51
|
Breznik JA, Jury J, Verdú EF, Sloboda DM, Bowdish DME. Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor. Am J Physiol Gastrointest Liver Physiol 2023; 324:G305-G321. [PMID: 36749921 DOI: 10.1152/ajpgi.00231.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Proinflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high-fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays and quantitated intestinal macrophages in ileum and colon tissues by multicolor flow cytometry after short (6 wk), intermediate (12 wk), and prolonged (18 wk) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and tumor necrosis factor (TNF). We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes nor a local proinflammatory response by monocyte-derived or tissue-resident macrophages in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wild-type and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.
Collapse
Affiliation(s)
- Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdú
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
52
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
53
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
54
|
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. Emerging role of macrophages in non-infectious diseases: An update. Biomed Pharmacother 2023; 161:114426. [PMID: 36822022 DOI: 10.1016/j.biopha.2023.114426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
In the past three decades, a huge body of evidence through various research studies conducted on animal models, has demonstrated that the macrophages are centralized of all the leukocytes involved in diseases and, particularly, their role in non-infectious diseases has been studied extensively for which they have also been referred to as the "double-edged swords". The most versatile of all immunocytes, macrophages play a key role in health and diseases. Various experimental models have demonstrated the conventional paradigms such as the M1/M2 dichotomy, which is not as obvious and presents a complex characterization of the macrophages in the disease immunology. In human diseases, this M1-M2 continuum shows a complex web of mechanisms, which are majorly divided into the pro-inflammatory roles (derived mainly by the cytokines: IL-1, IL-6, IL-12, IL-23, and tumor necrosis factor) and anti-inflammatory roles (CCl-17, CCl-22, CCL-2, transforming growth factor (TGF), and interleukin-10), which are involved in the wound healing and pathogen-suppression. The conventional division of these macrophages as M1 and M2 is derived from the opposing functions of these macrophages; where M1 is involved in the tissue damage and pro-inflammatory roles and M2 promotes cell proliferation and the resolution of inflammation. Both these pathways down-regulate each other in diseases through a plethora of enzymatic and cytokine mediators.
Collapse
Affiliation(s)
- Hassan Yousaf
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan.
| | - Iftikhar Ali
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia
| | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Ostersund, Sweden.
| |
Collapse
|
55
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
56
|
Matute JD, Duan J, Flak MB, Griebel P, Tascon-Arcila JA, Doms S, Hanley T, Antanaviciute A, Gundrum J, Mark Welch JL, Sit B, Abtahi S, Fuhler GM, Grootjans J, Tran F, Stengel ST, White JR, Krupka N, Haller D, Clare S, Lawley TD, Kaser A, Simmons A, Glickman JN, Bry L, Rosenstiel P, Borisy G, Waldor MK, Baines JF, Turner JR, Blumberg RS. Intelectin-1 binds and alters the localization of the mucus barrier-modifying bacterium Akkermansia muciniphila. J Exp Med 2023; 220:e20211938. [PMID: 36413219 PMCID: PMC9683900 DOI: 10.1084/jem.20211938] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.
Collapse
Affiliation(s)
- Juan D. Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Magdalena B. Flak
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Paul Griebel
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jose A. Tascon-Arcila
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Shauni Doms
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gwenny M. Fuhler
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology and Metabolism & Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Niklas Krupka
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Dirk Haller
- Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - John F. Baines
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
57
|
Cabeza-Cabrerizo M. In Vivo Analysis of Dendritic Cell Clonality. Methods Mol Biol 2023; 2618:55-70. [PMID: 36905508 DOI: 10.1007/978-1-0716-2938-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confocal fluorescence microscopy is commonly used for the analysis of tissue architecture and cell distribution (Paddock, Confocal microscopy: methods and protocols. Methods in molecular biology. Humana Press, New York, pp 1-388, 2013). When combined with multicolor fate mapping of cell precursors, it allows for analysis of single-color cell clusters, which in turn informs on the clonal relationship of cells in tissues (Snippert et al, Cell 143:134-144. https://doi.org/10.1016/j.cell.2010.09.016 , 2010). In this chapter, I describe a multicolor fate mapping mouse model and microscopy technique to trace the progeny of conventional dendritic cell (cDC, (Cabeza-Cabrerizo et al, Annu Rev Immunol 39:131. https://doi.org/10.1146/annurev-immunol-061020-053707 , 2021)) progenitors in different tissues and analyze cDC clonality. The chapter is focused on imaging methods rather than image analysis, although the software used to quantify cluster formation is also introduced.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London, UK. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge, UK.
| |
Collapse
|
58
|
Shimizu M, Hojo M, Ikushima K, Yamamoto Y, Maeno A, Sakamoto Y, Ishimaru N, Taquahashi Y, Kanno J, Hirose A, Suzuki J, Inomata A, Nakae D. Continuous infiltration of small peritoneal macrophages in the mouse peritoneum through CCR2-dependent and -independent routes during fibrosis and mesothelioma development induced by a multiwalled carbon nanotube, MWNT-7. J Toxicol Sci 2023; 48:617-639. [PMID: 38044124 DOI: 10.2131/jts.48.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.
Collapse
Affiliation(s)
- Motomu Shimizu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University
| |
Collapse
|
59
|
Baratella M, Iannone V, Cavarelli M, Foglieni C, Viganò P, Moog C, Elmore U, Nozza S, Alfano M, Salonia A, Dispinseri S, Scarlatti G. Human seminal plasma stimulates the migration of CD11c+ mononuclear phagocytes to the apical side of the colonic epithelium without altering the junctional complexes in an ex vivo human intestinal model. Front Immunol 2023; 14:1133886. [PMID: 37033941 PMCID: PMC10073423 DOI: 10.3389/fimmu.2023.1133886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV) transmission mostly occurs through the genital and intestinal mucosae. Although HIV-1 transmission has been extensively investigated, gaps remain in understanding the initial steps of HIV entry through the colonic mucosa. We previously showed that HIV can selectively trigger mononuclear phagocytes (MNP) to migrate within colonic epithelial cells to sample virions. Mucosal exposure to human seminal plasma (HSP), rich in pro- and anti-inflammatory cytokines, chemokines and growth factors, may as well induce alterations of the colonic mucosa and recruit immune cells, hence, affecting pathogen sampling and transmission. Methods Here, we studied the role of HSP on the paracellular intestinal permeability by analyzing the distribution of two proteins known to play a key role in controlling the intestinal barrier integrity, namely the tight junctions-associated junctional adhesion molecule (JAM-A) and the adherents junction associated protein E-cadherin (E-CAD), by immunofluorescence and confocal microscopy. Also, we evaluated if HSP promotes the recruitment of MNP cells, specifically, the CD11c and CD64 positive MNPs, to the apical side of the human colonic mucosa. At this scope, HSP of HIV-infected and uninfected individuals with known fertility status was tested for cytokines, chemokines and growth factors concentration and used in an ex vivo polarized colonic tissue culture system to mimic as closely as possible the physiological process. Results HSP showed statistically significant differences in cytokines and chemokines concentrations between the three groups of donors, i.e. HIV infected, or uninfected fertile or randomly identified. Nevertheless, we showed that in the ex vivo tissue culture HSP in general, neither affected the morphological structure of the colonic mucosa nor modulated the paracellular intestinal permeability. Interestingly, CD11c+ MNP cells migrated to the apical surface of the colonic epithelium regardless, if incubated with HIV-infected or -uninfected HSPs, while CD64+ MNP cells, did not change their distribution within the colonic mucosa. Discussion In conclusion, even if HSP did not perturb the integrity of the human colonic mucosa, it affected the migration of a specific subset of MNPs that express CD11c towards the apical side of the colonic mucosa, which in turn may be involved in pathogen sampling.
