51
|
Hui CW, Vecchiarelli HA, Gervais É, Luo X, Michaud F, Scheefhals L, Bisht K, Sharma K, Topolnik L, Tremblay MÈ. Sex Differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of Adult Mouse Offspring Exposed to Maternal Immune Activation. Front Cell Neurosci 2020; 14:558181. [PMID: 33192308 PMCID: PMC7593822 DOI: 10.3389/fncel.2020.558181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a psychiatric disorder affecting ∼1% of humans worldwide. It is earlier and more frequently diagnosed in men than woman, and men display more pronounced negative symptoms together with greater gray matter reductions. Our previous findings utilizing a maternal immune activation (mIA) mouse model of schizophrenia revealed exacerbated anxiety-like behavior and sensorimotor gating deficits in adult male offspring that were associated with increased microglial reactivity and inflammation in the hippocampal dentate gyrus (DG). However, both male and female adult offspring displayed stereotypy and impairment of sociability. We hypothesized that mIA may lead to sex-specific alterations in microglial pruning activity, resulting in abnormal synaptic connectivity in the DG. Using the same mIA model, we show in the current study sex-specific differences in microglia and synapses within the DG of adult offspring. Specifically, microglial levels of cluster of differentiation (CD)68 and CD11b were increased in mIA-exposed females. Sex-specific differences in excitatory and inhibitory synapse densities were also observed following mIA. Additionally, inhibitory synaptic tone was increased in DG granule cells of both males and females, while changes in excitatory synaptic transmission occurred only in females with mIA. These findings suggest that phagocytic and complement pathways may together contribute to a sexual dimorphism in synaptic pruning and neuronal dysfunction in mIA, and may propose sex-specific therapeutic targets to prevent schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Chin Wai Hui
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | | | - Étienne Gervais
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Xiao Luo
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Félix Michaud
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Lisa Scheefhals
- Master Neuroscience and Cognition, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kanchan Bisht
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada
| | - Lisa Topolnik
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada.,Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de Recherche, Centre Hospitalier Universitarie de Qu-Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer's disease. Immunol Rev 2020; 297:225-246. [PMID: 32588460 PMCID: PMC7783860 DOI: 10.1111/imr.12896] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aβ) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aβ accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.
Collapse
Affiliation(s)
- Hannah E. Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
53
|
Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel) 2020; 9:E743. [PMID: 32823544 PMCID: PMC7463655 DOI: 10.3390/antiox9080743] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Dominic S. A. Simpson
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
54
|
Microglia Do Not Take Up Soluble Amyloid-beta Peptides, But Partially Degrade Them by Secreting Insulin-degrading Enzyme. Neuroscience 2020; 443:30-43. [PMID: 32697980 DOI: 10.1016/j.neuroscience.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Microglia play important roles in the pathogenesis of Alzheimer's disease (AD), in part, by affecting the clearance of amyloid-β (Aβ) peptides. Most studies, however, used synthetic soluble Aβ (sAβ) at higher concentrations. The exact mechanisms underlying microglia-mediated clearance of physiological sAβ at very low concentrations remain unclear. Here we reported that there were much more Iba-1- and CD68-positive microglia and significantly less sAβ left in the brain of adult mice 5 days after the surgery of sAβ microinjection compared to 2 h after the surgery (p < 0.05). However, very few Iba-1- and CD68-positive microglia co-localized with microinjected fluorescently labeled sAβ (FLsAβ42) 5 days after the surgery. Also, there was no co-localization of FLsAβ42 with a lysosomal marker (LAMP-1) 5 days after the surgery. There was no significant difference in the percentage of Aβ+/PE-CD11b+/APC-CD45low microglia between the control group and the group microinjected with TBS-soluble Aβ extracted from the brains of AD patients (p > 0.05). The degradation of physiological sAβ was prevented by a highly selective insulin-degrading enzyme inhibitor (Ii1) but not by a phagocytosis inhibitor (polyinosinic acid) or pinocytosis inhibitor (cytochalasin B) in vitro. Furthermore, the reduction of synthetic and physiological sAβ in the brain was partially prevented by the co-injection of Ii1 in vivo (p < 0.05). Our results demonstrate that microglia do not take up synthetic or physiological sAβ, but partially degrade it via the secretion of insulin-degrading enzyme, which will be beneficial for understanding how sAβ is removed from the brain by microglia.
