lan Zhou
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dong Un Lee
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lei Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - McKenzie A Hubert
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jaime E Aviles Acosta
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - John M Gregoire
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Eric B Duoss
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sarah Baker
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victor A Beck
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Alfred M Spormann
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Marc Fontecave
- Collège de France, Sorbonne University, Laboratory of the Chemistry of Biological Processes, CNRS UMR 8229, Paris, 75231, France
| | - Christopher Hahn
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
86
|
Abstract
Recycling of waste CO2 to bulk chemicals has a tremendous potential for the decarbonization of the chemical industry. Quantitative analysis of the prospects of this technology is hindered by the lack of flexible techno-economic assessment (TEA) models that enable evaluation of the processing costs under different deployment scenarios. In this protocol, we explain how to convert literature data into metrics useful for evaluation of the emerging electrolysis technologies, derive TEA models, and illustrate their use with a CO2-to-ethylene example. For complete details on the use and execution of this protocol, please refer to Barecka et al. (2021a). Evaluation of the operational and investment costs for CO2 electrolysis Tool is applicable for low- and high-temperature electrolysis Guidelines for selection of experimental data to include in the model Recommended for the evaluation of CO2R system scale-up potential
Collapse
|
87
|
Chen M, Wan S, Zhong L, Liu D, Yang H, Li C, Huang Z, Liu C, Chen J, Pan H, Li D, Li S, Yan Q, Liu B. Dynamic Restructuring of Cu‐Doped SnS
2
Nanoflowers for Highly Selective Electrochemical CO
2
Reduction to Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxin Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
| | - Shipeng Wan
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Lixiang Zhong
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Daobin Liu
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
| | - Chengcheng Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhiqi Huang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| | - Jian Chen
- Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
| | - Hongge Pan
- Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
| | - Dong‐Sheng Li
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China
| | - Shuzhou Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Bin Liu
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
88
|
Edwardes Moore E, Andrei V, Oliveira AR, Coito AM, Pereira IAC, Reisner E. A Semi‐artificial Photoelectrochemical Tandem Leaf with a CO
2
‐to‐Formate Efficiency Approaching 1 %. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esther Edwardes Moore
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Ana Margarida Coito
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da Republica 2780-157 Oeiras Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
89
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
90
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
91
|
Rivera Cruz KE, Liu Y, Soucy TL, Zimmerman PM, McCrory CCL. Increasing the CO2 Reduction Activity of Cobalt Phthalocyanine by Modulating the σ-Donor Strength of Axially Coordinating Ligands. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kevin E. Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yingshuo Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Taylor L. Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
92
|
Huo C, Cao X, Ye Z, Li Y, Lu T. Hierarchical Bimetallic Electrocatalyst with Amorphous SnO Layer for Highly Efficient Electroreduction of CO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cuizhu Huo
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Xinxing Cao
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Zixian Ye
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Yu Li
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Tongbu Lu
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| |
Collapse
|
93
|
Chen M, Wan S, Zhong L, Liu D, Yang H, Li C, Huang Z, Liu C, Chen J, Pan H, Li DS, Li S, Yan Q, Liu B. Dynamic Restructuring of Cu-Doped SnS 2 Nanoflowers for Highly Selective Electrochemical CO 2 Reduction to Formate. Angew Chem Int Ed Engl 2021; 60:26233-26237. [PMID: 34586693 DOI: 10.1002/anie.202111905] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/17/2022]
Abstract
With ever-increasing energy consumption and continuous rise in atmospheric CO2 concentration, electrochemical reduction of CO2 into chemicals/fuels is becoming a promising yet challenging solution. Sn-based materials are identified as attractive electrocatalysts for the CO2 reduction reaction (CO2 RR) to formate but suffer from insufficient selectivity and activity, especially at large cathodic current densities. Herein, we demonstrate that Cu-doped SnS2 nanoflowers can undergo in situ dynamic restructuring to generate catalytically active S-doped Cu/Sn alloy for highly selective electrochemical CO2 RR to formate over a wide potential window. Theoretical thermodynamic analysis of reaction energetics indicates that the optimal electronic structure of the Sn active site can be regulated by both S-doping and Cu-alloying to favor formate formation, while the CO and H2 pathways will be suppressed. Our findings provide a rational strategy for electronic modulation of metal active site(s) for the design of active and selective electrocatalysts towards CO2 RR.
