51
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023:1-37. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
52
|
Tran CH, Nghiem MT, Dinh AMT, Dang TTN, Van Do TT, Chu TN, Mai TH, Phan VM. Optimization Conditions of Ultrasound-Assisted Extraction for Phenolic Compounds and Antioxidant Activity from Rubus alceifolius Poir Leaves. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7576179. [PMID: 37854461 PMCID: PMC10581860 DOI: 10.1155/2023/7576179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Rubus alceifolius Poir (R.A. Poir) leaves are rich in phenolic compounds, offering many health benefits due to their incredible antioxidant potential. In this study, conditions for the ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activity from R.A. Poir leaves were optimized using response surface methodology (RSM). This methodology assessed the effects of ultrasound power (X1: 100-500 W), extraction temperature (X2: 30-60°C), and extraction time (X3: 5-55 min). The optimized UAE conditions were then compared with conventional extraction methods (Soxhlet extraction: SE and maceration extraction: ME) for extracting total phenolics. A phenolic profile using GC-MS and antioxidant activity (ABTS) was also compared. According to the RSM, the best conditions for UAE to extract the highest total polyphenol content and ABTS radical scavenging activity were 320 W ultrasound power, 40°C extraction temperature, and 35.5 min sonication duration. Under these optimal conditions, the TPC and antioxidant activity reached 16.68 mg GAE/g dm and 21.9 mg TE/g, respectively, closely aligning with the predicted values. The UAE extraction technique proved to be more efficient in extracting phenolics and antioxidant capacity (ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) radical scavenging activity, and enzyme inhibition) compared to the conventional extraction methods (SE and ME). A GC-MS analysis identified 12 components, including 5 phenolics and 3 flavonoids, which likely contribute to the antioxidant activity. Consequently, the UAE method improved extraction efficiency within a shorter time frame, suggesting that UAE is a promising, efficient, and ecofriendly technology for extracting bioactive compounds from R.A. Poir leaves.
Collapse
Affiliation(s)
- Chi Hai Tran
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Minh Tri Nghiem
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Anh Minh Trinh Dinh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Thuy Nga Dang
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Thuy Van Do
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Nga Chu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Tien Hung Mai
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Van Man Phan
- Faculty of Food Technology, Ba Ria–Vung Tau College of Technology, 790000, Vietnam
| |
Collapse
|
53
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Enhanced alpha-amylase inhibition activity of amine-terminated PAMAM dendrimer stabilized pure copper-doped magnesium oxide nanoparticles. BIOMATERIALS ADVANCES 2023; 153:213535. [PMID: 37385162 DOI: 10.1016/j.bioadv.2023.213535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The present work aims to prepare copper-doped MgO nanoparticles via a sol-gel approach and study their antidiabetic alpha-amylase inhibition activity with undoped MgO nanoparticles. The ability of G5 amine-terminated polyamidoamine (PAMAM) dendrimer for the controlled release of copper-doped MgO nanoparticles to exhibit alpha-amylase inhibition activity was also evaluated. The synthesis of MgO nanoparticles via sol-gel approach and optimization of calcination temperature and time has led to the formation of nanoparticles with different shapes (spherical, hexagonal, and rod-shaped) and a polydispersity in size ranging from 10 to 100 nm with periclase crystalline phase. The presence of copper ions in the MgO nanoparticles has altered their crystallite size, eventually modifying their size, morphology, and surface charge. The efficiency of dendrimer to stabilize spherical copper-doped MgO nanoparticles (ca. 30 %) is higher than in other samples, which was confirmed by UV-Visible, DLS, FTIR, and TEM analysis. The amylase inhibition assay emphasized that the dendrimer nanoparticles stabilization has led to the prolonged enzyme inhibition ability of MgO and copper-doped MgO nanoparticles for up to 24 h.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mara Gonçalves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
54
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2023:1-16. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Objective: This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources.Methods: A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023.Results and conclusions: The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
55
|
Han B, Luo J, Xu B. Insights into the Chemical Compositions and Health Promoting Effects of Wild Edible Mushroom Chroogomphus rutilus. Nutrients 2023; 15:4030. [PMID: 37764813 PMCID: PMC10537009 DOI: 10.3390/nu15184030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chroogomphus rutilus is an edible mushroom that has been an important food source since ancient times. It is increasingly sought after for its unique flavor and medicinal value. It is one of the most important wild mushrooms for its medicinal and economic value. C. rutilus contains a variety of active ingredients such as vitamins, proteins, minerals, polysaccharides, and phenolics. C. rutilus and its active compounds have significant anti-oxidant, anti-tumor, immunomodulatory, anti-fatigue, hypoglycemic, gastroprotective, hypolipemic, and neuronal protective properties. This paper summarizes the fungal chemical compositions and health-promoting effects of C. rutilus by collecting the literature on the role of C. rutilus through its active ingredients from websites such as Google Scholar, Scopus, PubMed, and Web of Science. Current research on C. rutilus is limited to the cellular and animal levels, and further clinical trials are needed to conduct and provide theoretical support for further development.
Collapse
Affiliation(s)
- Bincheng Han
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Jinhai Luo
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| |
Collapse
|
56
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
57
|
Gao K, Ren X, Chen C, Fan Q, Li Y, Wang H, Chen S. Oral administration of Bifidobacterium longum WHH2270 ameliorates type 2 diabetes in rats. J Food Sci 2023; 88:3967-3983. [PMID: 37548634 DOI: 10.1111/1750-3841.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Accumulating evidence suggests that specific probiotic strains exert hypoglycemic effects on type 2 diabetes mellitus (T2DM), and probiotic strains within Bifidobacterium exhibit potential beneficial effects on T2DM. In this study, α-glucosidase inhibitory activities of 14 Bifidobacterium strains were assessed in vitro. The hypoglycemic effects of Bifidobacterium longum WHH2270 with high α-glucosidase inhibitory activity (42.03%) were then investigated in a high-fat diet/streptozotocin-induced T2DM rat model. Oral administration of WHH2270 (4 × 109 CFU/kg/day) for 8 weeks significantly reversed the reduced body weight and ameliorated the levels of fasting blood glucose, serum triglyceride, serum total cholesterol, glucose tolerance, and insulin resistance in T2DM rats. Using 16S rRNA high-throughput sequencing of feces, WHH2270 was revealed to reshape the gut microbiome composition by increasing the abundances of Lactobacillus and Bifidobacterium and decreasing the abundances of UCG_005, Clostridium, and Faecalibacterium in T2DM rats. Besides, the fecal levels of short-chain fatty acids (SCFAs) including acetate, propionate, and butyrate were also elevated after WHH2270 administration. Moreover, the gene expressions of SCFA receptors FFAR2 and FFAR3 in the colon and pancreas of T2DM rats were restored by WHH2270 administration, accompanied by increased levels of serum acetate. In summary, these results provide evidence that WHH2270 has the potential to improve T2DM symptoms by alleviating hyperglycemia, which was associated with changes in the gut microbiome composition and SCFA production. PRACTICAL APPLICATION: Bifidobacterium longum WHH2270 with high α-glucosidase inhibitory activity may serve as a promising hypoglycemic agent for the treatment of T2DM.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Xueliang Ren
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
58
|
Li Y, Tong T, Li P, Peng Y, Zhang M, Liu J, She Y, Li Z, Li Y. Screening of Potential Probiotic Lactobacillaceae and Their Improvement of Type 2 Diabetes Mellitus by Promoting PI3K/AKT Signaling Pathway in db/db Mice. Pol J Microbiol 2023; 72:285-297. [PMID: 37725896 PMCID: PMC10508973 DOI: 10.33073/pjm-2023-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 09/21/2023] Open
Abstract
The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yueyang Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yian Peng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- School of Public Health, Anhui University of Science and Technology, Hefei, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd., Beijing, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
60
|
Acquaviva A, Di Simone SC, Nilofar, Bouyahya A, Zengin G, Recinella L, Leone S, Brunetti L, Uba AI, Guler O, Balos M, Cakilcioğlu U, Menghini L, Ferrante C, Orlando G, Libero ML, Chiavaroli A. Screening for Chemical Characterization and Pharmacological Properties of Different Extracts from Nepeta italica. PLANTS (BASEL, SWITZERLAND) 2023; 12:2785. [PMID: 37570939 PMCID: PMC10420686 DOI: 10.3390/plants12152785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Plants from the Nepeta genus have been proved to possess different pharmacological properties, among which are antimicrobial, antioxidant, anti-inflammatory, analgesic, and cytotoxic effects. Nepeta italica is a medicinal plant traditionally used for its analgesic effects, and in the present study, the phytochemical composition and biological effects of hexane, dichloromethane (DCM), ethyl acetate (EA), ethanol, ethanol-water, and water extracts of the aerial parts were investigated for determining phenolic composition, antioxidant effects, and anti-inflammatory effects in isolated mouse colon specimens exposed to lipopolysaccharide (LPS). Polar extracts were the richest in terms of phenolic compounds, especially rosmarinic acid. In parallel, ethanol, ethanol-water, and water extracts were also the most effective as scavenging/reducing and enzyme inhibition agents, especially towards cholinesterases and α-glucosidase, and in inhibiting the LPS-induced cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) gene expression in mouse colon. This poses the basis for future in vivo investigations for confirming the protective effects of polar extracts of N. italica against inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Nilofar
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey;
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek 62500, Turkey; (O.G.); (U.C.)
