51
|
Logan SL, Dudley C, Baker RP, Taormina MJ, Hay EA, Parthasarathy R. Automated high-throughput light-sheet fluorescence microscopy of larval zebrafish. PLoS One 2018; 13:e0198705. [PMID: 30427839 PMCID: PMC6235235 DOI: 10.1371/journal.pone.0198705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Light sheet fluorescence microscopy enables fast, minimally phototoxic, three-dimensional imaging of live specimens, but is currently limited by low throughput and tedious sample preparation. Here, we describe an automated high-throughput light sheet fluorescence microscope in which specimens are positioned by and imaged within a fluidic system integrated with the sheet excitation and detection optics. We demonstrate the ability of the instrument to rapidly examine live specimens with minimal manual intervention by imaging fluorescent neutrophils over a nearly 0.3 mm3 volume in dozens of larval zebrafish. In addition to revealing considerable inter-individual variability in neutrophil number, known previously from labor-intensive methods, three-dimensional imaging allows assessment of the correlation between the bulk measure of total cellular fluorescence and the spatially resolved measure of actual neutrophil number per animal. We suggest that our simple experimental design should considerably expand the scope and impact of light sheet imaging in the life sciences.
Collapse
Affiliation(s)
- Savannah L. Logan
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Christopher Dudley
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Ryan P. Baker
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Michael J. Taormina
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Edouard A. Hay
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| | - Raghuveer Parthasarathy
- Materials Science Institute, Institute of Molecular Biology, and Department of Physics, The University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
52
|
van der Vaart M, Svoboda O, Weijts BG, Espín-Palazón R, Sapp V, Pietri T, Bagnat M, Muotri AR, Traver D. Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis Model Mech 2017; 10:1439-1451. [PMID: 28993314 PMCID: PMC5769600 DOI: 10.1242/dmm.026922] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in MECP2 cause Rett syndrome, a severe neurological disorder with autism-like features. Duplication of MECP2 also causes severe neuropathology. Both diseases display immunological abnormalities that suggest a role for MECP2 in controlling immune and inflammatory responses. Here, we used mecp2-null zebrafish to study the potential function of Mecp2 as an immunological regulator. Mecp2 deficiency resulted in an increase in neutrophil infiltration and upregulated expression of the pro- and anti-inflammatory cytokines Il1b and Il10 as a secondary response to disturbances in tissue homeostasis. By contrast, expression of the proinflammatory cytokine tumor necrosis factor alpha (Tnfa) was consistently downregulated in mecp2-null animals during development, representing the earliest developmental phenotype described for MECP2 deficiency to date. Expression of tnfa was unresponsive to inflammatory stimulation, and was partially restored by re-expression of functional mecp2 Thus, Mecp2 is required for tnfa expression during zebrafish development and inflammation. Finally, RNA sequencing of mecp2-null embryos revealed dysregulated processes predictive for Rett syndrome phenotypes.
Collapse
Affiliation(s)
- M van der Vaart
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - O Svoboda
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - B G Weijts
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - R Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - V Sapp
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - T Pietri
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, 07102 NJ, USA
| | - M Bagnat
- Department of Cell Biology, Duke University, Durham, 27708 NC, USA
| | - A R Muotri
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, La Jolla, 92093 CA, USA
| | - D Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| |
Collapse
|
53
|
Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors. Biomedicines 2017; 5:biomedicines5040058. [PMID: 28961226 PMCID: PMC5744082 DOI: 10.3390/biomedicines5040058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.
Collapse
|
54
|
Transcriptome Analysis Reveals Increases in Visceral Lipogenesis and Storage and Activation of the Antigen Processing and Presentation Pathway during the Mouth-Opening Stage in Zebrafish Larvae. Int J Mol Sci 2017; 18:ijms18081634. [PMID: 28758957 PMCID: PMC5578024 DOI: 10.3390/ijms18081634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
The larval phase of the fish life cycle has the highest mortality, particularly during the transition from endogenous to exogenous feeding. However, the transcriptional events underlying these processes have not been fully characterized. To understand the molecular mechanisms underlying mouth-opening acclimation, RNA-seq was used to investigate the transcriptional profiles of the endogenous feeding, mixed feeding and exogenous feeding stages of zebrafish larvae. Differential expression analysis showed 2172 up-regulated and 2313 down-regulated genes during this stage. Genes associated with the assimilation of exogenous nutrients such as the arachidonic acid metabolism, linoleic acid metabolism, fat digestion and absorption, and lipogenesis were activated significantly, whereas dissimilation including the cell cycle, homologous recombination, and fatty acid metabolism were inhibited, indicating a physiological switch for energy storage occurred during the mouth-opening stage. Moreover, the immune recognition involved in the antigen processing and presentation pathway was activated and nutritional supply seemed to be required in this event confirmed by qPCR. These results suggested the energy utilization during the mouth-opening stage is more tended to be reserved or used for some important demands, such as activity regulation, immune defense, and lipid deposition, instead of rapid growth. The findings of this study are important for understanding the physiological switches during the mouth-opening stage.
Collapse
|
55
|
Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, Zhihua R. Application of Zebrafish Models in Inflammatory Bowel Disease. Front Immunol 2017; 8:501. [PMID: 28515725 PMCID: PMC5413514 DOI: 10.3389/fimmu.2017.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and remitting inflammatory disease with unclear etiology. As a clinically frequent disease, it can affect individuals throughout their lives, with multiple complications. Unfortunately, traditional murine models are not efficient for the further study of IBD. Thus, effective and convenient animal models are needed. Zebrafish have been used as model organisms to investigate IBD because of their suggested highly genetic similarity to humans and their superiority as laboratory models. The zebrafish model has been used to study the composition of intestinal microbiota, novel genes, and therapeutic approaches. The pathogenesis of IBD is still unclear and many risk factors remain unidentified. In this review, we compare traditional murine models and zebrafish models in terms of advantages, pathogenesis, and drug discovery screening for IBD. We also review the progress and deficiencies of the zebrafish model for scientific applications.