Collapse
Affiliation(s)
- Marco Baratella
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Marco Baratella,
| | - Valeria Iannone
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Saclay, Inserm, Paris, France
| | - Chiara Foglieni
- Cardiovascular Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Ugo Elmore
- Department of Gastrointestinal Surgery, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology, Unit of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- University Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
60
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
61
|
Wen Z, Xiong X, Chen D, Shao L, Tang X, Shen X, Zhang S, Huang S, Zhang L, Chen Y, Zhang Y, Wang C, Liu J. Activating transcription factor 4 protects mice against sepsis-induced intestinal injury by regulating gut-resident macrophages differentiation. Chin Med J (Engl) 2022; 135:2585-2595. [PMID: 36469355 PMCID: PMC9945183 DOI: 10.1097/cm9.0000000000002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury. METHODS Sepsis was induced in C57BL/6 wild type (WT) mice and Atf4- knockdown ( Atf4+/ - ) mice by cecal ligation and puncture or administration of lipopolysaccharide (LPS). Colon, peripheral blood mononuclear cells, sera, lung, liver, and mesenteric lymph nodes were collected for flow cytometry, hematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. RESULTS CD64, CD11b, Ly6C, major histocompatibility complex-II (MHC-II), CX3CR1, Ly6G, and SSC were identified as optimal primary markers for detecting the process of monocytes-to-gMacs differentiation in the colon of WT mice. Monocytes-to-gMacs differentiation was impaired in the colon during sepsis and was associated with decreased expression of ATF4 in P1 (Ly6C hi monocytes), the precursor cells of gMacs. Atf4 knockdown exacerbated the impairment of monocytes-to-gMacs differentiation in response to LPS, resulting in a significant reduction of gMacs in the colon. Furthermore, compared with WT mice, Atf4+/- mice exhibited higher pathology scores, increased expression of inflammatory factor genes ( TNF-α, IL-1β ), suppressed expression of CD31 and vascular endothelial-cadherin in the colon, and increased translocation of intestinal bacteria to lymph nodes and lungs following exposure to LPS. However, the aggravation of sepsis-induced intestinal injury resulting from Atf4 knockdown was not caused by the enhanced inflammatory effect of Ly6C hi monocytes and gMacs. CONCLUSION ATF4, as a novel regulator of monocytes-to-gMacs differentiation, plays a critical role in protecting mice against sepsis-induced intestinal injury, suggesting that ATF4 might be a potential therapeutic target for sepsis treatment.
Collapse
Affiliation(s)
- Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xuan Shen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Chunxia Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
62
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
63
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
64
|
Lu H, Zhang C, Wu W, Chen H, Lin R, Sun R, Gao X, Li G, He Q, Gao H, Wu X, Lin J, Zhu R, Niu J, Kolattukudy PE, Liu Z. MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3-AP1S2 axis. Gut 2022; 72:882-895. [PMID: 37015751 DOI: 10.1136/gutjnl-2022-327183] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 04/06/2023]
Abstract
ObjectiveMonocyte chemotactic protein-1-induced protein 1 (MCPIP1) is highly expressed in inflamed mucosa of inflammatory bowel disease (IBD) and negatively regulates immune response, while the underlying mechanisms regulating mucosal macrophage functions remain unknown. Here, we investigated the roles of MCPIP1 in modulating the differentiation and functions of intestinal macrophages in the pathogenesis of IBD.DesignScRNA-seq was used to cluster the monocyte/macrophage lineage from macrophage-specific Mcpip1-deficient (Mcpip1∆Mye) mice and Mcpip1fl/fl littermates. The differentially expressed genes were confirmed by RNA-seq, luciferase assay, CUT&Tag assay and Western blotting. Effects of MCPIP1 and the activating transcription factor 3 (ATF3)-AP1S2 axis were assessed in patients with IBD.ResultsMcpip1∆Mye mice developed more severe dextran sulfate sodium (DSS)-induced colitis characterised by an increase in macrophage migratory capacity and M1 macrophage polarisation but a decrease in the monocyte-to-macrophage maturation in gut mucosa compared with their littermates. ScRNA-seq unravelled a proinflammatory population (Ccr2+Il-1β+Tlr2+Cx3cr1−Cd163−Mrc1−Ly6c+) of the monocyte/macrophage lineage from lamina propria CD11b+ cells and an arrest of Mcpip1∆Mye monocyte-to-macrophage maturation in an Atf3-Ap1s2 axis-dependent manner. Silencing of Ap1s2 or Atf3 markedly suppressed Mcpip1∆Mye macrophage migration, M1-like polarisation, and production of proinflammatory cytokines and chemokines. Notably, in vivo blockage of Ap1s2 ameliorated DSS-induced colitis in Mcpip1ΔMye mice through enhancing intestinal macrophage maturation. Furthermore, MCPIP1, ATF3 and AP1S2 were highly expressed in inflamed mucosa of active patients with IBD and blockage of ATF3 or AP1S2 significantly suppressed IBD CD14+-derived M1-like macrophage polarisation and proinflammatory cytokine production.ConclusionsMacrophage-specific Mcpip1 deficiency polarises macrophages towards M1-like phenotype, arrests macrophage maturation and exacerbates intestinal inflammation in an Atf3-Ap1s2-dependent manner, thus providing novel mechanistic insight into intestinal macrophage functions during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ritian Lin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengfeng Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong He
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han Gao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Lin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, Florida, USA
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
65
|
Riggers DS, Gurtner C, Protschka M, Böttcher D, von Bomhard W, Alber G, Winter K, Steiner JM, Heilmann RM. Intestinal S100/Calgranulin Expression in Cats with Chronic Inflammatory Enteropathy and Intestinal Lymphoma. Animals (Basel) 2022; 12:2044. [PMID: 36009635 PMCID: PMC9404432 DOI: 10.3390/ani12162044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosing chronic inflammatory enteropathies (CIE) in cats and differentiation from intestinal lymphoma (IL) using currently available diagnostics is challenging. Intestinally expressed S100/calgranulins, measured in fecal samples, appear to be useful non-invasive biomarkers for canine CIE but have not been evaluated in cats. We hypothesized S100/calgranulins to play a role in the pathogenesis of feline chronic enteropathies (FCE) and to correlate with clinical and/or histologic disease severity. This retrospective case-control study included patient data and gastrointestinal (GI) tissues from 16 cats with CIE, 8 cats with IL, and 16 controls with no clinical signs of GI disease. GI tissue biopsies were immunohistochemically stained using polyclonal α-S100A8/A9 and α-S100A12 antibodies. S100A8/A9+ and S100A12+ cells were detected in all GI segments, with few significant differences between CIE, IL, and controls and no difference between diseased groups. Segmental inflammatory lesions were moderately to strongly correlated with increased S100/calgranulin-positive cell counts. Clinical disease severity correlated with S100A12+ cell counts in cats with IL (ρ = 0.69, p = 0.042) and more severe diarrhea with colonic lamina propria S100A12+ cells with CIE (ρ = 0.78, p = 0.021) and duodenal S100A8/A9+ cells with IL (ρ = 0.71, p = 0.032). These findings suggest a role of the S100/calgranulins in the pathogenesis of the spectrum of FCE, including CIE and IL.