| | - Maruf Balos
- Sanlıurfa Provincial Directorate of National Education, Sanlıurfa 63320, Turkey;
| | - Ugur Cakilcioğlu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek 62500, Turkey; (O.G.); (U.C.)
| | - Luigi Menghini
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Maria Loreta Libero
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| |
Collapse
|
61
|
Emadi M, Halimi M, Moazzam A, Hosseini S, Mojtabavi S, Faramarzi MA, Ghadimi R, Moghadamnia AA, Nasli-Esfahani E, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, in vitro anti-α-glucosidase evaluations, and computational studies of new phthalimide-phenoxy-1,2,3-triazole-N-phenyl (or benzyl) acetamides as potential anti-diabetic agents. Sci Rep 2023; 13:10030. [PMID: 37340010 DOI: 10.1038/s41598-023-36890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
An important target in the treatment of type 2 diabetes is α-glucosidase. Inhibition of this enzyme led to delay in glucose absorption and decrease in postprandial hyperglycemia. A new series of phthalimide-phenoxy-1,2,3-triazole-N-phenyl (or benzyl) acetamides 11a-n were designed based on the reported potent α-glucosidase inhibitors. These compounds were synthesized and screened for their in vitro inhibitory activity against the latter enzyme. The majority of the evaluated compounds displayed high inhibition effects (IC50 values in the range of 45.26 ± 0.03-491.68 ± 0.11 µM) as compared to the positive control acarbose (IC50 value = 750.1 ± 0.23 µM). Among this series, compounds 11j and 11i represented the most potent α-glucosidase inhibitory activities with IC50 values of 45.26 ± 0.03 and 46.25 ± 0.89 µM. Kinetic analysis revealed that the compound 11j is a competitive inhibitor with a Ki of 50.4 µM. Furthermore, the binding interactions of the most potent compounds in α-glucosidase active site were studied through molecular docking and molecular dynamics. The latter studies confirmed the obtained results through in vitro experiments. Furthermore, in silico pharmacokinetic study of the most potent compounds was also performed.
Collapse
Affiliation(s)
- Mehdi Emadi
- Electrical and Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghadimi
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
García-Muñoz AM, García-Guillén AI, Victoria-Montesinos D, Abellán-Ruiz MS, Alburquerque-González B, Cánovas F. Effect of the Combination of Hibiscus sabdariffa in Combination with Other Plant Extracts in the Prevention of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12112269. [PMID: 37297513 DOI: 10.3390/foods12112269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Metabolic syndrome is a complex and multifactorial disorder associated with increased risk of cardiovascular disease and type 2 diabetes, exacerbated by a sedentary lifestyle and situations such as the COVID-19 pandemic. Recent studies have shown that consumption of fruits and vegetables high in polyphenols has a protective effect, reducing cardiovascular risk. Hibiscus sabdariffa (HS) in combination with other plant extracts has recently attracted scientists' attention due to its potential use in the treatment of metabolic syndrome. This systematic review and meta-analysis examines the effects of HS in combination with other plant extracts on the prevention of metabolic syndrome, exploring their synergistic effects and potential as therapeutic agents. For this purpose, a systematic search of randomized clinical trials (RCTs) was conducted in four different databases and the data obtained were then used for a meta-analysis. Initially, the titles and abstracts of 1368 studies were read. From these, 16 studies were examined closely for their eligibility, and finally, seven RCTs with 332 participants were included in both the meta-analysis and the qualitative analysis. Our results show that HS in combination with other plant extracts improved anthropometric parameters, blood pressure, and lipid profile (low density lipoprotein cholesterol and total cholesterol) compared to a placebo control group. It is important to note that although this meta-analysis suggests that HS in combination with other plant extracts may have a beneficial effect on cardiovascular parameters, further research is needed to determine the optimal dose and intake duration.
Collapse
Affiliation(s)
- Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ana I García-Guillén
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | | | | | - Begoña Alburquerque-González
- Izpisua Lab, HiTech, Sport and Health Innovation Hub, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Fernando Cánovas
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
63
|
El Hachlafi N, Benkhaira N, Al-Mijalli SH, Mrabti HN, Abdnim R, Abdallah EM, Jeddi M, Bnouham M, Lee LH, Ardianto C, Ming LC, Bouyahya A, Fikri-Benbrahim K. Phytochemical analysis and evaluation of antimicrobial, antioxidant, and antidiabetic activities of essential oils from Moroccan medicinal plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed Pharmacother 2023; 164:114937. [PMID: 37267633 DOI: 10.1016/j.biopha.2023.114937] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and β-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p < 0.05). It also exerted remarkable activity on FRAP, β-carotene, and DPPH radicals. These findings demonstrated that the tested plants have promising biological activities, validating their ethnomedicinal value and providing potential applications as natural drugs.
Collapse
Affiliation(s)
- Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First Univesity, Faculty of Sciences, B.P. 717 60000 Oujda, Morocco
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First Univesity, Faculty of Sciences, B.P. 717 60000 Oujda, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| |
Collapse
|
64
|
Kumari S, Saini R, Bhatnagar A, Mishra A. HR-LCMS and evaluation of anti-diabetic activity of Hemidesmus indicus (anantmool): Kinetic study, and molecular modelling approach. Comput Biol Chem 2023; 105:107896. [PMID: 37263051 DOI: 10.1016/j.compbiolchem.2023.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
This study delved into the exploration of novel antidiabetic medications acquired from natural resources, utilizing the Ayurvedic Rasayana herb Hemidesmus indicus through cutting-edge chemoprofiling and molecular modelling techniques. The methanolic extract of Hemidesmus indicus root exhibited the highest extractive yield (24.70 ± 0.08 %) and contained substantial levels of total phenolic and flavonoid content as 154.15 ± 1.24 mg Gallic Acid Equivalent/g extract and 70.61 ± 0.35 Quercetin Equivalent/g extract respectively. Invitro study revealed the potent inhibitory potential of methanolic extract of the herb against essential carbohydrate hydrolytic enzymes α-amylase (IC50 = 4.19 ± 0.04 mg/ml) and α-glucosidase (IC50 = 5.78 ± 0.10 mg/ml). Further, the enzyme kinetic study demonstrated the competitive mode of inhibition of both enzymes. HR-LCMS analysis identified the major phytoconstituents present in the extracts, including Solanocapsine, Cyclovirobuxine C, Lucidine B, Zygadenine, Aspidospermidine, silychristin, 3beta-3-Hydroxy-18-lupen-21-one, Manglupenone, and 19-Noretiocholanolone. Molecular docking, molecular dynamic simulation, and MM/GBSA analysis have proved stable, rigid, compact, and folded form of complexes during the entire 100 ns simulation, illustrating Zygadenine, Solanocapsine, and Cyclovirobuxine C as the superior inhibitors of α-A protein, while Zygadenine, Plumieride, and Phlegmarine exhibited greater inhibitory behaviour towards α-G protein than the FDA-approved drug acarbose. Collectively, our findings indicate that the Hemidesmus indicus could be a promising source of α-A and α-G inhibitors, potentially serving as a lead in order to develop medications for type-2 diabetes.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
65
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
66
|
Tran CTH, Nargotra P, Pham HTC, Lieu DM, Huynh PK, Wang HMD, Dong CD, Kuo CH. The effect of carboxymethyl cellulose and β-cyclodextrin as debittering agents on bitterness and physicochemical properties of bitter gourd extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1521-1529. [PMID: 37033307 PMCID: PMC10076475 DOI: 10.1007/s13197-023-05693-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 04/11/2023]
Abstract
Bitter gourd extract (BGE) is rich in antioxidants and anti-diabetic components that promote good human health; however, its bitter taste makes it challenging to use in food. In this study, the effect of carboxymethyl cellulose and β-cyclodextrin (β-CD) on the bitterness and properties of BGE were investigated. The bitterness intensity was evaluated by the trained sensory panel, and the physicochemical properties were also determined, including viscosity, total saponin, polyphenol content, antioxidant capacity, and α-amylase inhibition activity. It was found that the bitterness of BGE with 0.75%, w/v β-cyclodextrin decreased significantly by more than 90%. Additionally, FTIR, 1 H-NMR, and thermogravimetric analysis of BGE supplemented with β-CD confirmed the formation of a complex between β-CD and components of BGE. The findings of the current study also reveal that debittering agents did not inhibit the bioactivities of BGE.