Collapse
Affiliation(s)
- Li Hanyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Liu Xuanzhe
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chen Xuyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiu Yujia
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Fu Jiarong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhihua
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
56
|
The Vital Dye CDr10b Labels the Zebrafish Mid-Intestine and Lumen. Molecules 2017; 22:molecules22030454. [PMID: 28335401 PMCID: PMC6155399 DOI: 10.3390/molecules22030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 11/25/2022] Open
Abstract
We describe the use of the fluorescent reporter compound CDr10b to label mid-intestinal structures in zebrafish larvae after simple immersion. CDr10b is deposited into the gut where it initially fills the lumen and is excreted. Using laser-mediated injury of the intestine, we show that CDr10b provides a useful readout of the integrity and repair of the epithelial cell barrier. In addition, CDr10b specifically labels the absorptive mid-intestine segment that is analogous to the mammalian small intestine. By perturbing retinoic acid signaling, which regulates the size of the mid-intestine segment, we show that CDr10b is a valuable tool to rapidly assess developmental malformations of the intestine in live animals.
Collapse
|
57
|
Anti-inflammatory effect of Naravelia zeylanica DC via suppression of inflammatory mediators in carrageenan-induced abdominal oedema in zebrafish model. Inflammopharmacology 2017; 25:147-158. [PMID: 28078497 DOI: 10.1007/s10787-016-0303-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
The traditional herbal medicines are receiving great importance in the health care sector, especially in Indian system of medicine, i.e, Ayurveda. The present study focused on the standardization of Naravelia zeylanica (L.) DC in terms of its active phytochemicals and to evaluate the anti-inflammatory activity of ethanol extract of N. zeylanica (ENZ). An analytical method was developed by high-performance liquid chromatography for simultaneous determination of β-sitosterol, lupeol and oleanolic acid in ENZ. The cell viability of ENZ was investigated using MTT assay. IC50 value of ENZ on cell viability was found to be 653.01 µg/mL. To determine the anti-inflammatory activity of ENZ by in vitro method, LPS was added to the macrophage cells to induce activation and ENZ was further added to observe the recovery of inflamed cells. These cells when treated with ENZ, the percentage of viable cells were considerably increased to 74.68%. Loss of mitochondrial membrane potential on treatment with LPS and its recovery by ENZ was studied and found that the number of cells that were damaged on treatment with ENZ + LPS was comparatively lesser than treatment with LPS only. An in vivo anti-inflammatory study was carried out in carrageenan-induced abdominal oedema method in adult zebrafish which revealed the percentage inhibition of inflammation at graded dose levels of ENZ as 23.5% at 100 mg/kg, 62.4% at 200 mg/kg and 87.05% at 350 mg/kg when compared with standard of diclofenac which showed 85% inhibition at 100 mg/kg. The PCR amplification of DNA extracted from adult zebrafish showed that increased concentration of ENZ considerably downregulates the expression of TNF-α and iNOS, the mediators of inflammation.
Collapse
|
58
|
Oehlers SH, Flores MV, Hall CJ, Wang L, Ko DC, Crosier KE, Crosier PS. A whole animal chemical screen approach to identify modifiers of intestinal neutrophilic inflammation. FEBS J 2017; 284:402-413. [PMID: 27885812 DOI: 10.1111/febs.13976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
By performing two high-content small molecule screens on dextran sodium sulfate- and trinitrobenzene sulfonic acid-induced zebrafish enterocolitis models of inflammatory bowel disease, we have identified novel anti-inflammatory drugs from the John Hopkins Clinical Compound Library that suppress neutrophilic inflammation. Live imaging of neutrophil distribution was used to assess the level of acute inflammation and concurrently screen for off-target drug effects. Supporting the validity of our screening strategy, most of the anti-inflammatory drug hits were known antibiotics or anti-inflammatory agents. Novel hits included cholecystokinin (CCK) and dopamine receptor agonists. Using a pharmacological approach, we show that while CCK and dopamine receptor agonists alleviate enterocolitis-associated inflammation, receptor antagonists exacerbate inflammation in zebrafish. This work highlights the utility of small molecule screening in zebrafish enterocolitis models as a tool to identify novel bioactive molecules capable of modulating acute inflammation.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, New Zealand.,Tuberculosis Research Program, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Maria Vega Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, New Zealand
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.,Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, New Zealand
| |
Collapse
|
59
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
60
|
Rolig AS, Parthasarathy R, Burns AR, Bohannan BJM, Guillemin K. Individual Members of the Microbiota Disproportionately Modulate Host Innate Immune Responses. Cell Host Microbe 2016; 18:613-20. [PMID: 26567512 DOI: 10.1016/j.chom.2015.10.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 12/29/2022]
Abstract
Predicting host health status based on microbial community structure is a major goal of microbiome research. An implicit assumption of microbiome profiling for diagnostic purposes is that the proportional representation of different taxa determine host phenotypes. To test this assumption, we colonized gnotobiotic zebrafish with zebrafish-derived bacterial isolates and measured bacterial abundance and host neutrophil responses. Surprisingly, combinations of bacteria elicited immune responses that do not reflect the numerically dominant species. These data are consistent with a quantitative model in which the host responses to commensal species are additive but where various species have different per capita immunostimulatory effects. For example, one species has a high per capita immunosuppression that is mediated through a potent secreted factor. We conclude that the proportional representation of bacteria in a community does not necessarily predict its functional capacities; however, characterizing specific properties of individual species offers predictive insights into multi-species community function.
Collapse
Affiliation(s)
- Annah S Rolig
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Adam R Burns
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
61
|
Ulloa PE, Solís CJ, De la Paz JF, Alaurent TGS, Caruffo M, Hernández AJ, Dantagnan P, Feijóo CG. Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish. J Immunol Res 2016; 2016:1639720. [PMID: 27247950 PMCID: PMC4877474 DOI: 10.1155/2016/1639720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Intestinal inflammation is a harmful condition in fish that can be triggered by the ingestion of soybean meal. Due to the positive costs-benefits ratio of including soybean meal in farmed fish diets, identifying additives with intestinal anti-inflammatory effects could contribute to solving the issues caused by this plant protein. This study evaluated the effect of incorporating lactoferrin (LF) into a soybean meal-based diet on intestinal inflammation in zebrafish. Larvae were fed with diets containing 50% soybean meal (50SBM) or 50SBM supplemented with LF to 0.5, 1, 1.5 g/kg (50SBM+LF0.5; 50SBM+LF1.0; 50SBM+LF1.5). The 50SBM+LF1.5 diet was the most efficient and larvae had a reduced number of neutrophils in the intestine compared with 50SBM larvae and an indistinguishable number compared with control larvae. Likewise, the transcription of genes involved in neutrophil migration and intestinal mucosal barrier functions (mmp9, muc2.2, and β-def-1) were increased in 50SBM larvae but were normally expressed in 50SBM+LF1.5 larvae. To determine the influence of intestinal inflammation on the general immune response, larvae were challenged with Edwardsiella tarda. Larvae with intestinal inflammation had increased mortality rate compared to control larvae. Importantly, 50SBM+LF1.5 larvae had a mortality rate lower than control larvae. These results demonstrate that LF displays a dual effect in zebrafish, acting as an intestinal anti-inflammatory agent and improving performance against bacterial infection.