Collapse
|
55
|
Burns JC, Cotleur B, Walther DM, Bajrami B, Rubino SJ, Wei R, Franchimont N, Cotman SL, Ransohoff RM, Mingueneau M. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. eLife 2020; 9:e57495. [PMID: 32579115 PMCID: PMC7367682 DOI: 10.7554/elife.57495] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
To date, microglia subsets in the healthy CNS have not been identified. Utilizing autofluorescence (AF) as a discriminating parameter, we identified two novel microglia subsets in both mice and non-human primates, termed autofluorescence-positive (AF+) and negative (AF-). While their proportion remained constant throughout most adult life, the AF signal linearly and specifically increased in AF+ microglia with age and correlated with a commensurate increase in size and complexity of lysosomal storage bodies, as detected by transmission electron microscopy and LAMP1 levels. Post-depletion repopulation kinetics revealed AF- cells as likely precursors of AF+ microglia. At the molecular level, the proteome of AF+ microglia showed overrepresentation of endolysosomal, autophagic, catabolic, and mTOR-related proteins. Mimicking the effect of advanced aging, genetic disruption of lysosomal function accelerated the accumulation of storage bodies in AF+ cells and led to impaired microglia physiology and cell death, suggestive of a mechanistic convergence between aging and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jeremy Carlos Burns
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of MedicineBostonUnited States
| | - Bunny Cotleur
- Emerging Neurosciences Research Unit, BiogenCambridgeUnited States
| | | | - Bekim Bajrami
- Chemical Biology and ProteomicsCambridgeUnited States
| | - Stephen J Rubino
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| | - Ru Wei
- Chemical Biology and ProteomicsCambridgeUnited States
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Michael Mingueneau
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| |
Collapse
|
56
|
Morales I, Sanchez A, Puertas-Avendaño R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020; 68:2277-2299. [PMID: 32415886 DOI: 10.1002/glia.23839] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Mitophagy is essential for the health of dopaminergic neurons because mitochondrial damage is a keystone of Parkinson's disease. The aim of the present work was to study the degradation of mitochondria in the degenerating dopaminergic synapse. Adult Sprague-Dawley rats and YFP-Mito-DAn mice with fluorescent mitochondria in dopaminergic neurons were injected in the lateral ventricles with 6-hydroxydopamine, a toxic that inhibits the mitochondrial chain of dopaminergic neurons and blockades the axonal transport. Dopaminergic terminals closest to the lateral ventricle showed an axonal fragmentation and an accumulation of damaged mitochondria in 2-9 μ saccular structures (spheroids). Damaged mitochondria accumulated in spheroids initiated (showing high Pink1, parkin, ubiquitin, p-S65-Ubi, AMBRA1, and BCL2L13 immunoreactivity and developing autophagosomes) but did not complete (mitochondria were not polyubiquitinated, autophagosomes had no STX17, and no lysosomes were found in spheroids) the mitophagy process. Then, spheroids were penetrated by astrocytic processes and DAergic mitochondria were transferred to astrocytes where they were polyubiquitinated (UbiK63+) and linked to mature autophagosomes (STX17+) which became autophagolysosomes (Lamp1/Lamp2 which co-localized with LC3). Present data provide evidence that the mitophagy of degenerating dopaminergic terminals starts in the dopaminergic spheroids and finishes in the surrounding astrocytes (spheroid-mediated transmitophagy). The neuron-astrocyte transmitophagy could be critical for preventing the release of damaged mitochondria to the extracellular medium and the neuro-inflammatory activity which characterizes Parkinson's disease.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | | | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
57
|
Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial transformation in Alzheimer's disease pathogenesis. Neurobiol Aging 2020; 92:82-91. [PMID: 32408056 DOI: 10.1016/j.neurobiolaging.2020.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory responses mediated by microglia, the resident immune cells of the central nervous system, have long been a subject of study in the field of Alzheimer's disease (AD). Microglia express a wide range of receptors that act as molecular sensors, through which they can fulfill their various functions. In this review, we first analyzed the changes in the expression levels of microglial membrane receptors SR-A, TREM2, CD36, CD33, and CR3 in aging and AD and described the different roles of these receptors in amyloid-beta clearance and inflammatory responses. Two classical hallmarks of AD are extracellular amyloid-beta deposits and intracellular aggregated phosphorylated tau. In AD, microglia reaction was initially thought to be triggered by amyloid deposits. New evidence showed it also associated with increased phosphorylation of tau. However, which first appeared and induced activated microglia is not clear. Then we summarized diverse opinions on it. Besides, as AD is tightly linked to aging, and microglia changes dramatically on aging, yet the relative impacts of both aging and microglia are less frequently considered, so at last, we discussed the roles of aging microglia in AD. We hope to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Chunxu Yuan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Department of Materials Processing Engineering, Beijing Institute of Technology, Beijing, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
58
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
59
|
Bedell HW, Schaub NJ, Capadona JR, Ereifej ES. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes. Acta Biomater 2020; 102:205-219. [PMID: 31733330 DOI: 10.1016/j.actbio.2019.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Higher order tasks in development for brain-computer interfacing applications require the invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response contributes to the decline of detectable neural signal. The major components of the neuroinflammatory response to microelectrodes have been well-documented with histological imaging, leading to the identification of broad pathways of interest for its inhibition such as oxidative stress and innate immunity. To understand how to mitigate the neuroinflammatory response, a more precise understanding is required. Advancements in genotyping have led the development of new tools for developing temporal gene expression profiles. Therefore, we have meticulously characterized the gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes. A time course of differential acute expression of genes of the innate immune response were compared to naïve sham mice, identifying significant changes following implantation. Differential gene expression analysis revealed 22 genes that could inform future therapeutic targets. Particular emphasis is placed on the largest changes in gene expression occurring 24 h post-implantation, and in genes that are involved in multiple innate immune sets including Itgam, Cd14, and Irak4. STATEMENT OF SIGNIFICANCE: Current understanding of the cellular response contributing to the failure of intracortical microelectrodes has been limited to the evaluation of cellular presence around the electrode. Minimal research investigating gene expression profiles of these cells has left a knowledge gap identifying their phenotype. This manuscript represents the first robust investigation of the changes in gene expression levels specific to the innate immune response following intracortical microelectrode implantation. To understand the role of the complement system in response to implanted probes, we performed gene expression profiling over acute time points from implanted subjects and compared them to no-surgery controls. This manuscript provides valuable insights into inflammatory mechanisms at the tissue-probe interface, thus having a high impact on those using intracortical microelectrodes to study and treat neurological diseases and injuries.