Collapse
Affiliation(s)
- Cam Thi Hong Tran
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, 140 Le TrongTan Street, Ho Chi Minh, Tay Thanh Ward Vietnam
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Hoa Thi Cam Pham
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, 140 Le TrongTan Street, Ho Chi Minh, Tay Thanh Ward Vietnam
| | - Dong My Lieu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, 140 Le TrongTan Street, Ho Chi Minh, Tay Thanh Ward Vietnam
| | - Phung Kim Huynh
- Hutech Institute of Applied Sciences, HUTECH University, Dien Bien Phu Street, Ward 25, Ho Chi Minh, Binh Thanh Vietnam
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| |
Collapse
|
67
|
Chahal S, Punia J, Rani P, Singh R, Mayank, Kumar P, Kataria R, Joshi G, Sindhu J. Development of thiazole-appended novel hydrazones as a new class of α-amylase inhibitors with anticancer assets: an in silico and in vitro approach. RSC Med Chem 2023; 14:757-781. [PMID: 37122544 PMCID: PMC10131644 DOI: 10.1039/d2md00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperamylasemia is reported to be associated with numerous chronic diseases, including diabetes and cancer. Considering this fact, we developed a series of thiazole-clubbed hydrazones. The derivatives were explored for their in vitro α-amylase inhibitory activity, which was further corroborated with their anticancer assets using a panel of cancer cells, including colon cancer (HCT-116), lung cancer (A549), and breast cancer (MDA-MB-231). To better understand pharmacokinetics, the synthetic derivatives were subjected to in silico ADMET prediction. The in vitro based biological investigation revealed that compared to the reference drug acarbose (IC50 = 0.21 ± 0.008 μM), all the synthesized compounds (5a-5aa) exhibited in vitro α-amylase inhibitory response in the range of IC50 values from 0.23 ± 0.003 to 0.5 ± 0.0 μM. Along with this, the proliferations of the HCT-116, A549 and MDA-MB-231 cells were inhibited when treated with the synthesized compounds. Notable cancer cell growth inhibition was observed for compounds 5e, 5f and 5y, which correlated with their α-amylase inhibition. Additionally, the kinetics investigation revealed that 5b, 5e, 5f and 5y exhibit uncompetitive inhibition. 5b was found to be the least cytotoxic and most potent α-amylase inhibitor and was further validated by absorption and fluorescence quenching technique.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Jyoti Punia
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Mayank
- 3IT - Université de Sherbrooke 3000 Bd de l'Université Immeuble P2 Sherbrooke QC J1K 0A5 Canada
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 India
| | - Ramesh Kataria
- Department of Chemistry, Panjab University Chandigarh 160014 India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central) University Chauras Campus, Tehri Garhwal 249161 Uttarakhand India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| |
Collapse
|
68
|
Zhang S, Jiang X, Li C, Qiu L, Chen Y, Yu Z, Ni D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods 2023; 12:foods12081726. [PMID: 37107521 PMCID: PMC10138149 DOI: 10.3390/foods12081726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effect of different fermentation humidities (55%, 65%, 75%, 85% and 95%) on congou black tea quality and bioactivity. Fermentation humidity mainly affected the tea's appearance, aroma and taste quality. The tea fermented at low humidity (75% or below) showed a decrease in tightness, evenness and moistening degree, as well as a heavy grassy and greenish scent, plus a green, astringent and bitter taste. The tea fermented at a high humidity (85% or above) presented a sweet and pure aroma, as well as a mellow taste, plus an increase of sweetness and umami. With increasing fermentation humidity, the tea exhibited a drop in the content of flavones, tea polyphenols, catechins (EGCG, ECG) and theaflavins (TF, TF-3-G), contrasted by a rise in the content of soluble sugars, thearubigins and theabrownins, contributing to the development of a sweet and mellow taste. Additionally, the tea showed a gradual increase in the total amount of volatile compounds and in the content of alcohols, alkanes, alkenes, aldehydes, ketones and acids. Moreover, the tea fermented at a low humidity had stronger antioxidant activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and a higher inhibiting capability on the activities of α-amylase and α-glucosidase. Overall results indicated the desirable fermentation humidity of congou black tea should be 85% or above.
Collapse
Affiliation(s)
- Sirui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Li Qiu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
69
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027889 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
70
|
Mihai E, Negreanu-Pirjol BS, Craciunescu O, Ciucan T, Iosageanu A, Seciu-Grama AM, Prelipcean AM, Utoiu E, Coroiu V, Ghenea AM, Negreanu-Pirjol T. In Vitro Hypoglycemic Potential, Antioxidant and Prebiotic Activity after Simulated Digestion of Combined Blueberry Pomace and Chia Seed Extracts. Processes (Basel) 2023. [DOI: 10.3390/pr11041025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hypoglycemic potential, antioxidant activity and prebiotic activity of a hydroalcoholic extract of blueberry pomace (BP), an aqueous extract of chia seeds (CS) and a novel combination of BP–CS extracts (BCM) for further use as ingredient of functional food. Spectrometric and HPLC analyses were used to characterize the total phenolic and flavonoid content and composition of BP, while CS was analyzed for total carbohydrate content. Data showed that the BCM mixture exerted an inhibition of α-amylase activity, which was 1.36 times higher than that of BP and 1.25 higher than CS extract. The mixture also showed better scavenging activity of free DPPH radicals than individual extracts, and had an IC50 value of 603.12 µg/mL. In vitro testing indicated that both serum- and colon-reaching products of simulated intestinal digestion of BCM presented the capacity to protect Caco-2 intestinal cells against oxidative stress by inhibition of reactive oxygen species production. In addition, the colon-reaching product of BCM digestion had the capacity to significantly (p < 0.05) stimulate the growth of Lactobacillus rhamnosus and Lactobacillus acidophilus, revealing a prebiotic potential. All these results indicated that improved biological activity of the novel combination of BP and CS extracts could be due to the synergistic action of constituents. The combination is recommended for further testing and the development of novel functional food for controlling type 2 diabetes and gastrointestinal conditions.
Collapse
|
71
|
Nikolaichuk H, Choma IM, Morlock GE. Effect-Directed Profiling of Akebia quinata and Clitoria ternatea via High-Performance Thin-Layer Chromatography, Planar Assays and High-Resolution Mass Spectrometry. Molecules 2023; 28:molecules28072893. [PMID: 37049655 PMCID: PMC10096148 DOI: 10.3390/molecules28072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC-HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, β-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety.