Collapse
Affiliation(s)
- Denise S. Riggers
- Small Animals Department, College of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Corinne Gurtner
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Martina Protschka
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, College of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | | | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Romy M. Heilmann
- Small Animals Department, College of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
66
|
Zhang Q, Chen LH, Yang H, Fang YC, Wang SW, Wang M, Yuan QT, Wu W, Zhang YM, Liu ZJ, Nan FJ, Xie X. GPR84 signaling promotes intestinal mucosal inflammation via enhancing NLRP3 inflammasome activation in macrophages. Acta Pharmacol Sin 2022; 43:2042-2054. [PMID: 34912006 PMCID: PMC9343429 DOI: 10.1038/s41401-021-00825-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
The putative medium-chain free fatty acid receptor GPR84 is a G protein-coupled receptor primarily expressed in myeloid cells that constitute the innate immune system, including neutrophils, monocytes, and macrophages in the periphery and microglia in the brain. The fact that GPR84 expression in leukocytes is remarkably increased under acute inflammatory stimuli such as lipopolysaccharide (LPS) and TNFα suggests that it may play a role in the development of inflammatory and fibrotic diseases. Here we demonstrate that GPR84 is highly upregulated in inflamed colon tissues of active ulcerative colitis (UC) patients and dextran sulfate sodium (DSS)-induced colitis mice. Infiltrating GPR84+ macrophages are significantly increased in the colonic mucosa of both the UC patients and the mice with colitis. Consistently, GPR84-/- mice are resistant to the development of colitis induced by DSS. GPR84 activation imposes pro-inflammatory properties in colonic macrophages through enhancing NLRP3 inflammasome activation, while the loss of GPR84 prevents the M1 polarization and properties of proinflammatory macrophages. CLH536, a novel GPR84 antagonist discovered by us, suppresses colitis by reducing the polarization and function of pro-inflammatory macrophages. These results define a unique role of GPR84 in innate immune cells and intestinal inflammation, and suggest that GPR84 may serve as a potential drug target for the treatment of UC.
Collapse
Affiliation(s)
- Qing Zhang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
| | - Lin-hai Chen
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Hui Yang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - You-chen Fang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Si-wei Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Min Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Qian-ting Yuan
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Wei Wu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | | | - Zhan-ju Liu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Fa-jun Nan
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China ,Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Xin Xie
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
67
|
Myeloperoxidase as a Marker to Differentiate Mouse Monocyte/Macrophage Subsets. Int J Mol Sci 2022; 23:ijms23158246. [PMID: 35897821 PMCID: PMC9330004 DOI: 10.3390/ijms23158246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Macrophages are present in every tissue in the body and play essential roles in homeostasis and host defense against microorganisms. Some tissue macrophages derive from the yolk sac/fetal liver that populate tissues for life. Other tissue macrophages derive from monocytes that differentiate in the bone marrow and circulate through tissues via the blood and lymphatics. Circulating monocytes are very plastic and differentiate into macrophages with specialized functions upon entering tissues. Specialized monocyte/macrophage subsets have been difficult to differentiate based on cell surface markers. Here, using a combination of "pan" monocyte/macrophage markers and flow cytometry, we asked whether myeloperoxidase (MPO) could be used as a marker of pro-inflammatory monocyte/macrophage subsets. MPO is of interest because of its potent microbicidal activity. In wild-type SPF housed mice, we found that MPO+ monocytes/macrophages were present in peripheral blood, spleen, small and large intestines, and mesenteric lymph nodes, but not the central nervous system. Only monocytes/macrophages that expressed cell surface F4/80 and/or Ly6C co-expressed MPO with the highest expression in F4/80HiLy6CHi subsets regardless of tissue. These cumulative data indicate that MPO expression can be used as an additional marker to differentiate between monocyte/macrophage subsets with pro-inflammatory and microbicidal activity in a variety of tissues.
Collapse
|
68
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
69
|
Riding AM, Loudon KW, Guo A, Ferdinand JR, Lok LS, Richoz N, Stewart A, Castro-Dopico T, Tuong ZK, Fiancette R, Bowyer GS, Fleming A, Gillman ES, Suchanek O, Mahbubani KT, Saeb-Parsy K, Withers D, Dougan G, Clare S, Clatworthy MR. Group 3 innate lymphocytes make a distinct contribution to type 17 immunity in bladder defence. iScience 2022; 25:104660. [PMID: 35845169 PMCID: PMC9283510 DOI: 10.1016/j.isci.2022.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-β-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.