Collapse
|
60
|
Tenner AJ. Complement-Mediated Events in Alzheimer's Disease: Mechanisms and Potential Therapeutic Targets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:306-315. [PMID: 31907273 PMCID: PMC6951444 DOI: 10.4049/jimmunol.1901068] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
An estimated 5.7 million Americans suffer from Alzheimer's disease in the United States, with no disease-modifying treatments to prevent or treat cognitive deficits associated with the disease. Genome-wide association studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-inflammatory response may slow or prevent disease progression. Increasing awareness of distinct roles of complement components in normal brain development and function and in neurodegenerative disorders align with complement-mediated responses, and thus, thorough understanding of these molecular pathways is needed to facilitate successful therapeutic design. Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential benefit of β-amyloid clearance from the circulation via CR1-mediated mechanisms is also reviewed. Therapies that suppress inflammation while preserving protective effects of complement could be tested now to slow the progression of this debilitating disease.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697;
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697; and
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
61
|
Richter M, Vidovic N, Biber K, Dolga A, Culmsee C, Dodel R. The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures. Brain Pathol 2020; 30:589-602. [PMID: 31769564 PMCID: PMC8018096 DOI: 10.1111/bpa.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023] Open
Abstract
During Alzheimer's disease (AD) progression, microglial cells play complex roles and have potentially detrimental as well as beneficial effects. The use of appropriate model systems is essential for characterizing and understanding the roles of microglia in AD pathology. Here, we used organotypic hippocampal slice cultures (OHSCs) to investigate the impact of microglia on amyloid beta (Aβ)-mediated toxicity. Neurons in OHSCs containing microglia were not vulnerable to cell death after 7 days of repeated treatment with Aβ1-42 oligomer-enriched preparations. However, when clodronate was used to remove microglia, treatment with Aβ1-42 resulted in significant neuronal death. Further investigations indicated signs of endoplasmic reticulum stress and caspase activation after Aβ1-42 challenge only when microglia were absent. Interestingly, microglia provided protection without displaying any classic signs of activation, such as an amoeboid morphology or the release of pro-inflammatory mediators (e.g., IL-6, TNF-α, NO). Furthermore, depleting microglia or inhibiting microglial uptake mechanisms resulted in significant more Aβ deposition compared to that observed in OHSCs containing functional microglia, suggesting that microglia efficiently cleared Aβ. Because inhibiting microglial uptake increased neuronal cell death, the ability of microglia to engulf Aβ is thought to contribute to its protective properties. Our study argues for a beneficial role of functional ramified microglia whereby they act against the accumulation of neurotoxic forms of Aβ and support neuronal resilience in an in situ model of AD pathology.
Collapse
Affiliation(s)
- Maren Richter
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Natascha Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| | - Knut Biber
- Molecular Psychiatry, Psychiatric Hospital, University of Freiburg, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
62
|
Crehan H, Liu B, Kleinschmidt M, Rahfeld JU, Le KX, Caldarone BJ, Frost JL, Hettmann T, Hutter-Paier B, O'Nuallain B, Park MA, DiCarli MF, Lues I, Schilling S, Lemere CA. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer's-like mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:12. [PMID: 31931873 PMCID: PMC6958628 DOI: 10.1186/s13195-019-0579-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pyroglutamate-3 Aβ (pGlu-3 Aβ) is an N-terminally truncated and post-translationally modified Aβ species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aβ antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aβ mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aβ mAb (3A1 IgG1) for their ability to clear Aβ and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aβ in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aβ. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aβ mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.