Collapse
Affiliation(s)
- Hanna Nikolaichuk
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego St. 8b, 20090 Lublin, Poland
| | - Irena M Choma
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
72
|
Naomi R, Rusli RNM, Huat TS, Embong H, Bahari H, Kamaruzzaman MA. Early Intervention of Elateriospermum tapos Yoghurt in Obese Dams Mitigates Intergenerational Cognitive Deficits and Thigmotactic Behaviour in Male Offspring via the Modulation of Metabolic Profile. Nutrients 2023; 15:nu15061523. [PMID: 36986254 PMCID: PMC10052004 DOI: 10.3390/nu15061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Maternal obesity is an intergenerational vicious cycle and one of the primary causes of cognitive deficits and high anxiety levels in offspring, which often manifest independently of sex. It is proven that curbing the intergenerational inheritance of obesity through early intervention during the gestation period has a positive outcome on the body composition, cognitive function, and anxiety level of the offspring. A recent discovery shows that the consumption of Elateriospermum tapos (E. tapos) seed extract modulates body mass and ameliorates stress hormones in obese dams, while a probiotic bacterial strain can cross the placenta and boost a child's memory. Thus, we speculate that probiotics are the best medium to integrate plant extract (E. tapos extract) to access the effect on the child's cognition. Thus, this study aimed to investigate the early intervention of E. tapos yoghurt in obese dams in the cognition and anxiety levels of male offspring. In this study, 40 female rats were fed with a high-fat diet (HFD) to induce obesity before pregnancy, while another 8 rats were fed with standard rat pellets for 16 weeks. Upon successful copulation, treatment was initiated for the obese dams up to the postnatal day (PND) 21. The groups included normal chow and saline (NS), HFD and saline (HS), HFD and yoghurt (HY), HFD and 5 mg/kg E. tapos yoghurt (HYT5), HFD and 50 mg/kg E. tapos yoghurt (HYT50), and HFD and 500 mg/kg E. tapos yoghurt (HYT500). All rats were euthanised on PND 21, and the body mass index (BMI), Lee index, and waist circumference were measured for the male offspring. Hippocampal-dependent memory tests and open field tests were conducted to access for cognition and anxiety status. Fasting blood glucose (FBG), total fat (%), insulin, leptin, lipid profile, and antioxidant parameter on serum and hypothalamus (FRAP and GSH) were accessed on PND 21. The result shows male offspring of 50 mg/kg-supplemented obese dams have comparable total fat (%), lipid profile, insulin level, FBG level, plasma insulin level, recognition index, low anxiety level, and improved hypothalamic FRAP and GSH levels to the normal group. In conclusion, this study highlights that the effect of early intervention of our novel formulation of E. tapos yoghurt in obese dams alleviates cognitive deficits and anxiety in male offspring by modulating metabolic profiles at the dose of 50 mg/kg.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Rusydatul Nabila Mahmad Rusli
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Teoh Soo Huat
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
73
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D. Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies. Comput Biol Med 2023; 157:106776. [PMID: 36947906 DOI: 10.1016/j.compbiomed.2023.106776] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
α-Amylase (EC.3.2.1.1) is a ubiquitous digestive endoamylase. The abrupt rise in blood glucose levels due to the hydrolysis of carbohydrates by α-amylase at a faster rate is one of the main reasons for type 2 diabetes. The inhibitors prevent the action of digestive enzymes, slowing the digestion of carbs and eventually assisting in the management of postprandial hyperglycemia. In the course of developing α-amylase inhibitors, we have screened 2-aryliminothiazolidin-4-one based analogs for their in vitro α-amylase inhibitory potential and employed various in silico approaches for the detailed exploration of the bioactivity. The DNSA bioassay revealed that compounds 5c, 5e, 5h, 5j, 5m, 5o and 5t were more potent than the reference drug (IC60 value = 22.94 ± 0.24 μg mL-1). The derivative 5o with -NO2 group at both the rings was the most potent analog with an IC60 value of 19.67 ± 0.20 μg mL-1 whereas derivative 5a with unsubstituted aromatic rings showed poor inhibitory potential with an IC60 value of 33.40 ± 0.15 μg mL-1. The reliable QSAR models were developed using the QSARINS software. The high value of R2ext = 0.9632 for model IM-9 showed that the built model can be applied to predict the α-amylase inhibitory activity of the untested molecules. A consensus modelling approach was also employed to test the reliability and robustness of the developed QSAR models. Molecular docking and molecular dynamics were employed to validate the bioassay results by studying the conformational changes and interaction mechanisms. A step further, these compounds also exhibited good ADMET characteristics and bioavailability when tested for in silico pharmacokinetics prediction parameters.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
74
|
Bioassay-Guided Alkaloids Isolation from Camellia sinensis and Colchicum luteum: In Silico and In Vitro Evaluations for Protease Inhibition. Molecules 2023; 28:molecules28062459. [PMID: 36985431 PMCID: PMC10058905 DOI: 10.3390/molecules28062459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Bioassay-guided isolation from Camellia sinensis (Theaceae) and Colchicum luteum (Liliaceae) utilizing an in vitro model of protease assay revealed colchicine (1) and caffeine (2) from chloroform fractions, respectively. Their structures were validated using spectral techniques. The purified compounds were further optimized with Gaussian software utilizing the B3LYP functional and 6-31G(d,p) basis set. The result files were utilized to determine several global reactivity characteristics to explain the diverse behavior of the compounds. Colchicine (1) showed a higher inhibition of protease activity (63.7 ± 0.5 %age with IC50 = 0.83 ± 0.07 mM), compared with caffeine (2) (39.2 ± 1.3 %age). In order to determine the type of inhibition, compound 1 was further studied, and, based on Lineweaver–Burk/Dixon plots and their secondary replots, it was depicted that compound 1 was a non-competitive inhibitor of this enzyme, with a Ki value of 0.690 ± 0.09 mM. To elucidate the theoretical features of protease inhibition, molecular docking studies were performed against serine protease (PDB #1S0Q), which demonstrated that compound 1 had a strong interaction with the different amino acid residues located on the active site of this understudied enzyme, with a high docking score of 16.2 kcal/mol.
Collapse
|
75
|
Camacho MDM, Martínez-Lahuerta JJ, Ustero I, García-Martínez E, Martínez-Navarrete N. Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro. Foods 2023; 12:foods12061127. [PMID: 36981054 PMCID: PMC10048701 DOI: 10.3390/foods12061127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The reuse of food by-products is crucial for the well-being of the planet. Considering the high content of nutrients and other bioactive compounds in many of them, investigating their suitability for use as human food ingredients is an interesting challenge. In this study, in addition to the proximate composition, phenol content and antioxidant activity (AOA = 3.2 mmol Trolox equivalent (TE)/100 g, db) of orange juice powder by-product (CoP), different in vitro properties related to carbohydrate metabolism have been characterised. Specifically, the glycaemic index (GI), the glycaemic load (GL), the glucose dialysis retardation index (GDRI = 13.6%), the glucose adsorption capacity (GAC = 22.5 mM) and the inhibition capacity of α-amylase (α-A = 46.9%) and α-glucosidase (α-G = 93.3%) of powdered orange juice waste have been determined and related to fibre and phenolics composition. Taking advantage of the high fibre content of the by-product (36.67%), its GL was calculated for a CoP dose that allows labelling the food to which it is added as a source of fibre. The low GI value (24.4%) and the low GL (0.918 g available carbohydrates per serving) allowed us to conclude that the product studied could be an interesting opportunity for the food industry to offer it as a healthy food ingredient to be included in the diet, especially for those suffering from type 2 diabetes mellitus. Of the total phenolic compounds (TP = 509 mg equivalent of gallic acid (GAE)/100 g, db), 68% were found in free fraction (FP), and their contribution to the total AOA was 40.6%, while this was 54.9% for the 32% of phenols bound to plant tissues (BP).
Collapse
Affiliation(s)
- María Del Mar Camacho
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan José Martínez-Lahuerta
- CA Juan Llorens, Departamento Valencia-Hospital General, Consellería de Sanitat Universal i Salud Pública, Generalitat Valenciana, 46008 Valencia, Spain
| | - Isabel Ustero
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Eva García-Martínez
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Nuria Martínez-Navarrete
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
76
|
Glucoregulatory Properties of Fermented Soybean Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease, characterized by persistent hyperglycemia, the prevalence of which is on the rise worldwide. Fermented soybean products (FSP) are rich in diverse functional ingredients which have been shown to exhibit therapeutic properties in alleviating hyperglycemia. This review summarizes the hypoglycemic actions of FSP from the perspective of different target-related molecular signaling mechanisms in vitro, in vivo and clinical trials. FSP can ameliorate glucose metabolism disorder by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 translocation, accelerating muscular glucose utilization, inhibiting hepatic gluconeogenesis, ameliorating pancreatic dysfunction, relieving adipose tissue inflammation, and improving gut microbiota disorder. Sufficiently recognizing and exploiting the hypoglycemic activity of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
|
77
|
Evaluation of Antidiabetic Effect of Luteolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14030126. [PMID: 36976050 PMCID: PMC10053838 DOI: 10.3390/jfb14030126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite the existence of modern antidiabetic medications, diabetes still affects millions of individuals worldwide, with a high death and disability rate. There has been a concerted search for alternative natural medicinal agents; luteolin (LUT), a polyphenolic molecule, might be a good choice, both because of its efficacy and because of it having fewer side effects, compared to conventional medicines. This study aims to explore the antidiabetic potential of LUT in diabetic rats, induced by streptozotocin (STZ; 50 mg/kg b.w.), intraperitoneally. The level of blood glucose, oral glucose tolerance test (OGTT), body weight, glycated hemoglobin A1c (HbA1c), lipidemic status, antioxidant enzymes, and cytokines were assessed. Also, its action mechanism was explored through molecular docking and molecular dynamics simulations. Oral supplementation of LUT for 21 days resulted in a significant decrease in the blood glucose, oxidative stress, and proinflammatory cytokine levels, and modulated the hyperlipidemia profile. LUT also ameliorated the tested biomarkers of liver and kidney function. In addition, LUT markedly reversed the damage to the pancreas, liver, and kidney cells. Moreover, molecular docking and molecular dynamics simulations revealed excellent antidiabetic behavior of LUT. In conclusion, the current investigation revealed that LUT possesses antidiabetic activity, through the reversing of hyperlipidemia, oxidative stress, and proinflammatory status in diabetic groups. Therefore, LUT might be a good remedy for the management or treatment of diabetes.