Collapse
Affiliation(s)
- Pilar E. Ulloa
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
| | - Camila J. Solís
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
| | - Javiera F. De la Paz
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
| | - Trevor G. S. Alaurent
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
| | - Mario Caruffo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
| | - Adrián J. Hernández
- Núcleo de Investigación en Producción Alimentaria, Escuela de Acuicultura, Facultad de Recursos Naturales, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Casilla 15D, 4780000 Temuco, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Escuela de Acuicultura, Facultad de Recursos Naturales, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Casilla 15D, 4780000 Temuco, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andrés Bello, Republica 217, 8370146 Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, 4070007 Concepción, Chile
| |
Collapse
|
62
|
Morales Fénero CI, Colombo Flores AA, Câmara NOS. Inflammatory diseases modelling in zebrafish. World J Exp Med 2016; 6:9-20. [PMID: 26929916 PMCID: PMC4759353 DOI: 10.5493/wjem.v6.i1.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity.
Collapse
|
63
|
Okuda KS, Tan PJ, Patel V. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop. Zebrafish 2016; 13:138-41. [PMID: 26771561 DOI: 10.1089/zeb.2015.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.
Collapse
Affiliation(s)
| | - Pei Jean Tan
- Drug Discovery Team, Cancer Research Malaysia , Subang Jaya, Malaysia
| | - Vyomesh Patel
- Drug Discovery Team, Cancer Research Malaysia , Subang Jaya, Malaysia
| |
Collapse
|
64
|
Haarder S, Kania PW, Lindebo Holm T, Ohtani M, Buchmann K. Comparison of Two Chemically-Induced Colitis-Models in Adult Zebrafish, Using Optical Projection Tomography and Novel Transcriptional Markers. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/oji.2016.64016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Lobert VH, Mouradov D, Heath JK. Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:411-37. [PMID: 27165364 DOI: 10.1007/978-3-319-30654-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer, encompassing colon and rectal cancer, arises from the epithelial lining of the large bowel. It is most prevalent in Westernised societies and is increasing in frequency as the world becomes more industrialised. Unfortunately, metastatic colorectal cancer is not cured by chemotherapy and the annual number of deaths caused by colorectal cancer, currently 700,000, is expected to rise. Our understanding of the contribution that genetic mutations make to colorectal cancer, although incomplete, is reasonably well advanced. However, it has only recently become widely appreciated that in addition to the ongoing accumulation of genetic mutations, chronic inflammation also plays a critical role in the initiation and progression of this disease. While a robust and tractable genetic model of colorectal cancer in zebrafish, suitable for pre-clinical studies, is not yet available, the identification of genes required for the rapid proliferation of zebrafish intestinal epithelial cells during development has highlighted a number of essential genes that could be targeted to disable colorectal cancer cells. Moreover, appreciation of the utility of zebrafish to study intestinal inflammation is on the rise. In particular, zebrafish provide unique opportunities to investigate the impact of genetic and environmental factors on the integrity of intestinal epithelial barrier function. With currently available tools, the interplay between epigenetic regulators, intestinal injury, microbiota composition and innate immune cell mobilisation can be analysed in exquisite detail. This provides excellent opportunities to define critical events that could potentially be targeted therapeutically. Further into the future, the use of zebrafish larvae as hosts for xenografts of human colorectal cancer tissue, while still in its infancy, holds great promise that zebrafish could one day provide a practical, preclinical personalized medicine platform for the rapid assessment of the metastatic potential and drug-sensitivity of patient-derived cancers.
Collapse
Affiliation(s)
- Viola H Lobert
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
66
|
Caro M, Iturria I, Martinez-Santos M, Pardo MA, Rainieri S, Tueros I, Navarro V. Zebrafish dives into food research: effectiveness assessment of bioactive compounds. Food Funct 2016; 7:2615-23. [DOI: 10.1039/c6fo00046k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zebrafish ease of use and characteristics reveal it to be an interesting and underused model in food and nutrition research.
Collapse
Affiliation(s)
- M. Caro
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| | - I. Iturria
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| | | | - M. A. Pardo
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| | - S. Rainieri
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| | - I. Tueros
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| | - V. Navarro
- AZTI, Food Research, Astondo Bidea 609
- 48160 Derio
- Spain
| |
Collapse
|
67
|
Wang L, Oehlers SH, Espenschied ST, Rawls JF, Tobin DM, Ko DC. CPAG: software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation. Genome Biol 2015; 16:190. [PMID: 26374098 PMCID: PMC4570686 DOI: 10.1186/s13059-015-0722-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/09/2015] [Indexed: 12/31/2022] Open
Abstract
Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Scott T Espenschied
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA. .,Department of Medicine and the Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
68
|
Okuda KS, Misa JP, Oehlers SH, Hall CJ, Ellett F, Alasmari S, Lieschke GJ, Crosier KE, Crosier PS, Astin JW. A zebrafish model of inflammatory lymphangiogenesis. Biol Open 2015; 4:1270-80. [PMID: 26369931 PMCID: PMC4610225 DOI: 10.1242/bio.013540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulphate (DSS). Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr)-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - June Pauline Misa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham 27710, USA
| | - Christopher J Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kathryn E Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
69
|
Brown-Peterson NJ, Krasnec M, Takeshita R, Ryan CN, Griffitt KJ, Lay C, Mayer GD, Bayha KM, Hawkins WE, Lipton I, Morris J, Griffitt RJ. A multiple endpoint analysis of the effects of chronic exposure to sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated microbiomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:197-209. [PMID: 26092636 DOI: 10.1016/j.aquatox.2015.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Exposure to oiled sediments can negatively impact the health of fish species. Here, we examine the effects of chronic exposure of juvenile southern flounder, Paralichthys lethostigma, to a sediment-oil mixture. Oil:sediment mixtures are persistent over time and can become bioavailable following sediment perturbation or resuspension. Juvenile flounder were exposed for 32 days under controlled laboratory conditions to five concentrations of naturally weathered Macondo MC252 oil mixed into uncontaminated, field-collected sediments. The percent composition of individual polycyclic aromatic hydrocarbons (PAHs) of the weathered oil did not change after mixing with the sediment. Spiked exposure sediments contained 0.04-395mg/kg tPAH50 (sum of 50 individual PAH concentration measurements). Mortality increased with both exposure duration and concentration of sediment-associated PAHs, and flounder exposed to concentrations above 8mg/kg tPAH50 showed significantly reduced growth over the course of the experiment. Evident histopathologic changes were observed in liver and gill tissues of fish exposed to more than 8mg/kg tPAH50. All fish at these concentrations showed hepatic intravascular congestion, macrovesicular hepatic vacoulation, telangiectasia of secondary lamellae, and lamellar epithelial proliferation in gill tissues. Dose-dependent upregulation of Cyp1a expression in liver tissues was observed. Taxonomic analysis of gill and intestinal commensal bacterial assemblages showed that exposure to oiled sediments led to distinct shifts in commensal bacterial population structures. These data show that chronic exposure to environmentally-relevant concentrations of oiled sediments produces adverse effects in flounder at multiple biological levels.
