51
|
Dounay AB, Tuttle JB, Verhoest PR. Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00461] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amy B. Dounay
- Department
of Chemistry and Biochemistry, Colorado College, 14 E. Cache
La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Jamison B. Tuttle
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
52
|
Wang Y, Qiu J, Zhu W, Wang X, Zhang P, Wang D, Zhou Z. Enantioselective Metabolism and Interference on Tryptophan Metabolism of Myclobutanil in Rat Hepatocytes. Chirality 2015; 27:643-9. [PMID: 26115377 DOI: 10.1002/chir.22479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 11/09/2022]
Abstract
Myclobutanil, (RS)-2-(4-chlorophenyl)-2-(1H-1, 2, 4-triazol-1-ylmethyl) hexanenitrile is a widely used triazole fungicide. In this study, enantioselective metabolism and cytotoxicity were investigated in rat hepatocytes by chiral HPLC-MS/MS and the methyl tetrazolium (MTT) assay, respectively. Furthermore, tryptophan metabolism disturbance in rat hepatocytes after myclobutanil exposure was also evaluated by target metabolomics method. The half-life (t1/2) of (+)-myclobutanil was 10.66 h, whereas that for (-)-myclobutanil was 15.07 h. Such results indicated that the metabolic process of myclobutanil in rat hepatocytes was enantioselective with an enrichment of (-)-myclobutanil. For the cytotoxicity research, the calculated EC50 (12 h) values for rac-myclobutanil, (+)- and (-)-myclobutanil were 123.65, 150.65 and 152.60 µM, respectively. The results of tryptophan metabolites profiling showed that the levels of kynurenine (KYN) and XA were both up-regulated compared to the control, suggesting the activation effect of the KYN pathway by myclobutanil and its enantiomers which may provide an important insight into its toxicity mechanism. The data presented here could be useful for the environmental hazard assessment of myclobutanil.
Collapse
Affiliation(s)
- Yao Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| | - Xinru Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| | - Ping Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| | - Dezhen Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, PR China
| |
Collapse
|
53
|
Lepiller Q, Soulier E, Li Q, Lambotin M, Barths J, Fuchs D, Stoll-Keller F, Liang TJ, Barth H. Antiviral and Immunoregulatory Effects of Indoleamine-2,3-Dioxygenase in Hepatitis C Virus Infection. J Innate Immun 2015; 7:530-44. [PMID: 25792183 DOI: 10.1159/000375161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
In patients with hepatitis C virus (HCV) infection, enhanced activity of indoleamine-2,3-dioxygenase 1 (IDO) has been reported. IDO - a tryptophan-catabolizing enzyme - has been considered as both an innate defence mechanism and an important regulator of the immune response. The molecular mechanism of IDO induction in HCV infection and its role in the antiviral immune response remain unknown. Using primary human hepatocytes, we show that HCV infection stimulates IDO expression. IDO gene induction was transient and coincided with the expression of types I and III interferons (IFNs) and IFN-stimulated genes in HCV-infected hepatocytes. Overexpression of hepatic IDO prior to HCV infection markedly impaired HCV replication in hepatocytes, suggesting that IDO limits the spread of HCV within the liver. siRNA-mediated IDO knock-down revealed that IDO functions as an IFN-mediated anti-HCV effector. Hepatic IDO was most potently induced by IFN-x03B3;, and ongoing HCV replication could significantly upregulate IDO expression. IRF1 (IFN-regulatory factor 1) and STAT1 (signal transducer and activator of transcription 1) regulated hepatic IDO expression. Hepatic IDO expression also had a significant inhibitory effect on CD4+ T-cell proliferation. Our data suggest that hepatic IDO plays a dual role during HCV infection by slowing down viral replication and also regulating host immune responses.
Collapse
Affiliation(s)
- Quentin Lepiller
- Laboratoire de Virologie, Hx00F4;pitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Espitia CM, Saldarriaga OA, Travi BL, Osorio EY, Hernandez A, Band M, Patel MJ, Medina AA, Cappello M, Pekosz A, Melby PC. Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes. BMC Immunol 2014; 15:38. [PMID: 25424735 PMCID: PMC4253007 DOI: 10.1186/s12865-014-0038-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants. RESULTS We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages. CONCLUSIONS Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.