Collapse
|
78
|
Nabil-Adam A, Ashour ML, Tamer TM, Shreadah MA, Hassan MA. Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts 2023; 13:443. [DOI: 10.3390/catal13020443] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
Jania rubens red seaweed has various bioactive compounds that can be used for several medicinal and pharmaceutical applications. In this study, we investigate the antidiabetic, anti-inflammatory, and antioxidant competency of Jania rubens polyphenolic extract (JRPE) by assessing their interactions with α-amylase, lipase, and trypsin enzymes. HPLC analysis revealed the dominance of twelve polyphenolic compounds. We performed computational analysis using α-amylase, lipase, and trypsin as target proteins for the polyphenols to explore their activities based on their predicted modes of binding sites following molecular modeling analysis. The molecular docking analysis demonstrated a good affinity score with a noticeable affinity to polyphenolic compositions of Jania rubens. The compounds with the highest affinity score for α-amylase (PDB: 4W93) were kaempferol, quercetin, and chlorogenic acid, with −8.4, −8.8 and −8 kcal/mol, respectively. Similarly, lipase (PDB: 1LPB) demonstrated high docking scores of −7.1, −7.4, and −7.2 kcal/mol for kaempferol, quercetin, and chlorogenic acid, respectively. Furthermore, for trypsin (PDB: 4DOQ) results, kaempferol, quercetin, and chlorogenic acid docking scores were −7.2, −7.2, and −7.1 kcal/mol, respectively. The docking findings were verified using in vitro evaluations, manifesting comparable results. Overall, these findings enlighten that the JRPE has antidiabetic, anti-inflammatory, and antioxidant properties using different diabetics’ enzymes that could be further studied using in vivo investigations for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
- University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
79
|
Synthesis, α-glucosidase inhibitory activity, and molecular docking of cinnamamides. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
80
|
Luu LK, Thangsiri S, Sahasakul Y, Aursalung A, Inthachat W, Temviriyanukul P, On-Nom N, Chupeerach C, Suttisansanee U. Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit. Nutrients 2023; 15:nu15040950. [PMID: 36839313 PMCID: PMC9960393 DOI: 10.3390/nu15040950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Nephelium hypoleucum Kurz is an evergreen tree in the Sapindaceae family, mostly found in the forests of some Southeast Asia countries, especially Thailand. The lack of biological information regarding this tree has led to inappropriate agricultural management, conservation and utilization. Thus, this study aims to examine the nutritional composition, organic acid and phenolic profiles and in vitro health properties through several key enzyme inhibitions against some civilization diseases including Alzheimer's disease (β-secretase (BACE-1), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)), obesity (lipase), hypertension (angiotensin-converting enzyme (ACE)) and diabetes (dipeptidyl peptidase-IV (DPP-IV), α-amylase and α-glucosidase) on the aril (flesh) part of N. hypoleucum Kurz fruit. The remaining fruit parts including the pericarp (peel) and seed were also assessed as sources of potential phenolics as well as key enzyme inhibitors. As results, carbohydrate (17.18 g) was found to be a major source of energy (74.80 kcal) in the aril (100 g fresh weight), with trace amounts of protein (0.78 g) and fat (0.32 g). The fruit aril also contained high insoluble dietary fiber (5.02 g) and vitamin C (11.56 mg), while potassium (215.82 mg) was detected as the major mineral. Organic acid profile indicated that the aril was rich in citric acid, while the phenolic profile suggested predominant quercetin and kaempferol. Interestingly, high gallic acid contents were detected in both pericarp and seed, with the latter 3.2-fold higher than the former. The seed also possessed the highest total phenolic content (TPC, 149.45 mg gallic acid equivalent/g dry weight), while total anthocyanin content (TAC, 0.21 mg cyanidin-3-O-glucoside equivalent/g dry weight) was only detected in pericarp. High TPC also led to high enzyme inhibitory activities in seed including BACE-1, AChE, BChE, ACE, DPP-IV and α-glucosidase. Interestingly, aril with the highest α-amylase inhibition suggested strong inhibitory distribution, predominantly from quercetin and kaempferol. Lipase inhibitory activities were only detected in the aril and pericarp, suggesting the biological function of these two phenolics and possibly anthocyanins.
Collapse
|
81
|
Nurkolis F, Taslim NA, Subali D, Kurniawan R, Hardinsyah H, Gunawan WB, Kusuma RJ, Yusuf VM, Pramono A, Kang S, Mayulu N, Syauki AY, Tallei TE, Tsopmo A, Kim B. Dietary Supplementation of Caulerpa racemosa Ameliorates Cardiometabolic Syndrome via Regulation of PRMT-1/DDAH/ADMA Pathway and Gut Microbiome in Mice. Nutrients 2023; 15:nu15040909. [PMID: 36839268 PMCID: PMC9959712 DOI: 10.3390/nu15040909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of an aqueous extract of Caulerpa racemosa (AEC) on cardiometabolic syndrome markers, and the modulation of the gut microbiome in mice administered a cholesterol- and fat-enriched diet (CFED). Four groups of mice received different treatments: normal diet, CFED, and CFED added with AEC extract at 65 and 130 mg/kg body weight (BW). The effective concentration (EC50) values of AEC for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and lipase inhibition were lower than those of the controls in vitro. In the mice model, the administration of high-dose AEC showed improved lipid and blood glucose profiles and a reduction in endothelial dysfunction markers (PRMT-1 and ADMA). Furthermore, a correlation between specific gut microbiomes and biomarkers associated with cardiometabolic diseases was also observed. In vitro studies highlighted the antioxidant properties of AEC, while in vivo data demonstrated that AEC plays a role in the management of cardiometabolic syndrome via regulation of oxidative stress, inflammation, endothelial function (PRMT-1/DDAH/ADMA pathway), and gut microbiota.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Correspondence:
| | - Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Rudy Kurniawan
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia—Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta 55223, Indonesia
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia
| | - Vincentius Mario Yusuf
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 05254, Republic of Korea
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Andi Yasmin Syauki
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 05254, Republic of Korea
| |
Collapse
|
82
|
Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
83
|
Sicari V, Romeo R, Mincione A, Santacaterina S, Tundis R, Loizzo MR. Ciabatta Bread Incorporating Goji ( Lycium barbarum L.): A New Potential Functional Product with Impact on Human Health. Foods 2023; 12:566. [PMID: 36766094 PMCID: PMC9913991 DOI: 10.3390/foods12030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
This work investigated the phytochemical content and bioactivity of Lycium barbarum collected in Calabria and evaluated, for the first time, the possibility of enriching traditional ciabatta bread with goji fresh flesh puree. For this purpose, goji flesh puree, bread, and bread enriched with 20% and 40% goji flesh puree (G20 and G40 samples, respectively) were subjected to several analyses. Selected compounds were quantified by UHPLC analysis in both goji fresh flesh puree and after simulation of the cooking process. The impact of the addition on key enzymes (lipase, α-amylase, and α-glucosidase) related to metabolic syndrome was assessed together with the antioxidant properties. Texture, colourimetric, and sensory analyses on enriched bread were performed to evaluate consumer acceptance. Despite cooking, the enriched bread maintained good levels of bioactive compounds compared to the berry pulp alone (p < 0.01). The enriched bread showed the ability to protect against lipid peroxidation, with IC50 values of 6.88 and 6.52 μg/mL for samples G20 and G40, respectively, after incubation for 30 min (p < 0.01). Although less active than the control, the enriched bread showed inhibitory activities against the enzymes involved in the digestion of carbohydrates. From a sensory point of view, the addition of goji fresh pulp puree slightly modified the appearance but not the flavour and taste of the bread. Collectively, our results support the potential healthy function of this baked product.