Collapse
Affiliation(s)
- Alexandra M. Riding
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kevin W. Loudon
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Andrew Guo
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Laurence S.C. Lok
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Andrew Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgina S. Bowyer
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Eleanor S. Gillman
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Kourosh Saeb-Parsy
- University of Cambridge Department of Surgery, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - David Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gordan Dougan
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Simon Clare
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
70
|
CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-κB pathway in mice with colitis. Int Immunopharmacol 2022; 110:108934. [PMID: 35834956 DOI: 10.1016/j.intimp.2022.108934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) is complex, and dysregulated immune responses play a pivotal role in its occurrence and development. Our previous studies indicated that CD30L may participate in monocyte-mediated inflammation in patients with UC through the activation of circulating monocytes. However, it remains unclear how CD30L participates in monocyte-mediated inflammation in IBD by activation of circulating monocytes. In this study, we observed an increase in the expression of CD30L and chemokine receptor type 2 (CCR2) on circulating monocytes and pro-inflammatory monocytes in the colon lamina propria in mice with dextran sulfate sodium salt (DSS)-induced colitis. Moreover, there was a positive correlation between the expression levels of CCR2 and CD30L (r = 0.8817, p = 0.0480) in monocytes. In Cd30l-/- mice with DSS-induced colitis, the percentage and absolute number of circulating monocytes and pro-inflammatory monocytes decreased with the downregulation of CCR2. Stimulation via CD30L by immobilized anti-CD30L mAb suppressed the expression of pNF-κB p65, pIκBα, p65 and CCR2 and up-regulated the expression of IκBα in the sorted pro-inflammatory monocytes in Cd30l-/- mice with DSS-induced colitis. The mRNA levels of Ccr2 in the sorted pro-inflammatory monocytes were significantly down-regulated with the presence of immobilized RM153 and inhibitors of NF-κB (BAY 11-7082) in WT mice with DSS-induced colitis. Our results suggested that CD30L could promote the inflammatory response by inducing the homing and differentiation of monocytes via the chemokine ligand 2 (CCL2)/CCR2 axis and NF-κB signaling pathway in mice with colitis. These findings provide a novel target for monocyte-based immunotherapy against IBD.
Collapse
|
71
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
72
|
Maccio-Maretto L, Piqueras V, Barrios BE, Romagnoli PA, Denning TL, Correa SG. Luminal bacteria coated with IgA and IgG during intestinal inflammation as a new and abundant stimulus for colonic macrophages. Immunology 2022; 167:64-76. [PMID: 35689599 DOI: 10.1111/imm.13518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In the gut, secretory immunoglobulin A is the predominant humoral response against commensals, although healthy hosts also produce microbiota-specific IgG antibodies. During intestinal inflammation, the content of IgG in the lumen increases along with the proportion of commensal bacteria coated with this antibody, suggesting signalling through the IgG-CD64 axis in the pathogenesis of inflammatory bowel diseases. In this work, we evaluated day by day the frequency of faecal bacteria coated with IgA and IgG during the development of DSS colitis. We studied the phenotype and phagocytic activity of F4/80+ CD64+ colonic macrophages, as well as the production of cytokines and nitric oxide by lamina propria or bone marrow-derived macrophages after stimulation with IgA+ , IgG+ and IgA+ IgG+ bacteria. We found that the percentage of faecal IgA+ IgG+ double-coated bacteria increased rapidly during DSS colitis. Also, analysis of the luminal content of mice with colitis showed a markedly superior ability to coat fresh bacteria. IgA+ IgG+ bacteria were the most potent stimulus for phagocytic activity involving CD64 and Dectin-1 receptors. IgA+ IgG+ bacteria observed during the development of DSS colitis could represent a new marker to monitor permeability and inflammatory progression. The interaction of IgA+ IgG+ bacteria with CD64+ F4/80+ macrophages could be part of the complex cascade of events in colitis. Interestingly, after stimulation, CD64+ colonic macrophages showed features similar to those of restorative macrophages that are relevant for tissue repair and healing.
Collapse
Affiliation(s)
- Lisa Maccio-Maretto
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Piqueras
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo A Romagnoli
- Centro de Investigation en Medicina Traslacional Severo Amuchastegui - (CIMETSA) - Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Silvia G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
73
|
Xu X, Zhang G, Peng K, Gao Y, Wang J, Gao C, He C, Lu F. Carnosol Maintains Intestinal Barrier Function and Mucosal Immune Homeostasis in DSS-Induced Colitis. Front Nutr 2022; 9:894307. [PMID: 35685885 PMCID: PMC9172907 DOI: 10.3389/fnut.2022.894307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease, characterized by recurrent flares of mucosal inflammation, which is limited in the colon and rectum. Compromised epithelial barrier functions have been indicated in the initiation of UC. Carnosol (CA), a natural active ortho-diphenol diterpene compound, is one of the active ingredients in plants such as rosemary and sage. The anti-inflammatory and anti-oxidative effects of CA have been reported in several animal models, but its effect on mucosal inflammation remains elusive. We established a mouse experimental colitis model characterized by epithelial barrier destruction using dextran sulfate sodium (DSS). CA was intraperitoneally administrated. Flow cytometry was performed to determine phenotypes of intraepithelial lymphocytes and lamina propria cells. qRT-PCR was used for gene expression. ER stress in the colon was determined by immunofluorescence staining and qRT-PCR. Thapsigargin was used to induce ER stress in HCT-116 cells in vitro. We found CA significantly alleviated DSS-induced colitis in mice marked by relieved clinical symptoms and colonic pathological damage. Inflammatory cell infiltration and cytokine expression in the colon were suppressed by CA during colitis. Furthermore, CA restored epithelial barrier functions and intestinal intraepithelial lymphocyte (IEL) homeostasis in mice with DSS insults. Mechanistically, we induced endoplasmic reticulum (ER) stress in HCT-116 cells (an intestinal epithelial cell line) with thapsigargin, and CA reversed this effect. In addition, we collected inflamed mucosal biopsies from 23 patients with UC, and cultured overnight with or without CA, showing CA significantly reduced expression of ER stress signaling molecule and pro-inflammatory agents. Our data demonstrate that CA acts as an effective drug for experimental colitis and maintains proper epithelial barrier functions via suppressing epithelial ER stress, providing new evidence that CA might be a promising therapeutic candidate for UC.