Collapse
Affiliation(s)
- Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Bin Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Martin Kleinschmidt
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA, USA.,Mouse Behavior Core, Harvard Medical School, Boston, MA, USA
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | | | | | - Brian O'Nuallain
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Marcelo F DiCarli
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Inge Lues
- Vivoryon Therapeutics AG, Halle (Saale), Germany
| | - Stephan Schilling
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
63
|
Kuroda E, Takata K, Nishimura K, Oka H, Sueyoshi M, Aitani M, Kouda A, Satake S, Shima C, Toda Y, Nakata S, Kitamura Y, Ashihara E. Peripheral Blood-Derived Microglia-Like Cells Decrease Amyloid-β Burden and Ameliorate Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2020; 73:413-429. [DOI: 10.3233/jad-190974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eriko Kuroda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Kaneyasu Nishimura
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Hikaru Oka
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Mari Sueyoshi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Mayu Aitani
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Atsushi Kouda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Shiho Satake
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Chiaki Shima
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
- Current address: Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University Kusatsu, Shiga 525-8577, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| |
Collapse
|
64
|
Winnicki W, Pichler P, Mechtler K, Imre R, Steinmacher I, Sengölge G, Knafl D, Beilhack G, Wagner L. A novel approach to immunoapheresis of C3a/C3 and proteomic identification of associates. PeerJ 2019; 7:e8218. [PMID: 31871840 PMCID: PMC6921979 DOI: 10.7717/peerj.8218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Complement factor C3 represents the central component of the complement cascade and its activation split product C3a plays an important role in inflammation and disease. Many human disorders are linked to dysregulation of the complement system and alteration in interaction molecules. Therefore, various therapeutic approaches to act on the complement system have been initiated. Methods and Results Aiming to develop a tool to eliminate C3a/C3 from the circulation, in a first step a high affine murine monoclonal antibody (mAb) (3F7E2-mAb) was generated against complement factor C3 and selected for binding to the C3a region to serve as immunoaffinity reagent. Functional testing of the 3F7E2-mAb revealed an inhibition of Zymosan-induced cleavage of C3a from C3. Subsequently, a C3a/C3 specific 3F7E2-immunoaffinity column was developed and apheresis of C3a/C3 and associates was performed. Finally, a proteomic analysis was carried out for identification of apheresis products. C3a/C3 was liberated from the 3F7E2-column together with 278 proteins. C3a/C3 interaction specificity was validated by using a haptoglobin immunoaffinity column as control and biostatistic analysis revealed 39 true C3a/C3 interactants. Conclusion A novel and functionally active mAb was developed against complement factor C3a/C3 and used in a specific immunoaffinity column that allows apheresis of C3a/C3 and associates and their identification by proteomic analysis. This methodological approach of developing specific antibodies that can be used as immunoaffinity reagents to design immunoaffinity columns for elimination and further identification of associated proteins could open new avenues for the development of tailored immunotherapy in various complement-mediated or autoimmune diseases.
Collapse
Affiliation(s)
- Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Peter Pichler
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Richard Imre
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ines Steinmacher
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Gürkan Sengölge
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Georg Beilhack
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
65
|
Hinkle JJ, Olschowka JA, Love TM, Williams JP, O'Banion MK. Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice. Sci Rep 2019; 9:18899. [PMID: 31827187 PMCID: PMC6906384 DOI: 10.1038/s41598-019-55366-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Cranial irradiation is the main therapeutic treatment for primary and metastatic malignancies in the brain. However, cranial radiation therapy produces long-term impairment in memory, information processing, and attention that contribute to a decline in quality of life. The hippocampal neural network is fundamental for proper storage and retrieval of episodic and spatial memories, suggesting that hippocampal signaling dysfunction could be responsible for the progressive memory deficits observed following irradiation. Previous rodent studies demonstrated that irradiation induces significant loss in dendritic spine number, alters spine morphology, and is associated with behavioral task deficits. Additionally, the literature suggests a common mechanism in which synaptic elimination via microglial-mediated phagocytosis is complement dependent and associated with cognitive impairment in aging as well as disease. We demonstrate sexual dimorphisms in irradiation-mediated alterations of microglia activation markers and dendritic spine density. Further, we find that the significant dendritic spine loss observed in male mice following irradiation is microglia complement receptor 3 (CR3)-dependent. By identifying sex-dependent cellular and molecular factors underlying irradiation-mediated spine loss, therapies can be developed to counteract irradiation-induced cognitive decline and improve patient quality of life.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - John A Olschowka
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - Tanzy M Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA. .,Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, New York, 14642, USA.
| |
Collapse
|
66
|
Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 2019; 81:63-73. [PMID: 31279681 DOI: 10.1016/j.bbi.2019.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Persistent inflammation in the systemic immune system can impose detrimental effects on the central nervous system (CNS). Neuroinflammation might be a result of this to accelerate the progressive deterioration of neuronal functions during aging. In this regard, controlling inflammation through delaying and/or preventing chronic inflammatory diseases may be a potential strategy to prevent or modify the progression of Alzheimer's Disease (AD). Periodontitis is a chronic inflammatory disease of the oral cavity that is common among the elderly, especially for those who have decline in cognitive functions. While epidemiological findings support the association of chronic periodontitis and cognitive decline, whether they have causal relationship remains unclear. Nonetheless, the possibility that periodontopathogens, systemic immune cells and inflammatory cytokines could reach the CNS should not be overlooked. The impacts of periodontitis on CNS homeostasis and inflammation as a pathophysiological factor concerning the association between periodontitis and AD will be discussed in this review. Future work should elucidate the pathological pathways involved in periodontitis-induced cerebral infections and inflammation, and define the role of the latter in AD progression.