Collapse
Affiliation(s)
- Vincenzo Sicari
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosa Romeo
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Antonio Mincione
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Simone Santacaterina
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
84
|
Abdjan MI, Aminah NS, Kristanti AN, Siswanto I, Ilham B, Wardana AP, Takaya Y. Structure-based approach: molecular insight of pyranocumarins against α-glucosidase through computational studies. RSC Adv 2023; 13:3438-3447. [PMID: 36756595 PMCID: PMC9890569 DOI: 10.1039/d2ra07537g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
α-glucosidase is an enzyme that catalyzes the release of α-glucose molecules through hydrolysis reactions. Regulation of this enzyme can increase sugar levels in type-2 diabetes mellitus (DM) patients. Pyranocoumarin derivatives have been identified as α-glucosidase inhibitors. Through an in silico approach, this work studied the inhibition of three pyranocoumarin compounds against the α-glucosidase at the molecular level. Molecular docking and molecular dynamics simulation were performed to understand the dynamics behavior of pyranocoumarin derivatives against α-glucosidase. The prediction of free binding energy (ΔG bind) using the Quantum Mechanics/Molecular Mechanics-Generalized Born (QM/MM-GBSA) approach for each system had the following results, PC1-α-Glu: -13.97 kcal mol-1, PC2-α-Glu: -3.69 kcal mol-1, and PC3-α-Glu: -13.68 kcal mol-1. The interaction energy of each system shows that the grid score, ΔG bind, and ΔG exp values had a similar correlation, that was PC1-α-Glu > PC3-α-Glu > PC2-α-Glu. Additionally, the decomposition energy analysis (ΔG residue bind) was carried out to find out the contribution of the key binding residue. The results showed that there were 15 key binding residues responsible for stabilizing pyranocumarin binding with criteria of ΔG residue bind < -1.00 kcal mol-1. The evaluation presented in this work could provide information on the molecular level about the inhibitory efficiency of pyranocoumarin derivatives against a-glucosidase enzyme based on computational studies.
Collapse
Affiliation(s)
- Muhammad Ikhlas Abdjan
- Ph.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga Komplek Kampus C UNAIR, Jl. Mulyorejo 60115 Surabaya Indonesia.,Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia .,Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga Surabaya 60115 Indonesia
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia .,Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga Surabaya 60115 Indonesia
| | - Imam Siswanto
- Ph.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas AirlanggaKomplek Kampus C UNAIR, Jl. Mulyorejo60115SurabayaIndonesia,Bioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas AirlanggaSurabayaIndonesia
| | - Baso Ilham
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Andika Pramudya Wardana
- Ph.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga Komplek Kampus C UNAIR, Jl. Mulyorejo 60115 Surabaya Indonesia.,Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Yoshiaki Takaya
- Faculty of Pharmacy, Meijo University150 Yagotoyama, TempakuNagoya468-8503Japan
| |
Collapse
|
85
|
Shen H, Wang J, Ao J, Hou Y, Xi M, Cai Y, Li M, Luo A. Structure-activity relationships and the underlying mechanism of α-amylase inhibition by hyperoside and quercetin: Multi-spectroscopy and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121797. [PMID: 36115306 DOI: 10.1016/j.saa.2022.121797] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Inhibiting the activity of α-amylase has been considered an effective strategy to manage hyperglycemia. Hyperoside and quercetin are the main natural flavonoids in various plants, and the inhibition mechanism on α-amylase remains unclear. In this study, the structure-activity relationships between hyperoside/quercetin and α-amylase were evaluated by enzyme kinetic analysis, multi-spectroscopic techniques, and molecular docking analysis. Results showed that hyperoside and quercetin exhibited significant α-amylase inhibitory activities with IC50 values of 0.491 and 0.325 mg/mL, respectively. The α-amylase activity decreased in the presence of hyperoside and quercetin in a competitive and noncompetitive manner, respectively. UV-vis spectra suggested that the aromatic amino acid residues (Trp and Tyr) microenvironment of α-amylase changed in the presence of these two flavonoids. FTIR and CD spectra showed the vibrations of the amide bands and the secondary structure content changes. The fluorescence quenching mechanism of α-amylase by hyperoside and quercetin belonged to the static quenching type. Finally, molecular docking intuitively showed that hyperoside/quercetin formed hydrogen bonds with the key active site residues (Asp197, Glu233, and Asp300) in α-amylase. MD simulation indicated hyperoside/quercetin-α-amylase docked complexes had good stability. Taken together, this research provides new sights to developing potent drugs or functional foods with hyperoside and quercetin, offering new avenues for hyperglycemia treatment.
Collapse
Affiliation(s)
- Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jingfang Ao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yujie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meihua Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
86
|
WANG J, WEI BC, WEI B, YU HY, THAKUR K, WANG CY, WEI ZJ. Evaluation of phenolics biotransformation and health promoting properties of blueberry juice following lactic acid bacteria fermentation. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | | | | | - Zhao-Jun WEI
- Hefei University of Technology, China; North Minzu University, China
| |
Collapse
|
87
|
Abadan S, Saglam MF, Koca MS, Bingul M, Sahin H, Zorlu Y, Sengul IF. Synthesis and Molecular Modeling Studies of Naphthazarin Derivatives as Novel Selective Inhibitors of α-Glucosidase and α-Amylase. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
88
|
In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010126. [PMID: 36615320 PMCID: PMC9822058 DOI: 10.3390/molecules28010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a metabolic disorder which is one of the leading causes of mortality and morbidities in elderly humans. Chronic diabetes can lead to kidney failure, blindness, limb amputation, heart attack and stroke. Physical activity, healthy diets and medications can reduce the incidence of diabetes, so the search for more efficient antidiabetic therapies, most especially from natural products, is a necessity. Herein, extract from roots of the medicinal plant Pterocarpus erinaceus was purified by column chromatography and afforded ten compounds which were characterized by EIMS, HR-FAB-MS, 1D and 2D NMR techniques. Amongst them were, a new trimeric derivative of epicatechin, named 2,3-Epoxyprocyanidin C1 (1); two pentacyclic triterpenoids, friedelin (2) and betulin (3); angolensin (4); flavonoids such as 7-methoxygenistein (5), 7-methoxydaidzein (6), apigenin 7-O-glucoronide (8) and naringenin 7-O-β-D-glucopyranoside (9); and an ellagic acid derivative (10). The extract and compounds were evaluated for their antidiabetic potential by α-amylase and α-glucosidase inhibitory assays. IC50 values of compound 7 (48.1 ± 0.9 µg/mL), compound 8 (48.6 ± 0.1 µg/mL), compound 9 (50.2 ± 0.5 µg/mL) and extract (40.5 ± 0.8 µg/mL) when compared to that of acarbose (26.4 ± 0.3 µg/mL) indicated good α-amylase inhibition. In the α-glucosidase assay, the extract (IC50 = 31.2 ± 0.1 µg/mL), compound 7 (IC50 = 39.5 ± 1.2 µg/mL), compound 8 (IC50 = 40.9 ± 1.3 µg/mL), compound 1 (IC50 = 41.6 ± 1.0 µg/mL), Compound 4 (IC50 = 43.4 ± 0.5 µg/mL), compound 5 (IC50 = 47.6 ± 0.9 µg/mL), compound 6 (IC50 = 46.3 ± 0.2 µg/mL), compound 7 (IC50 = 45.0 ± 0.8 µg/mL), compound 9 (IC50 = 44.8 ± 0.6 µg/mL) and compound 11 (IC50 = 47.5 ± 0.4 µg/mL) all had moderate-to-good inhibitions, compared to acarbose (IC50 = 22.0 ± 0.5 µg/mL). The ability to inhibit α-amylase and α-glucosidase indicates that P. erinaceus and its compounds can lower blood glucose levels by delaying hydrolysis of carbohydrates into sugars, thereby providing a source of natural antidiabetic remedy.