Collapse
|
55
|
Adams S, Teo C, McDonald KL, Zinger A, Bustamante S, Lim CK, Sundaram G, Braidy N, Brew BJ, Guillemin GJ. Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS One 2014; 9:e112945. [PMID: 25415278 PMCID: PMC4240539 DOI: 10.1371/journal.pone.0112945] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022] Open
Abstract
The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+), which is necessary for energy production and DNA repair.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Astrocytes/drug effects
- Astrocytes/metabolism
- Biosynthetic Pathways
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/physiopathology
- CD11b Antigen/metabolism
- Carboxy-Lyases/genetics
- Carboxy-Lyases/metabolism
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Disaccharides
- Gene Expression/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/genetics
- Glioma/metabolism
- Glioma/physiopathology
- Glucuronates
- Humans
- Immunohistochemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/pharmacology
- Kynurenic Acid/blood
- Kynurenic Acid/metabolism
- Kynurenine/biosynthesis
- Kynurenine/blood
- Picolinic Acids/blood
- Picolinic Acids/metabolism
- Quinolinic Acid/blood
- Quinolinic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tryptophan/blood
- Tryptophan/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Seray Adams
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Kerrie L. McDonald
- Cure For Life Neuro-Oncology Group, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anna Zinger
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Chai K. Lim
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Gayathri Sundaram
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bruce J. Brew
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Loss of cell growth control is not sufficient to explain why tumours form as the immune system recognizes many malignant cells and keeps them in check. The local inflammatory microenvironment is a pivotal factor in tumour formation, as tumour-associated inflammation actively suppresses antitumour immunity. The purpose of this review is to evaluate emerging evidence that amino acid catabolism is a key feature of tumour-associated inflammation that supports tumour progression and immune resistance to therapy. RECENT FINDINGS Enhanced amino acid catabolism in inflammatory tumour microenvironments correlates with carcinogen resistance and immune regulation mediated by tumour-associated immune cells that protect tumours from natural and vaccine-induced immunity. Interfering with metabolic pathways exploited by tumours is a promising antitumour strategy, especially when combined with other therapies. Moreover, molecular sensors that evolved to detect pathogens may enhance evasion of immune surveillance to permit tumour progression. SUMMARY Innate immune sensing that induces amino acid catabolism in tumour microenvironments may be pivotal in initiating and sustaining local inflammation that promotes immune resistance and attenuates antitumour immunity. Targeting molecular sensors that mediate these metabolic changes may be an effective strategy to enhance antitumour immunity that prevents tumour progression, as well as improving the efficacy of cancer therapy.
Collapse
|
57
|
Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia. Schizophr Res 2014; 152:261-7. [PMID: 24345671 PMCID: PMC3922412 DOI: 10.1016/j.schres.2013.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, is a major cause of opportunistic infectious disease affecting the brain and has been linked to an increased incidence of schizophrenia. In murine hosts, infection with T. gondii stimulates tryptophan degradation along the kynurenine pathway (KP), which contains several neuroactive metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynurenic acid (KYNA). As these endogenous compounds may provide a mechanistic connection between T. gondii and the pathophysiology of schizophrenia, we measured KP metabolites in both the brain and periphery of T. gondii-treated C57BL/6 mice 8 and 28 days post-infection. Infected mice showed early decreases in the levels of tryptophan in the brain and serum, but not in the liver. These reductions were associated with elevated levels of kynurenine, KYNA, 3-HK and QUIN in the brain. In quantitative terms, the most significant increases in these KP metabolites were observed in the brain at 28 days post-infection. Notably, the anti-parasitic drugs pyrimethamine and sulfadiazine, a standard treatment of toxoplasmosis, significantly reduced 3-HK and KYNA levels in the brain of infected mice when applied between 28 and 56 days post-infection. In summary, T. gondii infection, probably by activating microglia and astrocytes, enhances the production of KP metabolites in the brain. However, during the first two months after infection, the KP changes in these mice do not reliably duplicate abnormalities seen in the brain of individuals with schizophrenia.