Collapse
|
67
|
Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Front Aging Neurosci 2019; 11:233. [PMID: 31543810 PMCID: PMC6730262 DOI: 10.3389/fnagi.2019.00233] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system. They play key roles in brain development, and physiology during life and aging. Equipped with a variety of molecular sensors and through the various functions they can fulfill, they are critically involved in maintaining the brain’s homeostasis. In Alzheimer disease (AD), microglia reaction was initially thought to be incidental and triggered by amyloid deposits and dystrophic neurites. However, recent genome-wide association studies have established that the majority of AD risk loci are found in or near genes that are highly and sometimes uniquely expressed in microglia. This leads to the concept of microglia being critically involved in the early steps of the disease and identified them as important potential therapeutic targets. Whether microglia reaction is beneficial, detrimental or both to AD progression is still unclear and the subject of intense debate. In this review, we are presenting a state-of-knowledge report intended to highlight the variety of microglial functions and pathways shown to be critically involved in AD progression. We first address both the acquisition of new functions and the alteration of their homeostatic roles by reactive microglia. Second, we propose a summary of new important parameters currently emerging in the field that need to be considered to identify relevant microglial targets. Finally, we discuss the many obstacles in designing efficient therapeutic strategies for AD and present innovative technologies that may foster our understanding of microglia roles in the pathology. Ultimately, this work aims to fly over various microglial functions to make a general and reliable report of the current knowledge regarding microglia’s involvement in AD and of the new research opportunities in the field.
Collapse
Affiliation(s)
- Anne-Laure Hemonnot
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Jennifer Hua
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Lauriane Ulmann
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| |
Collapse
|
68
|
Kim JE, Park H, Choi SH, Kong MJ, Kang TC. Roscovitine Attenuates Microglia Activation and Monocyte Infiltration via p38 MAPK Inhibition in the Rat Frontoparietal Cortex Following Status Epilepticus. Cells 2019; 8:E746. [PMID: 31331032 PMCID: PMC6678318 DOI: 10.3390/cells8070746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, microglia are unique immune cells resident in the brain that is isolated from the systemic immune system by brain-blood barrier. Following status epilepticus (SE, a prolonged seizure activity), microglia are rapidly activated and blood-derived monocytes that infiltrate the brain; therefore, the regulations of microglia activation and monocyte infiltration are one of the primary therapeutic strategies for inhibition of undesirable consequences from SE. Roscovitine, a potent (but not selective) cyclin-dependent kinase 5 (CDK5) inhibitor, has been found to exert anti-inflammatory and microglia-inhibiting actions in several in vivo models, although the underlying mechanisms have not been clarified. In the present study, roscovitine attenuated SE-induces monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC), accompanied by reducing expressions of monocyte chemotactic protein-1 (MCP-1) and lysosome-associated membrane protein 1 (LAMP1) in resident microglia, while it did not affect microglia transformation to amoeboid form. Furthermore, roscovitine ameliorated the up-regulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, but not nuclear factor-κB-S276 phosphorylation. Similar to roscovitine, SB202190, a p38 MAPK inhibitor, mitigated monocyte infiltration and microglial expressions of MCP-1 and LAMP1 in the FPC following SE. Therefore, these findings suggest for the first time that roscovitine may inhibit SE-induced neuroinflammation via regulating p38 MAPK-mediated microglial responses.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Seo-Hyeon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min-Jeong Kong
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
69
|
Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, Toda Y, Nakata S, Yano Y, Kitamura Y, Ashihara E. Bone-Marrow-Derived Microglia-Like Cells Ameliorate Brain Amyloid Pathology and Cognitive Impairment in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 64:563-585. [PMID: 29914020 DOI: 10.3233/jad-170994] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia, the primary immune cells in the brain, sense pathogens and tissue damage, stimulate cytokine production, and phagocytosis to maintain homeostasis. Accumulation of amyloid-β peptides (Aβ) in the brain triggers the onset of Alzheimer's disease (AD). Accordingly, promotion of Aβ clearance represents a promising strategy for AD therapy. We previously demonstrated that primary-cultured rat microglia phagocytose Aβ, and that transplantation of these cells ameliorates the Aβ burden in brains of Aβ-injected rats. In this study, we demonstrate that stimulation with colony-stimulating factor-1 efficiently differentiates mouse bone marrow cells into bone marrow-derived microglia-like (BMDML) cells that express markers for microglia, including the recently identified transmembrane protein 119. BMDML cells effectively phagocytose Aβ in vitro, with effects comparable to primary-cultured mouse microglia and greater than peritoneal macrophages. RT-qPCR analysis for cytokine mRNA levels revealed that BMDML cells polarize to a relatively anti-inflammatory state under non-stimulated and inflammatory conditions but exert a pro-inflammatory reaction after lipopolysaccharide treatment. Moreover, BMDML cells hippocampally injected into a mouse model of AD are morphologically similar to the ramified and amoeboid types of residential microglia. Comparisons with simulations assuming a uniform distribution of cells suggest that BMDML cells migrate directionally toward Aβ plaques. We also detected Aβ phagocytosis by BMDML cells, concomitant with a reduction in the number and area of Aβ plaques. Finally, we observed amelioration of cognitive impairment in a mouse model of AD after hippocampal injection of BMDML cells. Our results suggest that BMDML cells have potential as a cell-based disease-modifying therapy against AD.