Collapse
Affiliation(s)
- Nancy J Brown-Peterson
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, MS 39564, United States.
| | - Michelle Krasnec
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, Colorado 80302, United States.
| | - Ryan Takeshita
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, Colorado 80302, United States.
| | - Caitlin N Ryan
- The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Box 41163, Lubbock, TX 79409, United States.
| | - Kimberly J Griffitt
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, MS 39564, United States.
| | - Claire Lay
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, Colorado 80302, United States.
| | - Gregory D Mayer
- The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Box 41163, Lubbock, TX 79409, United States.
| | - Keith M Bayha
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, MS 39564, United States.
| | - William E Hawkins
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, MS 39564, United States.
| | - Ian Lipton
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, Colorado 80302, United States.
| | - Jeffrey Morris
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, Colorado 80302, United States.
| | - Robert J Griffitt
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, MS 39564, United States.
| |
Collapse
|
70
|
Witte M, Huitema LFA, Nieuwenhuis EES, Brugman S. Deficiency in macrophage-stimulating protein results in spontaneous intestinal inflammation and increased susceptibility toward epithelial damage in zebrafish. Zebrafish 2015; 11:542-50. [PMID: 25353089 DOI: 10.1089/zeb.2014.1023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP-RON signaling pathway is involved in tissue injury responses, current mouse models for MSP and RON deficiency have not clearly demonstrated a role of MSP-RON signaling in the context of intestinal inflammation. In this study, we report that the recently identified zebrafish Msp mutant (msp(t34230)) develops spontaneous intestinal inflammation over time. From 14 to 28 weeks postfertilization Msp-deficient zebrafish show intestinal eosinophilia, increased intestinal expression of inflammatory marker mmp9, and activation of intestinal goblet cells. Moreover, these Msp mutant zebrafish are more susceptible toward ethanol-induced epithelial damage, which resulted in increased infiltration and proliferation of immune cells within the lamina propria and prolonged intestinal proinflammatory cytokine responses in some mutant fish. In light of the recent development of many tools to visualize, monitor, and genetically modify zebrafish, these Msp-deficient zebrafish will enable in-depth in vivo analysis of epithelial and macrophage-specific MSP-RON signaling in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Merlijn Witte
- 1 Laboratory for Translational Immunology, Wilhelmina Children's Hospital Utrecht, University Medical Centre Utrecht , Utrecht, the Netherlands
| | | | | | | |
Collapse
|
71
|
Marjoram L, Bagnat M. Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2015; 3:147-153. [PMID: 26236567 PMCID: PMC4520400 DOI: 10.1007/s40139-015-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn’s disease and ulcerative colitis, contribute to significant morbidity and mortality globally. Despite an increase in incidence, IBD onset is still poorly understood. Mouse models of IBD recapitulate several aspects of human disease, but limited accessibility for live imaging and the lack of forward genetics highlight the need for new model systems for disease onset characterization. Zebrafish represent a powerful platform to model IBD using forward and reverse genetics, live imaging of transgenic lines and physiological assays. In this review, we address current models of IBD in zebrafish and newly developed reagents available for future studies.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-4899,
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-681-9268 ,
| |
Collapse
|
72
|
Abstract
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.
Collapse
Affiliation(s)
- Hilary Clay
- Cardiovascular Research Institute, University of California
| | | |
Collapse
|
73
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
74
|
Huang SY, Feng CW, Hung HC, Chakraborty C, Chen CH, Chen WF, Jean YH, Wang HMD, Sung CS, Sun YM, Wu CY, Liu W, Hsiao CD, Wen ZH. A novel zebrafish model to provide mechanistic insights into the inflammatory events in carrageenan-induced abdominal edema. PLoS One 2014; 9:e104414. [PMID: 25141004 PMCID: PMC4139260 DOI: 10.1371/journal.pone.0104414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/08/2014] [Indexed: 02/02/2023] Open
Abstract
A suitable small animal model may help in the screening and evaluation of new drugs, especially those from natural products, which can be administered at lower dosages, fulfilling an urgent worldwide need. In this study, we explore whether zebrafish could be a model organism for carrageenan-induced abdominal edema. The research results showed that intraperitoneal (i.p.) administration of 1.5% λ-carrageenan in a volume of 20 µL significantly increased abdominal edema in adult zebrafish. Levels of the proinflammatory proteins tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) were increased in carrageenan-injected adult zebrafish during the development of abdominal edema. An associated enhancement was also observed in the leukocyte marker, myeloperoxidase (MPO). To support these results, we further observed that i.p. methylprednisolone (MP; 1 µg), a positive control, significantly inhibited carrageenan-induced inflammation 24 h after carrageenan administration. Furthermore, i.p. pretreatment with either an anti-TNF-α antibody (1∶5 dilution in a volume of 20 µL) or the iNOS-selective inhibitor aminoguanidine (AG; 1 µg) inhibited carrageenan-induced abdominal edema in adult zebrafish. This new animal model is uncomplicated, easy to develop, and involves a straightforward inducement of inflammatory edema for the evaluation of small volumes of drugs or test compounds.