Collapse
Affiliation(s)
- Xiang Xu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gao Zhang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Peng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Gao
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chong He
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Lu
| |
Collapse
|
74
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
75
|
Cavarelli M, Foglieni C, Hantour N, Schorn T, Ferrazzano A, Dispinseri S, Desjardins D, Elmore U, Dereuddre-Bosquet N, Scarlatti G, Le Grand R. Identification of CX3CR1+ mononuclear phagocyte subsets involved in HIV-1 and SIV colorectal transmission. iScience 2022; 25:104346. [PMID: 35601921 PMCID: PMC9117554 DOI: 10.1016/j.isci.2022.104346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
The difficulty to unambiguously identify the various subsets of mononuclear phagocytes (MNPs) of the intestinal lamina propria has hindered our understanding of the initial events occurring after mucosal exposure to HIV-1. Here, we compared the composition and function of MNP subsets at steady-state and following ex vivo and in vivo viral exposure in human and macaque colorectal tissues. Combined evaluation of CD11c, CD64, CD103, and CX3CR1 expression allowed to differentiate lamina propria MNPs subsets common to both species. Among them, CD11c+ CX3CR1+ cells expressing CCR5 migrated inside the epithelium following ex vivo and in vivo exposure of colonic tissue to HIV-1 or SIV. In addition, the predominant population of CX3CR1high macrophages present at steady-state partially shifted to CX3CR1low macrophages as early as three days following in vivo SIV rectal challenge of macaques. Our analysis identifies CX3CR1+ MNPs as novel players in the early events of HIV-1 and SIV colorectal transmission. Human and macaque intestinal MNPs show similar phenotype, localization, and function CX3CR1+ MNPs migrate inside the intestinal epithelium to sample HIV/SIV SIV infection alters the balance between CX3CR1high and CX3CR1low Mφs CX3CR1+ Mφs contribute to the breakdown of the intestinal barrier in HIV/SIV infection
Collapse
|
76
|
Rohm TV, Keller L, Bosch AJT, AlAsfoor S, Baumann Z, Thomas A, Wiedemann SJ, Steiger L, Dalmas E, Wehner J, Rachid L, Mooser C, Yilmaz B, Fernandez Trigo N, Jauch AJ, Wueest S, Konrad D, Henri S, Niess JH, Hruz P, Ganal-Vonarburg SC, Roux J, Meier DT, Cavelti-Weder C. Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Commun Biol 2022; 5:370. [PMID: 35440795 PMCID: PMC9018739 DOI: 10.1038/s42003-022-03305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control. Expansion of pro-inflammatory macrophages in the colon occurs early after high-fat diet initiation, prior to macrophage accumulation in the adipose tissue, in a microbiome-dependent fashion. Macrophage depletion systemically and/or exclusively in the colon improves glucose metabolism.
Collapse
Affiliation(s)
- Theresa V Rohm
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Lena Keller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Angela J T Bosch
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Shefaa AlAsfoor
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Zora Baumann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | | | - Sophia J Wiedemann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Laura Steiger
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Elise Dalmas
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Josua Wehner
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Catherine Mooser
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Annaise J Jauch
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Jan H Niess
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Julien Roux
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
77
|
Ninnemann J, Winsauer C, Bondareva M, Kühl AA, Lozza L, Durek P, Lissner D, Siegmund B, Kaufmann SHE, Mashreghi MF, Nedospasov SA, Kruglov AA. TNF hampers intestinal tissue repair in colitis by restricting IL-22 bioavailability. Mucosal Immunol 2022; 15:698-716. [PMID: 35383266 PMCID: PMC9259490 DOI: 10.1038/s41385-022-00506-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Successful treatment of chronic inflammatory diseases integrates both the cessation of inflammation and the induction of adequate tissue repair processes. Strikingly, targeting a single proinflammatory cytokine, tumor necrosis factor (TNF), induces both processes in a relevant cohort of inflammatory bowel disease (IBD) patients. However, the molecular mechanisms underlying intestinal repair following TNF blockade during IBD remain elusive. Using a novel humanized model of experimental colitis, we demonstrate that TNF interfered with the tissue repair program via induction of a soluble natural antagonist of IL-22 (IL-22Ra2; IL-22BP) in the colon and abrogated IL-22/STAT3-mediated mucosal repair during colitis. Furthermore, membrane-bound TNF expressed by T cells perpetuated colonic inflammation, while soluble TNF produced by epithelial cells (IECs) induced IL-22BP expression in colonic dendritic cells (DCs) and dampened IL-22-driven restitution of colonic epithelial functions. Finally, TNF induced IL-22BP expression in human monocyte-derived DCs and levels of IL22-BP correlated with TNF in sera of IBD patients. Thus, our data can explain how anti-TNF therapy induces mucosal healing by increasing IL-22 availability and implicates new therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Justus Ninnemann
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Caroline Winsauer
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Marina Bondareva
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité-Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pawel Durek
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Donata Lissner
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Sergei A Nedospasov
- Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey A Kruglov
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
78
|
Hornsby E, King HW, Peiris M, Buccafusca R, Lee WYJ, Wing ES, Blackshaw LA, Lindsay JO, Stagg AJ. The cation channel TRPM8 influences the differentiation and function of human monocytes. J Leukoc Biol 2022; 112:365-381. [PMID: 35233801 PMCID: PMC9543907 DOI: 10.1002/jlb.1hi0421-181r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mononuclear phagocytes that can differentiate to a variety of cell fates under the influence of their microenvironment and hardwired commitment. We found that inhibition of TRPM8 in human blood CD14+ monocytes during a critical 3‐h window at the beginning of their differentiation into macrophages led to enhanced survival and LPS‐driven TNFα production after 24 h. TRPM8 antagonism also promoted LPS‐driven TNFα production in CD14+ monocytes derived from the intestinal mucosa. Macrophages that had been derived for 6 days under blockade of TRPM8 had impaired phagocytic capacity and were transcriptionally distinct. Most of the affected genes were altered in a way that opposed normal monocyte to macrophage differentiation indicating that TRPM8 activity promotes aspects of this differentiation programme. Thus, we reveal a novel role for TRPM8 in regulating human CD14+ monocyte fate and function.
Collapse
Affiliation(s)
- Eve Hornsby
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Hamish W King
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Roberto Buccafusca
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Wing-Yiu Jason Lee
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Elinor S Wing
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James O Lindsay
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Department of Gastroenterology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
79
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
80
|
Tai SL, Mortha A. Macrophage control of Crohn's disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:29-64. [PMID: 35461659 DOI: 10.1016/bs.ircmb.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal tract is the body's largest mucosal surface and permanently exposed to microbial and environmental signals. Maintaining a healthy intestine requires the presence of sentinel grounds keeper cells, capable of controlling immunity and tissue homeostasis through specialized functions. Intestinal macrophages are such cells and important players in steady-state functions and during acute and chronic inflammation. Crohn's disease, a chronic inflammatory condition of the intestinal tract is proposed to be the consequence of an altered immune system through microbial and environmental stimulation. This hypothesis suggests an involvement of macrophages in the regulation of this pathology. Within this chapter, we will discuss intestinal macrophage development and highlight data suggesting their implication in chronic intestinal pathologies like Crohn's disease.