Collapse
Affiliation(s)
- Shohei Kawanishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan.,Current address: Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Shouma Itezono
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Hiroko Nagayama
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Sayaka Konoya
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yugo Chisaki
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan.,Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University Kusatsu, Shiga, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| |
Collapse
|
70
|
Microglia-Mediated Synapse Loss in Alzheimer's Disease. J Neurosci 2019; 38:2911-2919. [PMID: 29563239 DOI: 10.1523/jneurosci.1136-17.2017] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/17/2017] [Accepted: 12/17/2017] [Indexed: 12/18/2022] Open
Abstract
Microglia are emerging as key players in neurodegenerative diseases, such as Alzheimer's disease (AD). Thus far, microglia have rather been known as modulator of neurodegeneration with functions limited to neuroinflammation and release of neurotoxic molecules. However, several recent studies have demonstrated a direct role of microglia in "neuro" degeneration observed in AD by promoting phagocytosis of neuronal, in particular, synaptic structures. While some of the studies address the involvement of the β-amyloid peptides in the process, studies also indicate that this could occur independent of amyloid, further elevating the importance of microglia in AD. Here we review these recent studies and also speculate about the possible cellular mechanisms, and how they could be regulated by risk genes and sleep. Finally, we deliberate on possible avenues for targeting microglia-mediated synapse loss for therapy and prevention.Dual Perspectives Companion Paper: Alzheimer's Disease and Sleep-Wake Disturbances: Amyloid, Astrocytes, and Animal Models by William M. Vanderheyden, Miranda M. Lim, Erik S. Musiek, and Jason R. Gerstner.
Collapse
|
71
|
Silverman SM, Ma W, Wang X, Zhao L, Wong WT. C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 2019; 216:1925-1943. [PMID: 31209071 PMCID: PMC6683998 DOI: 10.1084/jem.20190009] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Silverman et al. demonstrate that complement activation features prominently in retinitis pigmentosa in close association with activated microglia. This response mediates adaptive neuroprotection for photoreceptors by facilitating a C3-CR3–dependent clearance of apoptotic photoreceptors by microglial phagocytosis. Complement activation has been implicated as contributing to neurodegeneration in retinal and brain pathologies, but its role in retinitis pigmentosa (RP), an inherited and largely incurable photoreceptor degenerative disease, is unclear. We found that multiple complement components were markedly up-regulated in retinas with human RP and the rd10 mouse model, coinciding spatiotemporally with photoreceptor degeneration, with increased C3 expression and activation localizing to activated retinal microglia. Genetic ablation of C3 accelerated structural and functional photoreceptor degeneration and altered retinal inflammatory gene expression. These phenotypes were recapitulated by genetic deletion of CR3, a microglia-expressed receptor for the C3 activation product iC3b, implicating C3-CR3 signaling as a regulator of microglia–photoreceptor interactions. Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors, demonstrating a novel adaptive role for complement-mediated microglial clearance of apoptotic photoreceptors in RP. These homeostatic neuroinflammatory mechanisms are relevant to the design and interpretation of immunomodulatory therapeutic approaches to retinal degenerative disease.
Collapse
Affiliation(s)
- Sean M Silverman
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wenxin Ma
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Xu Wang
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lian Zhao
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
72
|
Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019; 67:2125-2141. [DOI: 10.1002/glia.23637] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life SciencesTel Aviv University Tel Aviv Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| |
Collapse
|
73
|
McQuade A, Blurton-Jones M. Microglia in Alzheimer's Disease: Exploring How Genetics and Phenotype Influence Risk. J Mol Biol 2019; 431:1805-1817. [PMID: 30738892 PMCID: PMC6475606 DOI: 10.1016/j.jmb.2019.01.045] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
Research into the function of microglia has dramatically accelerated during the last few years, largely due to recent genetic findings implicating microglia in virtually every neurodegenerative disorder. In Alzheimer's disease (AD), a majority of risk loci discovered through genome-wide association studies were found in or near genes expressed most highly in microglia leading to the hypothesis that microglia play a much larger role in disease progression than previously thought. From this body of work produced in the last several years, we find that almost every function of microglia has been proposed to influence the progression of AD from altered phagocytosis and synaptic pruning to cytokine secretion and changes in trophic support. By studying key Alzheimer's risk genes such as TREM2, CD33, ABCA7, and MS4A6A, we will be able to distinguish true disease-modulatory pathways from the full range of microglial-related functions. To successfully carry out these experiments, more advanced microglial models are needed. Microglia are quite sensitive to their local environment, suggesting the need to more fully recapitulate an in vivo environment to study this highly plastic cell type. Likely only by combining the above approaches will the field fully elucidate the molecular pathways that regulate microglia and influence neurodegeneration, in turn uncovering potential new targets for future therapeutic development.