Collapse
Affiliation(s)
- Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chiranjib Chakraborty
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, Ping-Tung, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Min Sun
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wangta Liu
- Department of Biotechnology, and Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
75
|
Keating C, Ewart L, Grundy L, Valentin JP, Grundy D. Translational potential of a mouse in vitro bioassay in predicting gastrointestinal adverse drug reactions in Phase I clinical trials. Neurogastroenterol Motil 2014; 26:980-9. [PMID: 24813024 PMCID: PMC4207192 DOI: 10.1111/nmo.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Motility-related gastrointestinal (GI) adverse drug reactions (GADRs) such as diarrhea and constipation are a common and deleterious feature associated with drug development. Novel biomarkers of GI function are therefore required to aid decision making on the GI liability of compounds in development. METHODS Fifteen compounds associated with or without clinical GADRs were used to assess the ability of an in vitro colonic motility bioassay to predict motility-related GADRs. Compounds were examined in a blinded fashion for their effects on mouse colonic peristaltic motor complexes in vitro. For each compound concentration-response relationships were determined and the results compared to clinical data. Compounds were also assessed using GI transit measurements obtained using an in vivo rat charcoal meal model. KEY RESULTS Within a clinically relevant dosing range, the in vitro assay identified five true and three false positives, four true and three false negatives, which gave a predictive capacity of 60%. The in vivo assay detected four true and four false positives, four false and three true negatives, giving rise to a predictive capacity for this model of 47%. CONCLUSIONS & INFERENCES Overall these results imply that both assays are poor predictors of GADRs. Further analysis would benefit from a larger compound set, but the data show a clear need for improved models for use in safety pharmacology assessment of GI motility.
Collapse
Affiliation(s)
- C Keating
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - L Ewart
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - L Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - JP Valentin
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - D Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| |
Collapse
|
76
|
Astin JW, Haggerty MJL, Okuda KS, Le Guen L, Misa JP, Tromp A, Hogan BM, Crosier KE, Crosier PS. Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 2014; 141:2680-90. [PMID: 24903752 DOI: 10.1242/dev.106591] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.
Collapse
Affiliation(s)
- Jonathan W Astin
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Michael J L Haggerty
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kazuhide S Okuda
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ludovic Le Guen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - June P Misa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Alisha Tromp
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Benjamin M Hogan
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Kathryn E Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
77
|
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. Nat Commun 2014; 5:3880. [PMID: 24852213 DOI: 10.1038/ncomms4880] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.
Collapse
|
78
|
Abstract
Understanding a complex pathology such as inflammatory bowel disease, where host genetics (innate and adaptive immunity, barrier function) and environmental factors (microbes, diet, and stress) interact together to influence disease onset and severity, requires multipronged approaches to model these numerous variables. Researchers have typically relied on preclinical models of mouse and rat origin to push the boundary of knowledge further. However, incorporation of novel vertebrate models may contribute to new knowledge on specific aspects of intestinal homeostasis. An emerging literature has seen the use of zebrafish as a novel animal system to study key aspects of host-microbe interactions in the intestine. In this review, we briefly introduce components of host-microbiota interplay in the developing zebrafish intestine and summarize key lessons learned from this animal system; review important chemically induced and genetically engineered zebrafish models of intestinal immune disorders; and discuss perspectives and limitations of the zebrafish model system.
Collapse
Affiliation(s)
- Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
| |
Collapse
|
79
|
He Q, Wang L, Wang F, Li Q. Role of gut microbiota in a zebrafish model with chemically induced enterocolitis involving toll-like receptor signaling pathways. Zebrafish 2014; 11:255-64. [PMID: 24758288 DOI: 10.1089/zeb.2013.0917] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS It is believed that inflammatory bowel disease (IBD) involves a breakdown in interactions between the resident commensal microbiota and the host immune response. Recent studies have revealed that gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae with a number of advantages compared with murine models. The objective of this study was to evaluate the role of gut microbiota in zebrafish models with IBD-like enterocolitis. METHODS IBD-like enterocolitis was induced by exposing larval zebrafish to 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Assays were performed using larval zebrafish collected at 8 and 10 days postfertilization (dpf ). RESULTS In the absence of gut microbiota, the TNBS-induced enterocolitis was less extensive. The expression of toll-like receptor 3 (TLR3) and the TLRs signaling pathway molecules MyD88 and TRIF, the activation of NF-κB, and the production of inflammatory cytokine tumor necrosis factor-α were stimulated in TNBS-treated zebrafish but there was no corresponding alteration in germ-free fish. With microbial colonization, all results reverted to a pattern similar to that observed in conventionally reared zebrafish. CONCLUSION We described the key role of gut microbiota in the etiology of a chemically induced larval zebrafish IBD-like model, showing an involvement of TLR signaling pathways.
Collapse
Affiliation(s)
- Qi He
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University , Nanjing, China
| | | | | | | |
Collapse
|
80
|
Fuentes-Appelgren P, Opazo R, Barros L, Feijoó CG, Urzúa V, Romero J. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish. Zebrafish 2014; 11:41-9. [PMID: 24392798 DOI: 10.1089/zeb.2013.0934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some components of plant-based meals, such as saponins and vegetal proteins, have been proposed as inducers of intestinal inflammation in some fish. However, the molecular and cellular bases for this phenomenon have not been reported. In this work, zebrafish were used as a model to evaluate the effects of individual soybean meal components, such as saponins and soy proteins. Zebrafish larvae fed a fish meal feed containing soy components were assessed according to low and high inclusion levels. The granulocytes associated with the digestive tract and the induction of genes related to the immune system were quantitated as markers of the effects of the dietary components. A significant increase in the number of granulocytes was observed after feeding fish diets containing high saponin or soy protein contents. These dietary components also induced the expression of genes related to the innate immune system, including myeloid-specific peroxidase, as well as the complement protein and cytokines. These results reveal the influence of dietary components on the stimulation of the immune system. These observations could be significant to understanding the contributions of saponin and soy protein to the onset of enteritis in aqua-cultured fish, and this knowledge may aid in defining the role of the innate immune system in other inflammatory diseases involving dietary components in mammals.
Collapse
Affiliation(s)
- Pamela Fuentes-Appelgren
- 1 Laboratorio de Biotecnología , Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
81
|
Geiger BM, Gras-Miralles B, Ziogas DC, Karagiannis AKA, Zhen A, Fraenkel P, Kokkotou E. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One 2013; 8:e83194. [PMID: 24376661 PMCID: PMC3869761 DOI: 10.1371/journal.pone.0083194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Melanin-concentrating hormone (MCH), an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD). Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS) develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. Methods In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. Results Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. Conclusions Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.