Collapse
|
58
|
Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication. Infect Immun 2013; 81:4341-9. [PMID: 24042117 DOI: 10.1128/iai.00416-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate immunity in nonhematopoietic cells has been extensively studied in mice, it remains unclear what resistance mechanisms are relied on in nonhematopoietic human cells. Here, we report an IFN-γ-induced mechanism of resistance to Toxoplasma in primary human foreskin fibroblasts (HFFs) that does not depend on the deprivation of tryptophan or iron. In addition, infection is still controlled in HFFs deficient in the p65 guanylate binding proteins GBP1 or GBP2 and the autophagic protein ATG5. Resistance is coincident with host cell death that is not dependent on the necroptosis mediator RIPK3 or caspases and is correlated with early egress of the parasite before replication. This IFN-γ-induced cell death and early egress limits replication in HFFs and could promote clearance of the parasite by immune cells.
Collapse
|
59
|
Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, Rupp J, Däubener W. Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions. PLoS One 2013; 8:e63301. [PMID: 23675474 PMCID: PMC3652816 DOI: 10.1371/journal.pone.0063301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses. On the other hand, it has been observed that IDO has immunoregulatory functions as it efficiently controls the activation and survival of T-cells. Although these important effects have been analysed in much detail, they have been observed in vitro using cells cultured in the presence of 20% O2 (normoxia). Such high oxygen concentrations are not present in vivo especially within infected and inflamed tissues. We therefore analysed IDO-mediated effects under lower oxygen concentrations in vitro and observed that the function of IDO is substantially impaired in tumour cells as well as in native cells. Hypoxia led to reduced IDO expression and as a result to reduced production of kynurenine, the downstream product of tryptophan degradation. Consequently, effector functions of IDO were abrogated under hypoxic conditions: in different human cell lines such as tumour cells (glioblastoma, HeLa) but also in native cells (human foreskin fibroblasts; HFF) IDO lost the capacity to inhibit the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) or viruses (herpes simplex virus type 1). Additionally, IDO could no longer efficiently control the proliferation of T-cells that have been co-cultured with IDO expressing HFF cells in vitro. In conclusion, the potent antimicrobial as well as immunoregulatory functions of IDO were substantially impaired under hypoxic conditions that pathophysiologically occurs in vivo.
Collapse
Affiliation(s)
- Silvia K. Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Ebel
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eric Keil
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Claudia Woite
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim F. Ernst
- Institute for Molecular Mycology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anika E. Benzin
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
- Medical Clinic III/UK-SH, Campus Lübeck, Lübeck, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
60
|
Murakami Y, Hoshi M, Imamura Y, Arioka Y, Yamamoto Y, Saito K. Remarkable role of indoleamine 2,3-dioxygenase and tryptophan metabolites in infectious diseases: potential role in macrophage-mediated inflammatory diseases. Mediators Inflamm 2013; 2013:391984. [PMID: 23476103 PMCID: PMC3588179 DOI: 10.1155/2013/391984] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs) production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-Ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
61
|
Puiffe ML, Lachaise I, Molinier-Frenkel V, Castellano F. Antibacterial properties of the mammalian L-amino acid oxidase IL4I1. PLoS One 2013; 8:e54589. [PMID: 23355881 PMCID: PMC3552961 DOI: 10.1371/journal.pone.0054589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/14/2012] [Indexed: 12/20/2022] Open
Abstract
L-amino acid oxidases (LAAO) are flavoproteins that catalyze the oxidative deamination of L-amino acids to a keto-acid along with the production of H2O2 and ammonia. Interleukin 4 induced gene 1 (IL4I1) is a secreted LAAO expressed by macrophages and dendritic cells stimulated by microbial derived products or interferons, which is endowed with immunoregulatory properties. It is the first LAAO described in mammalian innate immune cells. In this work, we show that this enzyme blocks the in vitro and in vivo growth of Gram negative and Gram positive bacteria. This antibiotic effect is primarily mediated by H2O2 production but is amplified by basification of the medium due to the accumulation of ammonia. The depletion of phenylalanine (the primary amino acid catabolized by IL4I1) may also participate in the in vivo inhibition of staphylococci growth. Thus, IL4I1 plays a distinct role compared to other antibacterial enzymes produced by mononuclear phagocytes.