Collapse
Affiliation(s)
- Amanda McQuade
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
74
|
Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the Brain: Homeostasis and Disease. Front Immunol 2019; 10:790. [PMID: 31040847 PMCID: PMC6477030 DOI: 10.3389/fimmu.2019.00790] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
Microglia are resident macrophages of the central nervous system and significantly contribute to overall brain function by participating in phagocytosis during development, homeostasis, and diseased states. Phagocytosis is a highly complex process that is specialized for the uptake and removal of opsonized and non-opsonized targets, such as pathogens, apoptotic cells, and cellular debris. While the role of phagocytosis in mediating classical innate and adaptive immune responses has been known for decades, it is now appreciated that phagocytosis is also critical throughout early neural development, homeostasis, and initiating repair mechanisms. As such, modulating phagocytic processes has provided unexplored avenues with the intent of developing novel therapeutics that promote repair and regeneration in the CNS. Here, we review the functional consequences that phagocytosis plays in both the healthy and diseased CNS, and summarize how phagocytosis contributes to overall pathophysiological mechanisms involved in brain injury and repair.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alexandra E M Phillips
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - David R J Owen
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
75
|
Gabandé‐Rodríguez E, Keane L, Capasso M. Microglial phagocytosis in aging and Alzheimer's disease. J Neurosci Res 2019; 98:284-298. [DOI: 10.1002/jnr.24419] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Enrique Gabandé‐Rodríguez
- Department of Molecular Neuropathology Centro de Biología Molecular “Severo Ochoa” (CSIC‐UAM) Madrid Spain
| | - Lily Keane
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| |
Collapse
|
76
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
77
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
78
|
Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Mediators Inflamm 2018; 2018:2530414. [PMID: 30533998 PMCID: PMC6252206 DOI: 10.1155/2018/2530414] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 01/03/2023] Open
Abstract
Synapse loss is an early manifestation of pathology in Alzheimer's disease (AD) and is currently the best correlate to cognitive decline. Microglial cells are involved in synapse pruning during development via the complement pathway. Moreover, recent evidence points towards a key role played by glial cells in synapse loss during AD. However, further contribution of glial cells and the role of neurons to synapse pathology in AD remain not well understood. This review is aimed at comprehensively reporting the source and/or cellular localization in the CNS—in microglia, astrocytes, or neurons—of the triggering components (C1q, C3) of the classical complement pathway involved in synapse pruning in development, adulthood, and AD.
Collapse
|
79
|
Hutter-Schmid B, Humpel C. Primary mouse brain pericytes isolated from transgenic Alzheimer mice spontaneously differentiate into a CD11b + microglial-like cell type in vitro. Exp Gerontol 2018; 112:30-37. [PMID: 30099090 DOI: 10.1016/j.exger.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β plaques, tau pathology and vascular impairment including pericyte damage. Pericytes are perivascular cells of the blood-brain barrier and can differentiate into different cell types in vitro including microglia. The aim of the present study is to explore if primary mouse brain pericytes isolated and cultured from transgenic AD (APP_SweDI) mice can differentiate into CD11b+ (integrin alpha M) microglia in vitro. We show that primary pericytes (passage 5) isolated from wildtype C57BL6 mice differentiated into CD11b+ microglia (Type B, >90%), when exposed to a differentiation factor mix of FGF-2, cAMP and fibronectin. This differentiation was time-dependent and seen as a large 80 kDa CD11b fragment (days 1-8) and a smaller 50 kDA CD11b fragment (>4 days). These pericytes did not differentiate into neurons, astroglia or oligodendroglia. However, pericytes isolated from transgenic AD mice differentiated into CD11b+ microglia (Type A, <10%) without addition of exogenous differentiation factors, displayed moderate Iba1+ immunostaining and phagocytic activity, but were still positive for PDGFRβ. In conclusion, we show for the first time that primary mouse pericytes from AD mice have the potential to spontanously differentiate in vitro into a CD11b+ microglial-like (Type A) cell type, but we do not provide evidence that these pericytic microglia display a full active microglial cell.
Collapse
Affiliation(s)
- Bianca Hutter-Schmid
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Austria.
| |
Collapse
|
80
|
Hammond TR, Robinton D, Stevens B. Microglia and the Brain: Complementary Partners in Development and Disease. Annu Rev Cell Dev Biol 2018; 34:523-544. [PMID: 30089221 DOI: 10.1146/annurev-cellbio-100616-060509] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain-from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring-as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.