Collapse
Affiliation(s)
- Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aileen Zhen
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Fraenkel
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
82
|
He Q, Wang L, Wang F, Wang C, Tang C, Li Q, Li J, Zhao Q. Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis. BMC Microbiol 2013; 13:289. [PMID: 24325678 PMCID: PMC4029296 DOI: 10.1186/1471-2180-13-289] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/16/2013] [Indexed: 02/08/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) involves a breakdown in interactions between the host immune response and the resident commensal microbiota. Recent studies have suggested gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae. The aim of this study was to investigate the dysbiosis of intestinal microbiota in zebrafish models with IBD-like enterocolitis using culture-independent techniques. Results IBD-like enterocolitis was induced by exposing larval zebrafish to trinitrobenzenesulfonic acid (TNBS). Pathology was assessed by histology and immunofluorescence. Changes in intestinal microbiota were evaluated by denaturing gradient gel electrophoresis (DGGE) and the predominant bacterial composition was determined with DNA sequencing and BLAST and confirmed by real-time polymerase chain reaction. Larval zebrafish exposed to TNBS displayed intestinal-fold architecture disruption and inflammation reminiscent of human IBD. In this study, we defined a reduced biodiversity of gut bacterial community in TNBS-induced coliitis. The intestinal microbiota dysbiosis in zebrafish larvae with IBD-like colitis was characterized by an increased proportion of Proteobacteria (especially Burkholderia) and a decreased of Firmicutes(Lactobacillus group), which were significantly correlated with enterocolitis severity(Pearson correlation p < 0.01). Conclusions This is the first description of intestinal microbiota dysbiosis in zebrafish IBD-like models, and these changes correlate with TNBS-induced enterocolitis. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of human IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, No,305 East Zhongshan Road, Nanjing 210002, China.
| | | | | |
Collapse
|
83
|
Meijer AH, van der Vaart M, Spaink HP. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cell Microbiol 2013; 16:39-49. [DOI: 10.1111/cmi.12236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Annemarie H. Meijer
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Michiel van der Vaart
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Herman P. Spaink
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| |
Collapse
|
84
|
Kumari R, Gupta S, Singh AR, Ferosekhan S, Kothari DC, Pal AK, Jadhao SB. Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract. PLoS One 2013; 8:e74743. [PMID: 24040333 PMCID: PMC3769285 DOI: 10.1371/journal.pone.0074743] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare trypsin can be favored as a dietary supplement in animals and humans.
Collapse
Affiliation(s)
- Rakhi Kumari
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Subodh Gupta
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arvind R. Singh
- Department of Physics and National Center for Nanomaterials and Nanotechnology, University of Mumbai, Mumbai, Maharashtra, India
| | - S. Ferosekhan
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Dushyant C. Kothari
- Department of Physics and National Center for Nanomaterials and Nanotechnology, University of Mumbai, Mumbai, Maharashtra, India
| | - Asim Kumar Pal
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Sanjay Balkrishna Jadhao
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
85
|
Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, Feijóo CG. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One 2013; 8:e69983. [PMID: 23894568 PMCID: PMC3720926 DOI: 10.1371/journal.pone.0069983] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
The necessary replacement of fish meal with other protein source in diets of commercially important fish has prompted the study of the effect of the inclusion of different vegetable proteins sources on growth performance and on the gastro-intestinal tract. Currently, soybean meal is the primary protein source as a fish meal replacement because of its low price and high availability. Likewise, it is been documented that the ingestion of soybean meal by several fish species, such as salmonids and carp, triggers a type of intestinal inflammation called enteritis. In this paper, we analyzed the effects of the ingestion of soybean meal and two of its components, soy protein and soy saponin, on zebrafish to establish the basis for using zebrafish larvae as a model for fish nutrition. We took advantage of the existence of different transgenic lines, which allowed us to perform in vivo analysis. Our results indicated that larvae that were feed with soybean meal developed a clear intestinal inflammation as early as two day after beginning the diet. Moreover, we determined that is not the soy protein present in the diet but the soy saponin that is primarily responsible for triggering the immune response. These findings support the use of zebrafish screening assays to identify novel ingredients that would to improved current fish diets or would formulate new ones.
Collapse
Affiliation(s)
- Manuel I. Hedrera
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Jorge A. Galdames
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Maria F. Jimenez-Reyes
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Ariel E. Reyes
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquiculture Research (INCAR), Concepción, Chile
| | - Ruben Avendaño-Herrera
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquiculture Research (INCAR), Concepción, Chile
| | - Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
86
|
Wang P, Lu YQ, Wen Y, Yu DY, Ge L, Dong WR, Xiang LX, Shao JZ. IL-16 induces intestinal inflammation via PepT1 upregulation in a pufferfish model: new insights into the molecular mechanism of inflammatory bowel disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:1413-27. [PMID: 23817423 DOI: 10.4049/jimmunol.1202598] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) has long been a worldwide health care problem with a persistently increasing incidence. Although its clinical features have been well described, its etiology and pathogenesis remain unclear. IL-16 is a chemoattractant cytokine with various effects on cellular activities and diseases. However, the involvement of IL-16 in IBD remains poorly understood. In this study, to our knowledge we report for the first time the mechanism by which IL-16 induces intestinal inflammation by upregulating the expression of oligopeptide transporter member 1 (PepT1) in a Tetraodon nigroviridis fish model. The dextran sodium sulfate-induced colitis model in this species revealed that IL-16 levels significantly increase accompanied by elevations in PepT1 in the colon. Moreover, the signs of colitis were dramatically attenuated by IL-16 depletion using anti-IL-16 Abs. In vivo IL-16 administration induced remarkable intestinal inflammation with typical ulcerative colitis-like features, including histologic damage, inflammatory cell infiltration, increased myeloperoxidase activity, and proinflammatory cytokines expression, which corresponded with significant PepT1 upregulation in the colon. The IL-16-induced PepT1 expression and its upregulated fMLF transport were also demonstrated in vitro. To our knowledge, our study provides the first evidence of the connection between IL-16 and PepT1, which provides new insights into the molecular mechanism underlying IBD development. Additionally, this study suggests that fish species are an attractive model for studying IBD. By providing a better understanding of IL-16 biology from fish to mammals, this study should aid the development of IL-16-based therapies for IBD.