Collapse
Affiliation(s)
- Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
81
|
Nikolakis D, de Voogd FAE, Pruijt MJ, Grootjans J, van de Sande MG, D’Haens GR. The Role of the Lymphatic System in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23031854. [PMID: 35163775 PMCID: PMC8836364 DOI: 10.3390/ijms23031854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Although the number of therapeutic options for the treatment of inflammatory bowel disease (IBD) has increased in recent years, patients suffer from decreased quality of life due to non-response or loss of response to the currently available treatments. An increased understanding of the disease’s etiology could provide novel insights for treatment strategies in IBD. Lymphatic system components are generally linked to immune responses and presumably related to inflammatory diseases pathophysiology. This review aims to summarize findings on immune-mediated mechanisms in lymphoid tissues linked with IBD pathogenesis and (potential) novel treatments. Enhanced innate and adaptive immune responses were observed in mesenteric lymph nodes (MLNs) and other lymphoid structures, such as Peyer’s patches, in patients with IBD and in animal models. Furthermore, the phenomenon of lymphatic obstruction in the form of granulomas in MLNs and lymphatic vessels correlates with disease activity. There is also evidence that abnormalities in the lymphatic stromal components and lymph node microbiome are common in IBD and could be exploited therapeutically. Finally, novel agents targeting lymphocyte trafficking have been added to the treatment armamentarium in the field of IBD. Overall, gut-associated lymphoid tissue plays a key role in IBD immunopathogenesis, which could offer novel therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Nikolakis
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Onassis Foundation, 4 Aeschinou Street, 10558 Athens, Greece
| | - Floris A. E. de Voogd
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Maarten J. Pruijt
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Joep Grootjans
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Marleen G. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Correspondence:
| |
Collapse
|
82
|
Differential expression of CD11c defines two types of tissue-resident macrophages with different origins in steady-state salivary glands. Sci Rep 2022; 12:931. [PMID: 35042931 PMCID: PMC8766464 DOI: 10.1038/s41598-022-04941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Gland macrophages are primed for gland development and functions through interactions within their niche. However, the phenotype, ontogeny, and function of steady-state salivary gland (SG) macrophages remain unclear. We herein identified CD11c+ and CD11c- subsets among CD64+ macrophages in steady-state murine SGs. CD11c- macrophages were predominant in the SGs of embryonic and newborn mice and decreased with advancing age. CD11c+ macrophages were rarely detected in the embryonic period, but rapidly expanded after birth. CD11c+, but not CD11c-, macrophage numbers decreased in mice treated with a CCR2 antagonist, suggesting that CD11c+ macrophages accumulate from bone marrow-derived progenitors in a CCR2-dependent manner, whereas CD11c- macrophages were derived from embryonic progenitors in SGs. CD11c+ and CD11c- macrophages strongly expressed colony-stimulating factor (CSF)-1 receptor, the injection of an anti-CSF-1 receptor blocking antibody markedly reduced both subsets, and SGs strongly expressed CSF-1, indicating the dependency of SG resident macrophage development on CSF-1. The phagocytic activity of SG macrophages was extremely weak; however, the gene expression profile of SG macrophages indicated that SG macrophages regulate gland development and functions in SGs. These results suggest that SG CD11c+ and CD11c- macrophages are developed and instructed to perform SG-specific functions in steady-state SGs.
Collapse
|
83
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 918] [Impact Index Per Article: 306.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
84
|
Shi H, Sun S, Zhou X, He Y, Peng Q. GBP4 is an immune-related biomarker for patients with ileocolonic Crohn’s disease by comprehensive analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Extensive evidence has shown that immune cell infiltration is associated with the pathogenesis of Crohn’s disease (CD). Methods: Differentially expressed genes (DEGs) from the GSE179285 dataset in the intestinal mucosa of CD patients and healthy individuals were then identified. The infiltration pattern of 22 immune cell types was assessed using the CIBERSORT algorithm. The DEGs and 22 immune cell types were combined to find the key gene network using weighted gene co-expression network analysis (WGCNA). A linear regression model for the relationship between the expression of the hub genes in CD patients and infiltration of immune cells was also developed. The utility and accuracy of the hub genes for CD diagnosis were assessed using receiver operating characteristic (ROC) analysis. The accuracy of the model was validated using the GSE20881 dataset. Results: There were 1135 DEGs between the intestinal mucosal tissue of CD patients and healthy individuals. Of these DEGs, 711 genes were upregulated, whereas 424 of them were downregulated. There was also a significant difference in the infiltration of immune cells to the intestinal mucosal between the CD patients and healthy individuals. WGCNA revealed that the turquoise module genes were strongly correlated with the infiltration of M1 macrophages (cor =0.68, p = 10−16). Finally, the expression of GBP4, the identified hub gene, strongly correlated with the infiltration of M1 macrophages (adjusted r-squared =0.661, p < 2×10−16), and is a relatively good marker for CD diagnostic prediction (AUC =0.736). The relationship between GBP4 expression and infiltration of M1 macrophages (adjusted r-squared =0.435, p < 2×10−16) and diagnostic value of the gene (AUC =0.702) were verified using the GSE20881 validation dataset. Conclusion: The expression of GBP4 is associated with the infiltration of M1 macrophages to the intestinal mucosa of CD patients.
Collapse
Affiliation(s)
- Heng Shi
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | - Yushan He
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, University of South China, Shaoyang, Hunan Province, China
| |
Collapse
|
85
|
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15:40-50. [PMID: 34465895 DOI: 10.1038/s41385-021-00448-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.
Collapse
Affiliation(s)
| | | | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
86
|
Jalodia R, Kolli U, Braniff RG, Tao J, Abu YF, Chupikova I, Moidunny S, Ramakrishnan S, Roy S. Morphine mediated neutrophil infiltration in intestinal tissue play essential role in histological damage and microbial dysbiosis. Gut Microbes 2022; 14:2143225. [PMID: 36409161 PMCID: PMC9683065 DOI: 10.1080/19490976.2022.2143225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbial ecosystem exhibits a complex bidirectional communication with the host and is one of the key contributing factors in determining mucosal immune homeostasis or an inflammatory state. Opioid use has been established to induce gut microbial dysbiosis consistent with increased intestinal tissue inflammation. In this study, we investigated the role of infiltrated immune cells in morphine-induced intestinal tissue damage and gut microbial dysbiosis in mice. Results reveal a significant increase in chemokine expression in intestinal tissues followed by increased neutrophil infiltration post morphine treatment which is direct consequence of a dysbiotic microbiome since the effect is attenuated in antibiotics treated animals and in germ-free mice. Neutrophil neutralization using anti-Ly6G monoclonal antibody showed a significant decrease in tissue damage and an increase in tight junction protein organization. 16S rRNA sequencing on intestinal samples highlighted the role of infiltrated neutrophils in modulating microbial community structure by providing a growth benefit for pathogenic bacteria, such as Enterococcus, and simultaneously causing a significant depletion of commensal bacteria, such as Lactobacillus. Taken together, we provide the first direct evidence that neutrophil infiltration contributes to morphine-induced intestinal tissue damage and gut microbial dysbiosis. Our findings implicate that inhibition of neutrophil infiltration may provide therapeutic benefits against gastrointestinal dysfunctions associated with opioid use.