Collapse
Affiliation(s)
- Marie-Line Puiffe
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
| | - Isabelle Lachaise
- Plateforme Chromatographie Analytique et semi Préparative, ICMPE, Thiais, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Service d’Immunologie Biologique, Créteil, France
- * E-mail: (FC); (VMF)
| | - Flavia Castellano
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Service d’Immunologie Biologique, Créteil, France
- * E-mail: (FC); (VMF)
| |
Collapse
|
62
|
Engin AB, Dogruman-Al F, Ercin U, Celebi B, Babur C, Bukan N. Oxidative stress and tryptophan degradation pattern of acute Toxoplasma gondii infection in mice. Parasitol Res 2012; 111:1725-30. [PMID: 22790966 DOI: 10.1007/s00436-012-3015-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii is a very common obligate single-cell protozoan parasite which induces overproduction of interferon (IFN)-gamma and of other proinflammatory cytokines. Although immunomodulatory role of IFN-gamma favors tryptophan (Trp) degradation via indoleamine-2,3-dioxygenase (IDO) activity and is related with nitric oxide (NO) synthesis, the mechanism of antitoxoplasma activity is complex. In order to characterize the Trp degradation pattern during the acute T. gondii infection, serum Trp, kynurenine (Kyn), and urinary biopterin levels of mice were measured. The possible oxidative status was evaluated by the liver, spleen, brain, and serum malondialdehyde (MDA) and NO levels. Increased free radical toxicity may cause elevation in tissue MDA in T. gondii-infected mice, while unchanged serum MDA might indicate the increased oxidative stress due to T. gondii infection restricted to intracellular area. Elevated serum NO most probably might be due to the formation of reactive nitrogen radicals. The Kyn/Trp ratio was higher in T. gondii-infected mice compared to healthy animals (p < 0.05); however, it was not correlated with urinary biopterin. These results suggested that Trp degradation might be promoted by a pathway other than IDO during T. gondii infection and the reduction of Trp concentration favors the local immunosuppression and systemic tolerance.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06330 Hipodrom, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
63
|
Schmidt SK, Siepmann S, Kuhlmann K, Meyer HE, Metzger S, Pudelko S, Leineweber M, Däubener W. Influence of tryptophan contained in 1-Methyl-Tryptophan on antimicrobial and immunoregulatory functions of indoleamine 2,3-dioxygenase. PLoS One 2012; 7:e44797. [PMID: 23028625 PMCID: PMC3441469 DOI: 10.1371/journal.pone.0044797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been identified as an important antimicrobial and immunoregulatory effector molecule essential for the establishment of tolerance by regulating local tryptophan (Trp) concentrations. On the other hand, the immunosuppressive capacity of IDO can have detrimental effects for the host as it can lead to deleterious alterations of the immune response by promoting tolerance to some types of tumors. To suppress this disadvantageous IDO effect, the competitive inhibitor 1-Methyl-Tryptophan (1-MT) is being tested in clinical trials. However, it remains inconclusive which stereoisomer of 1-MT is the more effective inhibitor of IDO-mediated immunosuppression. While IDO enzyme activity is more efficiently inhibited by 1-L-MT in cell-free or in vitro settings, 1-D-MT is superior to 1-L-MT in the enhancement of anti-tumor responses in vivo. Here, we present new data showing that commercially available 1-L-MT lots contain tryptophan in amounts sufficient to compensate for the IDO-mediated tryptophan depletion in vitro. The addition of 1-L-MT abrogated IDO-mediated antimicrobial effects and permitted the growth of the tryptophan-auxotroph microorganisms Staphylococcus aureus and Toxoplasma gondii. Consistent with this, the tryptophan within 1-L-MT lots was sufficient to antagonize IDO-mediated inhibition of T cell responses. Mass spectrometry (MS) analysis revealed not only tryptophan within 1-L-MT, but also the incorporation of this tryptophan in bacterial and human proteins that were generated in the presence of 1-L-MT in otherwise tryptophan-free conditions. In summary, these data reveal that tryptophan within 1-L-MT can affect the results of in vitro studies in an L-stereospecific and IDO-independent way.