Collapse
Affiliation(s)
- Mengxin Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore
| | - Shipeng Wan
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore.,School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Daobin Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore
| | - Chengcheng Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiqi Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bin Liu
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
94
|
Apaydin DH. A Beginner's Guide to Organic Semiconductor Photoelectrodes for the Reduction of Carbon Dioxide. Isr J Chem 2021. [DOI: 10.1002/ijch.202100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dogukan H. Apaydin
- Institute of Materials Chemistry Vienna University of Technology (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| |
Collapse
|
95
|
Schuler E, Demetriou M, Shiju NR, Gruter GM. Towards Sustainable Oxalic Acid from CO 2 and Biomass. CHEMSUSCHEM 2021; 14:3636-3664. [PMID: 34324259 PMCID: PMC8519076 DOI: 10.1002/cssc.202101272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Indexed: 05/19/2023]
Abstract
To quickly and drastically reduce CO2 emissions and meet our ambitions of a circular future, we need to develop carbon capture and storage (CCS) and carbon capture and utilization (CCU) to deal with the CO2 that we produce. While we have many alternatives to replace fossil feedstocks for energy generation, for materials such as plastics we need carbon. The ultimate circular carbon feedstock would be CO2 . A promising route is the electrochemical reduction of CO2 to formic acid derivatives that can subsequently be converted into oxalic acid. Oxalic acid is a potential new platform chemical for material production as useful monomers such as glycolic acid can be derived from it. This work is part of the European Horizon 2020 project "Ocean" in which all these steps are developed. This Review aims to highlight new developments in oxalic acid production processes with a focus on CO2 -based routes. All available processes are critically assessed and compared on criteria including overall process efficiency and triple bottom line sustainability.
Collapse
Affiliation(s)
- Eric Schuler
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Marilena Demetriou
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - N. Raveendran Shiju
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Gert‐Jan M. Gruter
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
- Avantium Chemicals BVZekeringstraat 291014 BVAmsterdamThe Netherlands
| |
Collapse
|
96
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
97
|
Raciti D, Braun T, Tackett BM, Xu H, Cruz M, Wiley BJ, Moffat TP. High-Aspect-Ratio Ag Nanowire Mat Electrodes for Electrochemical CO Production from CO 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Raciti
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Trevor Braun
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Brian M. Tackett
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Heng Xu
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, United States
| | - Mutya Cruz
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, United States
| | - Thomas P. Moffat
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
98
|
Zhang T, Li W, Huang K, Guo H, Li Z, Fang Y, Yadav RM, Shanov V, Ajayan PM, Wang L, Lian C, Wu J. Regulation of functional groups on graphene quantum dots directs selective CO 2 to CH 4 conversion. Nat Commun 2021; 12:5265. [PMID: 34489449 PMCID: PMC8421353 DOI: 10.1038/s41467-021-25640-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
A catalyst system with dedicated selectivity toward a single hydrocarbon or oxygenate product is essential to enable the industrial application of electrochemical conversion of CO2 to high-value chemicals. Cu is the only known metal catalyst that can convert CO2 to high-order hydrocarbons and oxygenates. However, the Cu-based catalysts suffer from diverse selectivity. Here, we report that the functionalized graphene quantum dots can direct CO2 to CH4 conversion with simultaneous high selectivity and production rate. The electron-donating groups facilitate the yield of CH4 from CO2 electro-reduction while electron-withdrawing groups suppress CO2 electro-reduction. The yield of CH4 on electron-donating group functionalized graphene quantum dots is positively correlated to the electron-donating ability and content of electron-donating group. The graphene quantum dots functionalized by either -OH or -NH2 functional group could achieve Faradaic efficiency of 70.0% for CH4 at -200 mA cm-2 partial current density of CH4. The superior yield of CH4 on electron-donating group- over the electron-withdrawing group-functionalized graphene quantum dots possibly originates from the maintenance of higher charge density of potential active sites (neighboring C or N) and the interaction between the electron-donating group and key intermediates. This work provides insight into the design of active carbon catalysts at the molecular scale for the CO2 electro-reduction.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Weitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Yanbo Fang
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Vesselin Shanov
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
99
|
Edwardes Moore E, Andrei V, Oliveira AR, Coito AM, Pereira IAC, Reisner E. A Semi-artificial Photoelectrochemical Tandem Leaf with a CO 2 -to-Formate Efficiency Approaching 1 . Angew Chem Int Ed Engl 2021; 60:26303-26307. [PMID: 34472692 DOI: 10.1002/anie.202110867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Semi-artificial photoelectrochemistry can combine state-of-the-art photovoltaic light-absorbers with enzymes evolved for selective fuel-forming reactions such as CO2 reduction, but the overall performance of such hybrid systems has been limited to date. Here, the electrolyte constituents were first tuned to establish an optimal local environment for a W-formate dehydrogenase to perform electrocatalysis. The CO2 reductase was then interfaced with a triple cation lead mixed-halide perovskite through a hierarchically structured porous TiO2 scaffold to produce an integrated photocathode achieving a photocurrent density of -5 mA cm-2 at 0.4 V vs. the reversible hydrogen electrode during simulated solar light irradiation. Finally, the combination with a water-oxidizing BiVO4 photoanode produced a bias-free integrated biophotoelectrochemical tandem device (semi-artificial leaf) with a solar CO2 -to-formate energy conversion efficiency of 0.8 %.
Collapse
Affiliation(s)
- Esther Edwardes Moore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Ana Margarida Coito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
100
|
Proietto F, Patel U, Galia A, Scialdone O. Electrochemical conversion of CO2 to formic acid using a Sn based electrode: A critical review on the state-of-the-art technologies and their potential. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|