Collapse
|
89
|
Liu W, Ma R, Lu S, Wen Y, Li H, Wang J, Sun B. Acid-Resistant Mesoporous Metal-Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55447-55457. [PMID: 36478454 DOI: 10.1021/acsami.2c18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oral administration of bioactive peptides with α-glucosidase inhibitory activities is a promising strategy for diabetes mellitus. The wheat germ peptide Leu-Asp-Leu-Gln-Arg (LDLQR) has been previously proven to inhibit the activity of α-glucosidase efficiently. However, it is still difficult to transport the peptide to the intestine completely due to the harsh condition of the stomach. Herein, an acid-resistant zirconium-based metal-organic framework, NU-1000, was used to immobilize LDLQR with a high encapsulation capacity (92.72%) and encapsulation efficiency (44.08%) in only 10 min. The in vitro release results showed that the acid-stable NU-1000 not only effectively protected LDLQR from degradation in the presence of stomach acid and pepsin effectively but also ensured the release of encapsulated LDLQR under simulated intestinal conditions. Furthermore, LDLQR@NU-1000 could slow down the elevated blood sugar caused by maltose in mice and the area under blood sugar curve decreased by almost 20% when compared with the control group. The inflammatory factor (IL-1β, IL-6) in vivo and cell growth in vitro were almost the same between NU-1000 treatment and normal control groups. This study indicates NU-1000 is a promising vehicle for targeted peptide-based bioactive delivery to the small intestine.
Collapse
Affiliation(s)
- Weiwei Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Ruolan Ma
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Shiyi Lu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), Beijing100048, China
| | - Hongyan Li
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Baoguo Sun
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| |
Collapse
|
90
|
New Biological and Chemical Evidences of Two Lamiaceae Species ( Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249029. [PMID: 36558163 PMCID: PMC9784812 DOI: 10.3390/molecules27249029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In this study, the methanolic and infusion extracts of two species, Thymbra capitata and Thymus sipyleus subsp. rosulans, were tested for their chemical composition and biological abilities (antioxidant, enzyme inhibitory and anti-inflammatory effects). The extracts yielded total phenolic and flavonoid contents in the range of 83.43-127.52 mg GAE/g and 9.41-46.34 mg RE/g, respectively. HPLC analysis revealed rosmarinic acid to be a major component of the studied extracts (15.85-26.43%). The best ABTS radical scavenging ability was observed in the methanol extract of T. capitata with 379.11 mg TE/g, followed by in the methanol extract of T. sipylus (360.93 mg TE/g). In the CUPRAC assay, the highest reducing ability was also found in the methanol extract of T. capitata with 802.22 mg TE/g. The phosphomolybdenum ability ranged from 2.39 to 3.61 mmol TE/g. In terms of tyrosinase inhibitory effects, the tested methanol extracts (83.18-89.66 mg KAE/g) were higher than the tested water extracts (18.74-19.11 mg KAE/g). Regarding the BChE inhibitory effects, the methanol extracts were active on the enzyme while the water extracts showed no inhibitory effect on it. Overall, the methanolic extracts showed better enzyme inhibition compared to the infusion extracts. Molecular docking also showed the selected exhibited potential binding affinities with all enzymes, with a preference for cholinesterases. Additionally, the extracts were effective in attenuating the LPS-induced increase in COX-2 and IL-6 gene expression in isolated colon, thus indicating promising anti-inflammatory effects. The preliminary results of this study suggest that these species are good natural sources of antioxidants and also provide some scope as enzyme inhibitors, most likely due to their bioactive contents such as phenolic acids, and thus can be exploited for different applications related to health promotion and disease prevention.
Collapse
|
91
|
Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities. Pharmaceuticals (Basel) 2022; 15:ph15121576. [PMID: 36559028 PMCID: PMC9785777 DOI: 10.3390/ph15121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
As the ninth leading cause of death globally, diabetes mellitus (DM) is considered to be the worst chronic metabolic disease requiring an enormous need for healthcare with over 578 million expected cases by 2023. Several recent findings have demonstrated that mediating the activity of carbohydrate-hydrolyzing enzymes, including α-amylase and α-glucosidase, could be a potential strategy for managing the development of DM. In the presented study, a novel set of 1,3,5-trisubstituted-2-thioxoimidazolidin-4-ones was designed, synthesized, and characterized. The antidiabetic activity of the synthesized compounds was explored by assessing their inhibitory activity toward α-amylase and α-glucosidase enzymes. The results demonstrated that this class of compounds exhibits considerable inhibitory activity toward both α-amylase and α-glucosidase enzymes. Among the synthesized compounds, compound 5a demonstrated the most inhibitory activity with IC50 of 5.08 and µg/mL and 0.21 µg/mL toward α-glucosidase and α-amylase activities, respectively, as compared to the drug Acarbose (IC50 = 5.76 µg/mL and 0.39 µg/mL, respectively). To gain insights into the antidiabetic potential of compound 5a, we assessed the cytotoxic and antioxidant activities. Our findings indicated that compound 5a displays considerable cytotoxicity toward WI-38 cells with an IC50 of 88.54 µg/mL, as compared to the drug Celecoxib (IC50 = 93.05 µg/mL). Further, compound 5a exhibited a high scavenging activity toward 2,2-Diphenyl1-picrylhydrazyl (DPPH) free radicals (IC50 = 51.75 µg/mL) and showed a low potential to produce ROS as indicated by the monitoring of the generated H2O2 (132.4 pg/mL), as compared to Trolox (IC50 = 58.09 µg/mL) and Celecoxib (171.6 pg/mL). Finally, we performed extensive molecular modeling studies to affirm the binding affinity of this class of compounds to the binding pocket of α-amylase and α-glucosidase enzymes. Collectively, our findings indicate that this class of compounds, particularly compound 5a, could be utilized as a lead structure for the development of novel compounds with potential antidiabetic and antioxidant activities.
Collapse
|
92
|
Teke GM, Gakingo GK, Pott RWM. The liquid-liquid extractive fermentation of L-lactic acid in a novel semi-partition bioreactor (SPB). J Biotechnol 2022; 360:55-61. [PMID: 36330925 DOI: 10.1016/j.jbiotec.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Fermentation technology is commonly used as a mature process to produce numerous products with the help of micro-organisms. However, these organisms are sometimes inhibited by the accumulation of these products or their by-products. One route to circumvent this is via extractive fermentation, which combines the fermentation process with extraction. To facilitate this, novel bioreactor designs are required, such as the semi-partition bioreactor (SPB) which has been recently proposed for in-situ extractive fermentation. The latter combines a fermentation and an extraction unit into a single vessel using a mixer-settler principle. Where the bioproduct is produced in the mixer and removed continuous in the settler. As the SPB functionality is a subject of interest, this study builds on demonstrating different process conditions in the production of a sample bioprocess (lactic acid (LA)) which is susceptible to product inhibition. The results showed a 34.5 g/L LA concentration was obtained in the pH-controlled condition. While LA production can suffer from product inhibition, neutralizing agents can be easily used to curb inhibitory problems, however, the LA fermentation is a simple (and well-studied) example, which can demonstrate an alternative route to avoiding product inhibition (for systems which cannot be rescued using pH control). Hence, to replicate a scenario of product inhibition, two different process conditions were investigated, no pH control with no extraction (non-integrated), and no pH control with integrated extractive fermentation. Key findings showed higher LA concentration in integrated (25.10 g/L) as compared to the non-integrated (14.94 g/L) case with improved yield (0.75 gg-1 (integrated) versus 0.60 gg-1 (non-integrated)) and overall productivity (0.35 gL-1h-1(integrated) versus 0.20 gL-1h-1(non-integrated)) likewise. This is the first demonstration of an SP bioreactor, and shows how the reactor can be applied to improve productivity. Based on these results, the SPB design can be applied to produce any product liable to product inhibition.