Collapse
Affiliation(s)
- Silvia K Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Murakami Y, Hoshi M, Hara A, Takemura M, Arioka Y, Yamamoto Y, Matsunami H, Funato T, Seishima M, Saito K. Inhibition of increased indoleamine 2,3-dioxygenase activity attenuates Toxoplasma gondii replication in the lung during acute infection. Cytokine 2012; 59:245-51. [PMID: 22609210 DOI: 10.1016/j.cyto.2012.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022]
Abstract
The regulation of local L-tryptophan concentrations by tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO) induced by various stimuli such as interferon-γ (IFN-γ) is one of the key mechanisms in antimicrobial effect. Recently, IDO is also focused on an immunosuppressive mechanism shared by several different immune cell types. Here, we show that inhibition of increased IDO activity maybe involved in the antiparasitic mechanism during Toxoplasma gondii (T. gondii) infection in vivo. In this study, we investigated the role of IDO by using IDO-gene-deficient (IDO KO) mice and by administering a competitive enzyme inhibitor, 1-methyl-D,L-tryptophan (1MT), to wild-type mice following T. gondii infection. Although depletion of lung l-tryptophan did not occur in IDO KO mice after T. gondii infection, the increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) and the inflammatory cytokines in the lung were drastically reduced in the IDO KO mice following infection. We also found that complete depletion of lung l-tryptophan was observed in wild-type mice after infection, but not in mice treated with 1MT. At the same time, 1MT suppressed the increased mRNA expression of SAG2. Taken together, we observed that the inflammatory damage was significantly decreased by the administration of 1MT in the lung after infection. Inhibition of the IDO activity or the elimination of IDO's substrate may be an effective therapy against microbial diseases.
Collapse
Affiliation(s)
- Yuki Murakami
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 2012; 38:426-32. [PMID: 20729465 PMCID: PMC3329991 DOI: 10.1093/schbul/sbq086] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The kynurenic acid (KYNA) hypothesis for schizophrenia is partly based on studies showing increased brain levels of KYNA in patients. KYNA is an endogenous metabolite of tryptophan (TRP) produced in astrocytes and antagonizes N-methyl-D-aspartate and α7* nicotinic receptors. METHODS The formation of KYNA is determined by the availability of substrate, and hence, we analyzed KYNA and its precursors, kynurenine (KYN) and TRP, in the cerebrospinal fluid (CSF) of patients with schizophrenia. CSF from male patients with schizophrenia on olanzapine treatment (n = 16) was compared with healthy male volunteers (n = 29). RESULTS KYN and KYNA concentrations were higher in patients with schizophrenia (60.7 ± 4.37 nM and 2.03 ± 0.23 nM, respectively) compared with healthy volunteers (28.6 ± 1.44 nM and 1.36 ± 0.08 nM, respectively), whereas TRP did not differ between the groups. In all subjects, KYN positively correlated to KYNA. CONCLUSION Our results demonstrate increased levels of CSF KYN and KYNA in patients with schizophrenia and further support the hypothesis that KYNA is involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Klas R. Linderholm
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elisabeth Skogh
- Department of Clinical and Experimental Medicine, Section of Psychiatry, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sara K. Olsson
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marja-Liisa Dahl
- Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Holtze
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Martin Samuelsson
- Department of Clinical and Experimental Medicine, Section of Psychiatry, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
66
|
Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012; 109:2497-502. [PMID: 22308364 DOI: 10.1073/pnas.1113873109] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO1) is an important mechanism of peripheral immune tolerance contributing to tumoral immune resistance, and IDO1 inhibition is an active area of drug development. Tryptophan 2,3-dioxygenase (TDO) is an unrelated hepatic enzyme that also degrades tryptophan along the kynurenine pathway. Here, we show that enzymatically active TDO is expressed in a significant proportion of human tumors. In a preclinical model, TDO expression by tumors prevented their rejection by immunized mice. We developed a TDO inhibitor, which, upon systemic treatment, restored the ability of mice to reject TDO-expressing tumors. Our results describe a mechanism of tumoral immune resistance based on TDO expression and establish proof-of-concept for the use of TDO inhibitors in cancer therapy.