Collapse
Affiliation(s)
- Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yaa Fosuah Abu
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irina Chupikova
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
87
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
88
|
Lu L, Liu YJ, Cheng PQ, Hu D, Xu HC, Ji G. Macrophages play a role in inflammatory transformation of colorectal cancer. World J Gastrointest Oncol 2021; 13:2013-2028. [PMID: 35070038 PMCID: PMC8713318 DOI: 10.4251/wjgo.v13.i12.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, and it is also a typical inflammatory cancer. The function of macrophages is very important in the tissue immune microenvironment during inflammatory and carcinogenic transformation. Here, we evaluated the function and mechanism of macrophages in intestinal physiology and in different pathological stages. Furthermore, the role of macrophages in the immune microenvironment of CRC and the influence of the intestinal population and hypoxic environment on macrophage function are summarized. In addition, in the era of tumor immunotherapy, CRC currently has a limited response rate to immune checkpoint inhibitors, and we summarize potential therapeutic strategies for targeting tumor-associated macrophages.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Pei-Qiu Cheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Hu
- Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai 200120, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai 200120, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
89
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
90
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
91
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
92
|
There Is Strength in Numbers: Quantitation of Fc Gamma Receptors on Murine Tissue-Resident Macrophages. Int J Mol Sci 2021; 22:ijms222212172. [PMID: 34830050 PMCID: PMC8620503 DOI: 10.3390/ijms222212172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Many of the effector functions of antibodies rely on the binding of antibodies/immune complexes to cellular Fcγ receptors (FcγRs). Since the majority of innate immune effector cells express both activating and inhibitory Fc receptors, the outcome of the binding of immune complexes to cells of a given population is influenced by the relative affinities of the respective IgG subclasses to these receptors, as well as by the numbers of activating and inhibitory FcγRs on the cell surface. A group of immune cells that has come into focus more recently is the various subsets of tissue-resident macrophages. The central functions of FcγRs on tissue macrophages include the clearance of opsonized pathogens, the removal of small immune complexes from the circulation and the depletion of antibody-opsonized cells in the therapy of autoimmunity and cancer. Despite these essential functions of FcγRs on tissue-resident macrophages, an in-depth quantification of FcγRs is lacking. Thus, the aim of our current study was to quantify the various Fcγ receptors on macrophages in murine liver, lung, kidney, brain, skin and spleen. Our study identified a pronounced heterogeneity between FcγR expression patterns of the different tissue macrophages, which may reflect their specialized functions within their unique niches in different organ environments.
Collapse
|
93
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
94
|
Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021; 12:749708. [PMID: 34650568 PMCID: PMC8506163 DOI: 10.3389/fimmu.2021.749708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
95
|
Martin FP, Jacqueline C, Poschmann J, Roquilly A. Alveolar Macrophages: Adaptation to Their Anatomic Niche during and after Inflammation. Cells 2021; 10:cells10102720. [PMID: 34685700 PMCID: PMC8534884 DOI: 10.3390/cells10102720] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
At the early stages of life development, alveoli are colonized by embryonic macrophages, which become resident alveolar macrophages (ResAM) and self-sustain by local division. Genetic and epigenetic signatures and, to some extent, the functions of ResAM are dictated by the lung microenvironment, which uses cytokines, ligand-receptor interactions, and stroma cells to orchestrate lung homeostasis. In resting conditions, the lung microenvironment induces in ResAM a tolerogenic programming that prevents unnecessary and potentially harmful inflammation responses to the foreign bodies, which continuously challenge the airways. Throughout life, any episode of acute inflammation, pneumonia being likely the most frequent cause, depletes the pool of ResAM, leaving space for the recruitment of inflammatory monocytes that locally develop in monocyte-derived alveolar macrophages (InfAM). During lung infection, the local microenvironment induces a temporary inflammatory signature to the recruited InfAM to handle the tissue injury and eliminate the pathogens. After a few days, the recruited InfAM, which locally self-sustain and develop as new ResAM, gain profibrotic functions required for tissue healing. After the complete resolution of the infectious episode, the functional programming of both embryonic and monocyte-derived ResAM remains altered for months and possibly for the entire life. Adult lungs thus contain a wide diversity of ResAM since every infection brings new waves of InfAM which fill the room left open by the inflammatory process. The memory of these innate cells called trained immunity constitutes an immunologic scar left by inflammation, notably pneumonia. This memory of ResAM has advantages and drawbacks. In some cases, lung-trained immunity offers better defense capacities against autoimmune disorders and the long-term risk of infection. At the opposite, it can perpetuate a harmful process and lead to a pathological state, as is the case among critically ill patients who have immune paralysis and are highly susceptible to hospital-acquired pneumonia and acute respiratory distress syndrome. The progress in understanding the kinetics of response of alveolar macrophages (AM) to lung inflammation is paving the way to new treatments of pneumonia and lung inflammatory process.
Collapse
Affiliation(s)
- Florian Pierre Martin
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Cédric Jacqueline
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, University of Nantes, UMR 1064, ITUN, Inserm, F-44000 Nantes, France;
| | - Antoine Roquilly
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
- Correspondence: ; Tel.: +33-253482230
| |
Collapse
|
96
|
Wright PB, McDonald E, Bravo-Blas A, Baer HM, Heawood A, Bain CC, Mowat AM, Clay SL, Robertson EV, Morton F, Nijjar JS, Ijaz UZ, Milling SWF, Gaya DR. The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease. Sci Rep 2021; 11:19616. [PMID: 34608184 PMCID: PMC8490356 DOI: 10.1038/s41598-021-98611-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
To understand the contribution of mononuclear phagocytes (MNP), which include monocyte-derived intestinal macrophages, to the pathogenesis of inflammatory bowel disease (IBD), it is necessary to identify functionally-different MNP populations. We aimed to characterise intestinal macrophage populations in patients with IBD. We developed 12-parameter flow cytometry protocols to identify and human intestinal MNPs. We used these protocols to purify and characterize colonic macrophages from colonic tissue from patients with Crohn’s disease (CD), ulcerative colitis (UC), or non-inflamed controls, in a cross-sectional study. We identify macrophage populations (CD45+CD64+ HLA-DR+) and describe two distinct subsets, differentiated by their expression of the mannose receptor, CD206. CD206+ macrophages expressed markers consistent with a mature phenotype: high levels of CD68 and CD163, higher transcription of IL-10 and lower expression of TREM1. CD206− macrophages appear to be less mature, with features more similar to their monocytic precursors. We identified and purified macrophage populations from human colon. These appear to be derived from a monocytic precursor with high CCR2 and low CD206 expression. As these cells mature, they acquire expression of IL-10, CD206, CD63, and CD168. Targeting the newly recruited monocyte-derived cells may represent a fruitful avenue to ameliorate chronic inflammation in IBD.