Collapse
Affiliation(s)
- George M Teke
- Department of Process Engineering, Stellenbosch University, South Africa
| | - Godfrey K Gakingo
- Department of Process Engineering, Stellenbosch University, South Africa; Department of Chemical Engineering, Dedan Kimathi University of Technology, Kenya
| | - Robert W M Pott
- Department of Process Engineering, Stellenbosch University, South Africa.
| |
Collapse
|
93
|
Ali S, Ali M, Khan A, Ullah S, Waqas M, Al-Harrasi A, Latif A, Ahmad M, Saadiq M. Novel 5-(Arylideneamino)-1 H-Benzo[ d]imidazole-2-thiols as Potent Anti-Diabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition, and Molecular Docking Studies. ACS OMEGA 2022; 7:43468-43479. [PMID: 36506132 PMCID: PMC9730482 DOI: 10.1021/acsomega.2c03854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel series of multifunctional benzimidazoles has been reported as potent inhibitors of α-glucosidase. The procedure relies on the synthesis of 5-amino-1H-benzo[d]imidazole-2-thiol 5 via the multistep reaction through 2-nitroaniline 1, benzene-1,2-diamine 2, 1H-benzo[d]imidazole-2-thiol 3, and 5-nitro-1H-benzo[d]imidazole-2-thiol 4. Further treatment of 5 with aromatic aldehydes 6a-m provided access to the target 5-(arylideneamino)-1H-benzo[d]imidazole-2-thiols 7a-m. The results of the bioactivity assessment revealed all the compounds as excellent inhibitors of the enzyme (IC50 range: 0.64 ± 0.05 μM to 343.10 ± 1.62 μM) than acarbose (873.34 ± 1.21). Among them, 7i was the most active inhibitor (IC50: 0.64 ± 0.05 μM) followed by 7d (IC50: 5.34 ± 0.16 μM), 7f (IC50: 6.46 ± 0.30 μM), 7g (IC50: 8.62 ± 0.19 μM), 7c (IC50: 9.84 ± 0.08 μM), 7m (IC50: 11.09 ± 0.79 μM), 7a (IC50: 11.84 ± 0.26 μM), 7e (IC50: 16.38 ± 0.53 μM), 7j (IC50: 18.65 ± 0.74 μM), 7h (IC50: 20.73 ± 0.59 μM), 7b (IC50: 27.26 ± 0.30 μM), 7k (70.28 ± 1.52 μM) and finally 7l (IC50: 343.10 ± 1.62 μM). Molecular docking revealed important interactions with the enzyme, thereby supporting the experimental findings.
Collapse
Affiliation(s)
- Sardar Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saeed Ullah
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- H. E.
J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Waqas
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Department
of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Muhammad Saadiq
- Department
of Chemistry, Bacha Khan University, Charsadda 18800 Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
94
|
Yang T, Zhong L, Jiang G, Liu L, Wang P, Zhong Y, Yue Q, Ouyang L, Zhang A, Li Z, Cui Z, Jiang D, Zhou Q. Comparative study on bread quality and starch digestibility of normal and waxy wheat (Triticum aestivum L.) modified by maltohexaose producing α-amylases. Food Res Int 2022; 162:112034. [DOI: 10.1016/j.foodres.2022.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
95
|
Zhang J, Ding W, Tang Z, Kong Y, Liu J, Cao X. Identification of the effective α-amylase inhibitors from Dalbergia odorifera: Virtual screening, spectroscopy, molecular docking, and molecular dynamic simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121448. [PMID: 35717927 DOI: 10.1016/j.saa.2022.121448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Inhibiting the activity of α-amylase has been considered as one efficient way to prevent and treat type 2 diabetes recently. Dalbergia odorifera, a kind of Leguminosae plant, has a positive therapeutic effect on type 2 diabetes, possibly contributing by some constituents that can inhibit the activity of α-amylase. In this study, we found that eriodictyol was one potential constituent through virtual screening. The interaction mode between eriodictyol and α-amylase was elucidated by molecular docking, multi-spectroscopic analysis, and molecular dynamic simulation. The results revealed that eriodictyol quenched the intrinsic fluorescence of α-amylase, and the quenching mode was static quenching. Eriodictyol could spontaneously interact with α-amylase, mostly stabilized and influenced by the hydrophobic interaction, while the binding sites (n) was 1.13 ± 0.07 and binding constant (Kb) was (1.43 ± 0.14) × 105 at 310 K, respectively. In addition, FT-IR and CD had been applied to identify that eriodictyol can trigger the conformational change of α-amylase. Taken together, the results provided some experimental data for developing new α-amylase inhibitors from Dalbergia odorifera, which may further prevent and treat diabetes and diabetes complications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Weizhe Ding
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Zhipeng Tang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuchi Kong
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
96
|
Murshed M, Salim M, Boyd BJ. Existing and emerging mitigation strategies for the prevention of accidental overdose from oral pharmaceutical products. Eur J Pharm Biopharm 2022; 180:201-211. [DOI: 10.1016/j.ejpb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
97
|
Rodrigues MJ, Custódio L, Mecha D, Zengin G, Cziáky Z, Sotkó G, Pereira CG. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2910. [PMID: 36365362 PMCID: PMC9657221 DOI: 10.3390/plants11212910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3−394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55−71 mg KAE/g DW), showed anti-inflammatory properties (30−60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7−4.2, BChE 4.3−6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0−1.1, α-amylase 0.8−1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Débora Mecha
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Gyula Sotkó
- Sotiva Seed Ltd., 4440 Tiszavasvári, Hungary
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
98
|
Tang W, Wei Y, Lu W, Chen D, Ye Q, Zhang C, Chen Y, Xiao C. Fabrication, characterization of carboxymethyl konjac glucomannan/ovalbumin-naringin nanoparticles with improving in vitro bioaccessibility. Food Chem X 2022; 16:100477. [PMID: 36277870 PMCID: PMC9583030 DOI: 10.1016/j.fochx.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Naringin is potential functional and therapeutic ingredient, has low bioavailability because of poor aqueous solubility. In this study, an ovalbumin (OVA)-carboxymethyl konjac glucomannan (CKGM) nano-delivery system was developed to enhance the bioavailability of naringin. The effects of proportion (OVA: CKGM), pH and naringin concentration were studied on the formation, encapsulation efficiency (EE) and bioaccessibility of OVA/CKGM-Naringin nanoparticles (OVA/CKGM-Naringin NPs). Its morphology and size were viewed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The cross-linkage between OVA and CKGM was verified by Fourier Transform Infrared Spectroscopy (FTIR) and Fluorescence Intensity analysis. The size of OVA/CKGM-Naringin NPs were 463.83 ± 18.50 nm (Polydispersity Index-PDI, 0.42 ± 0.05). It indicated that 2:1 of OVA: CKGM, pH 3 and 7 mg/mL of naringin concentration were optimized processing parameters of OVA/CKGM-Naringin NPs with EE (97.90 ± 2.97 %) and remarkably improved bioaccessibility (85.01 ± 2.52 %). The OVA/CKGM-Naringin NPs was energy efficiently prepared and verified as an ideal carrier of naringin.
Collapse
Affiliation(s)
- Weimin Tang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yanjun Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wenjing Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Di Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Qin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Cen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yufeng Chen
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| | - Chaogeng Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| |
Collapse
|
99
|
Docking study, molecular dynamic, synthesis, anti-α-glucosidase assessment, and ADMET prediction of new benzimidazole-Schiff base derivatives. Sci Rep 2022; 12:14870. [PMID: 36050498 PMCID: PMC9437094 DOI: 10.1038/s41598-022-18896-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
The control of postprandial hyperglycemia is an important target in the treatment of type 2 diabetes mellitus (T2DM). As a result, targeting α-glucosidase as the most important enzyme in the breakdown of carbohydrates to glucose that leads to an increase in postprandial hyperglycemia is one of the treatment processes of T2DM. In the present work, a new class of benzimidazole-Schiff base hybrids 8a–p has been developed based on the potent reported α-glucosidase inhibitors. These compounds were synthesized by sample recantations, characterized by 1H-NMR, 13C-NMR, FT-IR, and CHNS elemental analysis, and evaluated against α-glucosidase. All new compounds, with the exception of inactive compound 8g, showed excellent inhibitory activities (60.1 ± 3.6–287.1 ± 7.4 µM) in comparison to acarbose as the positive control (750.0 ± 10.5). Kinetic study of the most potent compound 8p showed a competitive type of inhibition (Ki value = 60 µM). In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the title new compounds over the active site of α-glucosidase. In silico druglikeness analysis and ADMET prediction of the most potent compounds demonstrated that these compounds were druglikeness and had satisfactory ADMET profile.
Collapse
|
100
|
Nutritional and Therapeutic Potential of Soursop. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8828358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soursop (Annona muricata) has been one of the most studied fruits in recent years, owing to its potential medicinal benefits, as evidenced by many studies. Soursop is a tropical and subtropical fruit having great versatility and is quite sensitive to drastic temperature fluctuations. Since soursop contains various phytochemicals, it can be used medicinally to treat a wide range of conditions, including diabetes (by inhibiting the enzymes α-glucosidase and α-amylase), tumor, cancer, oxidative stress, blood pressure, the induction of apoptosis in tumor cells as well as hemorrhagic disease and cholesterol lowering. Due to its significant nutritional profile and therapeutic potential, it can be utilized in the development of nutraceuticals and medicines. Its pulp, seed, and leaf extract are used as functional ingredients in different foods as value-added foods. This review article is intended to characterize fruit development patterns and examines potential maturity indicators in soursop. In addition, it also elaborates on the potential nutritional and active phytochemicals present in this magnificent gift of nature and their possible uses in the food and pharmaceutical industries.
Collapse
|