Collapse
|
67
|
Schroecksnadel S, Sucher R, Kurz K, Fuchs D, Brandacher G. Influence of immunosuppressive agents on tryptophan degradation and neopterin production in human peripheral blood mononuclear cells. Transpl Immunol 2011; 25:119-23. [PMID: 21742032 DOI: 10.1016/j.trim.2011.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022]
Abstract
The anti-proliferative and immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan via the kynurenine pathway. IDO is stimulated during cellular immune responses preferentially by Th1-type cytokine interferon-γ (IFN-γ). IDO activity is estimated by calculating the kynurenine to tryptophan ratio (Kyn/Trp). In human monocyte-derived macrophages and dendritic cells, GTP-cyclohydrolase I is induced in parallel to IDO and produces neopterin. This study investigated the effects of common immunosuppressants on freshly isolated human peripheral blood mononuclear cells (PBMC) in vitro. PBMC were incubated with compounds for 30 min and then either left unstimulated or stimulated with mitogen phytohaemagglutinin (PHA). Concentrations of tryptophan, kynurenine and neopterin were measured in supernatants after 48 h. Kyn/Trp, neopterin and IFN-γ concentrations were significantly higher in PHA-stimulated vs. unstimulated PBMC. Tacrolimus (FK506), cyclosporine A (CsA), sirolimus and methylprednisolone dose-dependently inhibited tryptophan degradation and neopterin production. FK506, CsA and sirolimus showed significant inhibition at concentrations as low as 0.1 μg/ml, whereas prednisolone and methylprednisolone required higher doses to suppress tryptophan degradation. Mycophenolate-mofetil suppressed neopterin formation more efficiently than Kyn/Trp. All tested drugs also strongly decreased mitogen-induced IFN-γ concentrations. Overall the investigated immunosuppressants are effective to inhibit IDO activity and neopterin production in a similar and dose-dependent manner, however with some differences in IC50s when comparing individual compounds. The corresponding changes of IFN-γ concentrations are in line with its role as a trigger of both biochemical changes.
Collapse
|
68
|
Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J Virol 2010; 85:1048-57. [PMID: 21084489 DOI: 10.1128/jvi.01998-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host innate and adaptive antiviral immunity against hepatitis B virus (HBV) infection in vivo. In an effort to elucidate the antiviral mechanism of these cytokines, 37 IFN-stimulated genes (ISGs), which are highly inducible in hepatocytes, were tested for their ability to inhibit HBV replication upon overexpression in human hepatoma cells. One ISG candidate, indoleamine 2,3-dioxygenase (IDO), an IFN-γ-induced enzyme catalyzing tryptophan degradation, efficiently reduced the level of intracellular HBV DNA without altering the steady-state level of viral RNA. Furthermore, expression of an enzymatically inactive IDO mutant did not inhibit HBV replication, and tryptophan supplementation in culture completely restored HBV replication in IDO-expressing cells, indicating that the antiviral effect elicited by IDO is mediated by tryptophan deprivation. Interestingly, IDO-mediated tryptophan deprivation preferentially inhibited viral protein translation and genome replication but did not significantly alter global cellular protein synthesis. Finally, tryptophan supplementation was able to completely restore HBV replication in IFN-γ- but not IFN-α-treated cells, which strongly argues that IDO is the primary mediator of IFN-γ-elicited antiviral response against HBV in human hepatocyte-derived cells.