Collapse
Affiliation(s)
- Pamela B Wright
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Elizabeth McDonald
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Alberto Bravo-Blas
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Hannah M Baer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Anna Heawood
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Calum C Bain
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Allan M Mowat
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Slater L Clay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | | | - Fraser Morton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jagtar Singh Nijjar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Umer Z Ijaz
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Simon W F Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| | - Daniel R Gaya
- Gastroenterology Unit, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
97
|
Utomo L, Fahy N, Kops N, van Tiel ST, Waarsing J, Verhaar JAN, Leenen PJM, van Osch GJVM, Bastiaansen‐Jenniskens YM. Macrophage phenotypes and monocyte subsets after destabilization of the medial meniscus in mice. J Orthop Res 2021; 39:2270-2280. [PMID: 33336820 PMCID: PMC8518591 DOI: 10.1002/jor.24958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Macrophages play an important role in the development and progression of osteoarthritis (OA). The aim of this study was to identify macrophage phenotypes in synovium and monocyte subsets in peripheral blood in C57BL/6 mice by destabilizing the medial meniscus (DMM), and the association of macrophage subsets with OA features. DMM, sham, and non-operated knees were histologically assessed between 1 and 56 days for macrophage polarization states by immunohistochemistry (IHC), cartilage damage, synovial thickening, and osteophytes (n = 9 per timepoint). Naive knees (n = 6) were used as controls. Monocyte and polarized synovial macrophage subsets were evaluated by flow cytometry. CD64 and CD206 levels on IHC were higher at early timepoints in DMM and sham knees compared to naive knees. iNOS labeling intensity was higher in DMM and sham knees than in naive knees from d3 onwards. CD163 expression was unaltered at all timepoints. Even though macrophage polarization profiles were similar in DMM and sham knees, only in DMM knees the presence of iNOS and CD206 associated with synovial thickness, and CD163 staining inversely correlated with osteophyte presence. At day 14, monocyte subset distribution was different in peripheral blood of DMM mice compared with sham mice. In conclusion, monocyte subsets in blood and synovial macrophage phenotypes vary after joint surgery. High levels of iNOS+ , CD163+ , and CD206+ cells are found in both destabilized and sham-operated knees, and coexistence with joint instability may be a requirement to initiate and exacerbate OA progression.
Collapse
Affiliation(s)
- Lizette Utomo
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Present address:
L. Utomo, Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Niamh Fahy
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Oral and Maxillofacial Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Sandra T. van Tiel
- Department of Radiology and Nuclear Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan Waarsing
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan A. N. Verhaar
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MCUniversity Medical Center RotterdamThe Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Otorhinolaryngology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
98
|
Harriman R, Lewis JS. Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal microbiota. Acta Biomater 2021; 133:187-207. [PMID: 34098091 DOI: 10.1016/j.actbio.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Over the course of evolution, mammals and gut commensal microbes have adapted to coexist with each other. This homeostatic coexistence is dependent on an intricate balance between tolerogenic and inflammatory responses directed towards beneficial, commensal microbes and pathogenic intruders, respectively. Immune tolerance towards the gut microflora is largely sustained by immunomodulatory molecules produced by the commensals, which protect the bacteria from immune advances and maintain the gut's unique tolerogenic microenvironment, as well as systemic homeostasis. The identification and characterization of commensal-derived, tolerogenic molecules could lead to their utilization in biomaterials-inspired delivery schemes involving nano/microparticles or hydrogels, and potentially lead to the next generation of commensal-derived therapeutics. Moreover, gut-on-chip technologies could augment the discovery and characterization of influential commensals by providing realistic in vitro models conducive to finicky microbes. In this review, we provide an overview of the gut immune system, describe its intricate relationships with the microflora and identify major genera involved in maintaining tolerogenic responses and peripheral homeostasis. More relevant to biomaterials, we discuss commensal-derived molecules that are known to interface with immune cells and discuss potential strategies for their incorporation into biomaterial-based strategies aimed at culling inflammatory diseases. We hope this review will bridge the current findings in gut immunology, microbiology and biomaterials and spark further investigation into this emerging field. STATEMENT OF SIGNIFICANCE: Despite its tremendous potential to culminate into revolutionary therapeutics, the synergy between immunology, microbiology, and biomaterials has only been explored at a superficial level. Strategic incorporation of biomaterial-based technologies may be necessary to fully characterize and capitalize on the rapidly growing repertoire of immunomodulatory molecules derived from commensal microbes. Bioengineers may be able to combine state-of-the-art delivery platforms with immunomodulatory cues from commensals to provide a more holistic approach to combating inflammatory disease. This interdisciplinary approach could potentiate a neoteric field of research - "commensal-inspired" therapeutics with the promise of revolutionizing the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Rian Harriman
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA
| | - Jamal S Lewis
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA.
| |
Collapse
|
99
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
100
|
Selective depletion of a CD64-expressing phagocyte subset mediates protection against toxic kidney injury and failure. Proc Natl Acad Sci U S A 2021; 118:2022311118. [PMID: 34518373 PMCID: PMC8488624 DOI: 10.1073/pnas.2022311118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DC), macrophages, and monocytes, collectively known as mononuclear phagocytes (MPs), critically control tissue homeostasis and immune defense. However, there is a paucity of models allowing to selectively manipulate subsets of these cells in specific tissues. The steady-state adult kidney contains four MP subsets with Clec9a-expression history that include the main conventional DC1 (cDC1) and cDC2 subtypes as well as two subsets marked by CD64 but varying levels of F4/80. How each of these MP subsets contributes to the different phases of acute kidney injury and repair is unknown. We created a mouse model with a Cre-inducible lox-STOP-lox-diphtheria toxin receptor cassette under control of the endogenous CD64 locus that allows for diphtheria toxin-mediated depletion of CD64-expressing MPs without affecting cDC1, cDC2, or other leukocytes in the kidney. Combined with specific depletion of cDC1 and cDC2, we revisited the role of MPs in cisplatin-induced kidney injury. We found that the intrinsic potency reported for CD11c+ cells to limit cisplatin toxicity is specifically attributed to CD64+ MPs, while cDC1 and cDC2 were dispensable. Thus, we report a mouse model allowing for selective depletion of a specific subset of renal MPs. Our findings in cisplatin-induced injury underscore the value of dissecting the functions of individual MP subsets in kidney disease, which may enable therapeutic targeting of specific immune components in the absence of general immunosuppression.
Collapse
|