Collapse
Affiliation(s)
- Ping Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Gratacap RL, Rawls JF, Wheeler RT. Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech 2013; 6:1260-70. [PMID: 23720235 PMCID: PMC3759345 DOI: 10.1242/dmm.012039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelium performs a balancing act at the interface between an animal and its environment to enable both pathogen killing and tolerance of commensal microorganisms. Candida albicans is a clinically important human commensal that colonizes all human mucosal surfaces, yet is largely prevented from causing mucosal infections in immunocompetent individuals. Despite the importance of understanding host-pathogen interactions at the epithelium, no immunocompetent vertebrate model has been used to visualize these dynamics non-invasively. Here we demonstrate important similarities between swimbladder candidiasis in the transparent zebrafish and mucosal infection at the mammalian epithelium. Specifically, in the zebrafish swimmbladder infection model, we show dimorphic fungal growth, both localized and tissue-wide epithelial NF-κB activation, induction of NF-κB -dependent proinflammatory genes, and strong neutrophilia. Consistent with density-dependence models of host response based primarily on tissue culture experiments, we show that only high-level infection provokes widespread activation of NF-κB in epithelial cells and induction of proinflammatory genes. Similar to what has been found using in vitro mammalian models, we find that epithelial NF-κB activation can occur at a distance from the immediate site of contact with epithelial cells. Taking advantage of the ability to non-invasively image infection and host signaling at high resolution, we also report that epithelial NF-κB activation is diminished when phagocytes control the infection. This is the first system to model host response to mucosal infection in the juvenile zebrafish, and offers unique opportunities to investigate the tripartite interactions of C. albicans, epithelium and immune cells in an intact host.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | | | | |
Collapse
|
88
|
van der Vaart M, van Soest JJ, Spaink HP, Meijer AH. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis Model Mech 2013; 6:841-54. [PMID: 23471913 PMCID: PMC3634667 DOI: 10.1242/dmm.010843] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/09/2013] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are an important class of pattern recognition receptors (PRRs) that recognize microbial and danger signals. Their downstream signaling upon ligand binding is vital for initiation of the innate immune response. In human and mammalian models, myeloid differentiation factor 88 (MYD88) is known for its central role as an adaptor molecule in interleukin 1 receptor (IL-1R) and TLR signaling. The zebrafish is increasingly used as a complementary model system for disease research and drug screening. Here, we describe a zebrafish line with a truncated version of MyD88 as the first zebrafish mutant for a TLR signaling component. We show that this immune-compromised mutant has a lower survival rate under standard rearing conditions and is more susceptible to challenge with the acute bacterial pathogens Edwardsiella tarda and Salmonella typhimurium. Microarray and quantitative PCR analysis revealed that expression of genes for transcription factors central to innate immunity (including NF-ĸB and AP-1) and the pro-inflammatory cytokine Il1b, is dependent on MyD88 signaling during these bacterial infections. Nevertheless, expression of immune genes independent of MyD88 in the myd88 mutant line was sufficient to limit growth of an attenuated S. typhimurium strain. In the case of infection with the chronic bacterial pathogen Mycobacterium marinum, we show that MyD88 signaling has an important protective role during early pathogenesis. During mycobacterial infection, the myd88 mutant shows accelerated formation of granuloma-like aggregates and increased bacterial burden, with associated lower induction of genes central to innate immunity. This zebrafish myd88 mutant will be a valuable tool for further study of the role of IL1R and TLR signaling in the innate immunity processes underlying infectious diseases, inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Michiel van der Vaart
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Joost J. van Soest
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H. Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
89
|
Oehlers SH, Flores MV, Hall CJ, Okuda KS, Sison JO, Crosier KE, Crosier PS. Chemically induced intestinal damage models in zebrafish larvae. Zebrafish 2013; 10:184-93. [PMID: 23448252 DOI: 10.1089/zeb.2012.0824] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system.
Collapse
Affiliation(s)
- Jordan L Cocchiaro
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
91
|
Goldsmith JR, Cocchiaro JL, Rawls JF, Jobin C. Glafenine-induced intestinal injury in zebrafish is ameliorated by μ-opioid signaling via enhancement of Atf6-dependent cellular stress responses. Dis Model Mech 2012; 6:146-59. [PMID: 22917923 PMCID: PMC3529347 DOI: 10.1242/dmm.009852] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of μ-opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 hours in the presence or absence of the MOR-specific agonist DALDA. By analysis with histology, transmission electron microscopy and vital dye staining, glafenine-treated zebrafish showed evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen. Although the early UPR marker BiP was induced with glafenine-induced injury, downstream atf6 and s-xbp1 expression were paradoxically not increased, explaining the halted cell stress responses. The μ-opioid agonist DALDA protected against glafenine-induced injury through induction of atf6-dependent UPR. Our findings show that DALDA prevents glafenine-induced epithelial damage through induction of effective UPR.
Collapse
Affiliation(s)
- Jason R Goldsmith
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
92
|
In vivo chemical screening for modulators of hematopoiesis and hematological diseases. Adv Hematol 2012; 2012:851674. [PMID: 22778745 PMCID: PMC3385708 DOI: 10.1155/2012/851674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022] Open
Abstract
In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and facile detection of blood-cell-related phenotypes are feasible in embryonic/larval zebrafish. Two recent studies utilizing phenotypic chemical screens in zebrafish have identified several compounds that promote hematopoietic stem cell formation and reverse the hematopoietic phenotypes of a leukemia oncogene, respectively. These studies illustrate efficient drug discovery processes in zebrafish and reveal novel biological roles of prostaglandin E2 in hematopoietic and leukemia stem cells. Furthermore, the compounds discovered in zebrafish screens have become promising therapeutic candidates against leukemia and included in a clinical trial for enhancing hematopoietic stem cells during hematopoietic cell transplantation.
Collapse
|
93
|
Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol 2012; 2012:817341. [PMID: 22701308 PMCID: PMC3371824 DOI: 10.1155/2012/817341] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/12/2012] [Indexed: 12/19/2022] Open
Abstract
Although human pathologies have mostly been modeled using higher mammal systems such as mice, the lower vertebrate zebrafish has gained tremendous attention as a model system. The advantages of zebrafish over classical vertebrate models are multifactorial and include high genetic and organ system homology to humans, high fecundity, external fertilization, ease of genetic manipulation, and transparency through early adulthood that enables powerful imaging modalities. This paper focuses on four areas of human pathology that were developed and/or advanced significantly in zebrafish in the last decade. These areas are (1) wound healing/restitution, (2) gastrointestinal diseases, (3) microbe-host interactions, and (4) genetic diseases and drug screens. Important biological processes and pathologies explored include wound-healing responses, pancreatic cancer, inflammatory bowel diseases, nonalcoholic fatty liver disease, and mycobacterium infection. The utility of zebrafish in screening for novel genes important in various pathologies such as polycystic kidney disease is also discussed.