Collapse
|
69
|
Lahdou I, Sadeghi M, Daniel V, Schenk M, Renner F, Weimer R, Löb S, Schmidt J, Mehrabi A, Schnitzler P, Königsrainer A, Döhler B, Opelz G, Terness P. Increased pretransplantation plasma kynurenine levels do not protect from but predict acute kidney allograft rejection. Hum Immunol 2010; 71:1067-72. [DOI: 10.1016/j.humimm.2010.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/29/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
70
|
Lögters TT, Laryea MD, Jäger M, Schädel-Höpfner M, Windolf J, Flohé S, Altrichter J, Scholz M, Paunel-Görgülü AN. Kynurenine inhibits chondrocyte proliferation and is increased in synovial fluid of patients with septic arthritis. J Orthop Res 2010; 28:1490-6. [PMID: 20872586 DOI: 10.1002/jor.21158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kynurenine, the major degradation product of tryptophan has been shown to directly damage various tissues. Its potential contribution to septic arthritis is unknown. In this study, we analyzed the putative diagnostic value of kynurenine for bacterial joint infection and its potential harmful effects on cartilage. In a prospective study 41 patients with a joint effusion who had undergone arthrocentesis were included. Tryptophan and kynurenine levels from synovial fluid were quantified by HPLC. Diagnostic value of kynurenine was evaluated and its effects on the proliferation of the chondrocyte cell line ATDC5 were determined. Synovial fluid kynurenine values from patients with septic arthritis (4.1 ± 0.8 µmol/L, n = 9) were significantly increased compared to patients with non-infectious inflammatory arthropathy (1.8 ± 0.2 µmol/L, n = 17) or osteoarthritis (1.2 ± 0.1 µmol/L, n = 15, p < 0.01). At a cut-off value of 2.28 µmol/L kynurenine had a sensitivity of 0.89 and a specificity of 0.87. Further, kynurenine inhibited chondrocyte (ATDC5) cell proliferation in a dose-dependent manner. Septic arthritis is associated with significantly increased values of synovial kynurenine. Furthermore kynurenine inhibits proliferation of chondrocytes, which strongly suggests a pathophysiological effect of kynurenine on cartilage in inflammatory arthropathies.
Collapse
Affiliation(s)
- Tim T Lögters
- Department of Trauma and Hand Surgery, University Hospital Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Ursula Grohmann
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
72
|
Abstract
New data from Favre and colleagues strengthen the link between activation of the tryptophan oxidation (TOx) pathway--via the indoleamine 2,3-dioxygenase enzymes IDO1 and IDO2--and chronic inflammation in progressive HIV disease. It can now be appreciated that a pathogenic TOx activation cycle exists in HIV. TOx regulation is a therapeutic target for other diseases, such as cancer and autoimmune disorders. Here TOx control is examined with an eye to eventual therapeutic intervention in HIV disease.
Collapse
Affiliation(s)
- Michael F Murray
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull 2010; 36:211-8. [PMID: 20147364 PMCID: PMC2833131 DOI: 10.1093/schbul/sbq002] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The brain concentration of kynurenic acid (KYNA), a metabolite of the kynurenine pathway of tryptophan degradation and antagonist at both the glycine coagonist site of the N-methyl-D-aspartic acid receptor (NMDAR) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), is elevated in the prefrontal cortex (PFC) of individuals with schizophrenia. This increase may be clinically relevant because hypofunction of both the NMDAR and the alpha7nAChR are implicated in the pathophysiology, and especially in the cognitive deficits associated with the disease. In rat PFC, fluctuations in endogenous KYNA levels bidirectionally modulate extracellular levels of 3 neurotransmitters closely related to cognitive function (glutamate, dopamine, and acetylcholine). Moreover, behavioral studies in rats have demonstrated a causal link between increased cortical KYNA levels and neurocognitive deficits, including impairment in spatial working memory, contextual learning, sensory gating, and prepulse inhibition of the startle reflex. In recent human postmortem studies, impairments in gene expression and activity of kynurenine pathway enzymes were found in cortical areas of individuals with schizophrenia. Additional studies have revealed an interesting association between a sequence variant in the gene of one of these enzymes, kynurenine 3-monooxygenase, and neurocognitive deficits seen in patients. The emerging, remarkable confluence of data from humans and animals suggests an opportunity for developing a rational pharmacology by targeting cortical kynurenine pathway metabolism for cognition enhancement in schizophrenia and beyond.
Collapse
Affiliation(s)
- Ikwunga Wonodi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|