Collapse
|
94
|
Renshaw SA, Trede NS. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech 2012; 5:38-47. [PMID: 22228790 PMCID: PMC3255542 DOI: 10.1242/dmm.007138] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.
Collapse
Affiliation(s)
- Stephen A Renshaw
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | |
Collapse
|
95
|
Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. Dis Model Mech 2012; 5:457-67. [PMID: 22563081 PMCID: PMC3380709 DOI: 10.1242/dmm.009365] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure to retinoids for the treatment of acne has been linked to the etiology of inflammatory bowel disease (IBD). The intestinal mucus layer is an important structural barrier that is disrupted in IBD. Retinoid-induced alteration of mucus physiology has been postulated as a mechanism linking retinoid treatment to IBD; however, there is little direct evidence for this interaction. The zebrafish larva is an emerging model system for investigating the pathogenesis of IBD. Importantly, this system allows components of the innate immune system, including mucus physiology, to be studied in isolation from the adaptive immune system. This study reports the characterization of a novel zebrafish larval model of IBD-like enterocolitis induced by exposure to dextran sodium sulfate (DSS). The DSS-induced enterocolitis model was found to recapitulate several aspects of the zebrafish trinitrobenzene-sulfonic-acid (TNBS)-induced enterocolitis model, including neutrophilic inflammation that was microbiota-dependent and responsive to pharmacological intervention. Furthermore, the DSS-induced enterocolitis model was found to be a tractable model of stress-induced mucus production and was subsequently used to identify a role for retinoic acid (RA) in suppressing both physiological and pathological intestinal mucin production. Suppression of mucin production by RA increased the susceptibility of zebrafish larvae to enterocolitis when challenged with enterocolitic agents. This study illustrates a direct effect of retinoid administration on intestinal mucus physiology and, subsequently, on the progression of intestinal inflammation.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
96
|
Lessman CA. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. ACTA ACUST UNITED AC 2012; 93:268-80. [PMID: 21932435 DOI: 10.1002/bdrc.20212] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish, Danio rerio, a small, tropical freshwater species native to Pakistan and India, has become a National Institutes of Health-sanctioned model organism and, due to its many advantages as an experimental vertebrate, it has garnered intense interest from the world's scientific community. Some have labeled the zebrafish, the "vertebrate Drosophila," due to its genetic tractability, small size, low cost, and rapid development. The transparency of the embryo, external development, and the many hundreds of mutant and transgenic lines available add to the allure. Now it appears, the zebrafish can be used for high-throughput screening (HTS) of drug libraries in the discovery process of promising new therapeutics. In this review, various types of screening methods are briefly outlined, as are a variety of screens for different disease models, to highlight the range of zebrafish HTS possibilities. High-content screening (HCS) has been available for cell-based screens for some time and, very recently, HCS is being adapted for the zebrafish. This will allow analysis, at high resolution, of drug effects on whole vertebrates; thus, whole body effects as well as those on specific organs and tissues may be determined.
Collapse
Affiliation(s)
- Charles A Lessman
- Department of Biological Sciences, The University of Memphis, Tennessee 38152, USA.
| |
Collapse
|
97
|
Ellett F, Lieschke GJ. Computational Quantification of Fluorescent Leukocyte Numbers in Zebrafish Embryos. Methods Enzymol 2012; 506:425-35. [DOI: 10.1016/b978-0-12-391856-7.00046-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
98
|
Hajeri VA, Amatruda JF. Studying synthetic lethal interactions in the zebrafish system: insight into disease genes and mechanisms. Dis Model Mech 2011; 5:33-7. [PMID: 22107871 PMCID: PMC3255541 DOI: 10.1242/dmm.007989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The post-genomic era is marked by a pressing need to functionally characterize genes through understanding gene-gene interactions, as well as interactions between biological pathways. Exploiting a phenomenon known as synthetic lethality, in which simultaneous loss of two interacting genes leads to loss of viability, aids in the investigation of these interactions. Although synthetic lethal screening is a powerful technique that has been used with great success in many model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, this approach has not yet been applied in the zebrafish, Danio rerio. Recently, the zebrafish has emerged as a valuable system to model many human disease conditions; thus, the ability to conduct synthetic lethal screening using zebrafish should help to uncover many unknown disease-gene interactions. In this article, we discuss the concept of synthetic lethality and provide examples of its use in other model systems. We further discuss experimental approaches by which the concept of synthetic lethality can be applied to the zebrafish to understand the functions of specific genes.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8534, USA
| | | |
Collapse
|
99
|
Oehlers SH, Flores MV, Hall CJ, Swift S, Crosier KE, Crosier PS. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Dis Model Mech 2011; 4:832-41. [PMID: 21729873 PMCID: PMC3209652 DOI: 10.1242/dmm.006122] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD), in the form of Crohn's disease (CD) or ulcerative colitis (UC), is a debilitating chronic immune disorder of the intestine. A complex etiology resulting from dysfunctional interactions between the intestinal immune system and its microflora, influenced by host genetic susceptibility, makes disease modeling challenging. Mutations in NOD2 have the highest disease-specific risk association for CD, and a related gene, NOD1, is associated with UC. NOD1 and NOD2 encode intracellular bacterial sensor proteins acting as innate immune triggers, and represent promising therapeutic targets. The zebrafish has the potential to aid in modeling genetic and environmental aspects of IBD pathogenesis. Here, we report the characterization of the Nod signaling components in the zebrafish larval intestine. The nod1 and nod2 genes are expressed in intestinal epithelial cells and neutrophils together with the Nod signaling pathway genes ripk2, a20, aamp, cd147, centaurin b1, erbin and grim-19. Using a zebrafish embryo Salmonella infection model, morpholino-mediated depletion of Nod1 or Nod2 reduced the ability of embryos to control systemic infection. Depletion of Nod1 or Nod2 decreased expression of dual oxidase in the intestinal epithelium and impaired the ability of larvae to reduce intracellular bacterial burden. This work highlights the potential use of zebrafish larvae in the study of components of IBD pathogenesis.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1001, New Zealand
| | | | | | | | | | | |
Collapse
|