Collapse
Affiliation(s)
- Timothy R Hammond
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Daisy Robinton
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Beth Stevens
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
81
|
Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight 2018; 3:121109. [PMID: 29997299 PMCID: PMC6124528 DOI: 10.1172/jci.insight.121109] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain. By identifying and validating anti-ACSA-2 and anti-CD49a antibodies as cell surface markers for astrocytes and vascular endothelial cells, respectively, and using established antibodies to isolate microglia and oligodendrocytes, we document that these 4 major cell types are isolated with high purity and RNA quality. We validated our procedure by performing acute peripheral LPS challenge, while highlighting the underappreciated changes occurring in astrocytes and vascular endothelia in addition to microglia. Furthermore, we assessed cell type-specific gene expression changes in response to amyloid pathology in a mouse model of Alzheimer's disease. Our CoBrA methodology can be readily implemented to interrogate multiple CNS cell types in any mouse model at any age.
Collapse
Affiliation(s)
| | | | - Ethan R. Roy
- Huffington Center on Aging
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Baiping Wang
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Cellular Biology, and
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
82
|
Orhun G, Tüzün E, Özcan PE, Ulusoy C, Yildirim E, Küçükerden M, Gürvit H, Ali A, Esen F. Association Between Inflammatory Markers and Cognitive Outcome in Patients with Acute Brain Dysfunction Due to Sepsis. ACTA ACUST UNITED AC 2018; 56:63-70. [PMID: 30911240 DOI: 10.29399/npa.23212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Introduction Sepsis-induced brain dysfunction (SIBD) has been neglected until recently due to the absence of specific clinical or biological markers. There is increasing evidence that sepsis may pose substantial risks for long term cognitive impairment. Methods To find out clinical and inflammatory factors associated with acute SIBD serum levels of cytokines, complement breakdown products and neurodegeneration markers were measured by ELISA in sera of 86 SIBD patients and 33 healthy controls. Association between these biological markers and cognitive test results was investigated. Results SIBD patients showed significantly increased IL-6, IL-8, IL-10 and C4 d levels and decreased TNF-α, IL-12, C5a and iC3b levels than healthy controls. No significant alteration was observed in neuronal loss and neurodegeneration marker [neuron specific enolase (NSE), amyloid β, tau] levels. Increased IL-1β, IL-6, IL-8, IL-10, TNF-α and decreased C4 d, C5a and iC3b levels were associated with septic shock, coma and mortality. Transient mild cognitive impairment was observed in 7 of 21 patients who underwent neuropsychological assessment. Cognitive dysfunction and neuronal loss were associated with increased duration of septic shock and delirium but not baseline serum levels of inflammation and neurodegeneration markers. Conclusion Increased cytokine levels, decreased complement activity and increased neuronal loss are indicators of poor prognosis and adverse events in SIBD. Cognitive dysfunction and neuronal destruction in SIBD do not seem to be associated with systemic inflammation factors and Alzheimer disease-type neurodegeneration but rather with increased duration of neuronal dysfunction and enhanced exposure of the brain to sepsis-inducing pathogens.
Collapse
Affiliation(s)
- Günseli Orhun
- Department of Anesthesiology and Reanimation, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, İstanbul University, İstanbul, Turkey
| | - Perihan Ergin Özcan
- Department of Anesthesiology and Reanimation, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, İstanbul University, İstanbul, Turkey
| | - Elif Yildirim
- Department of Neurology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Melike Küçükerden
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, İstanbul University, İstanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Achmet Ali
- Department of Anesthesiology and Reanimation, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Figen Esen
- Department of Anesthesiology and Reanimation, İstanbul University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
83
|
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 2018; 98:1141-1154.e7. [PMID: 29861287 PMCID: PMC6023751 DOI: 10.1016/j.neuron.2018.05.008] [Citation(s) in RCA: 580] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer's disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aβ42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aβ uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aβ phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yuan-Ta Lin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather M Feldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hsin-Lan Wen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hugh P Cam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeta Gjoneska
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Waseem K Raja
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jemmie Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard Rueda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurrob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chung Jong Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| | - Sara Elmsaouri
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dilip Dey
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
84
|
Jha MK, Jo M, Kim JH, Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2018; 25:227-240. [PMID: 29931997 DOI: 10.1177/1073858418783959] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Myungjin Jo
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,3 Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jae-Hong Kim
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
85
|
Kalinin S, González-Prieto M, Scheiblich H, Lisi L, Kusumo H, Heneka MT, Madrigal JLM, Pandey SC, Feinstein DL. Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. J Neuroinflammation 2018; 15:141. [PMID: 29759078 PMCID: PMC5952855 DOI: 10.1186/s12974-018-1184-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglial activation contributes to the neuropathology associated with chronic alcohol exposure and withdrawal, including the expression of inflammatory and anti-inflammatory genes. In the current study, we examined the transcriptome of primary rat microglial cells following incubation with alcohol alone, or alcohol together with a robust inflammatory stimulus. METHODS Primary microglia were prepared from mixed rat glial cultures. Cells were incubated with 75 mM ethanol alone or with proinflammatory cytokines ("TII": IL1β, IFNγ, and TNFα). Isolated mRNA was used for RNAseq analysis and qPCR. Effects of alcohol on phagocytosis were determined by uptake of oligomeric amyloid beta. RESULTS Alcohol induced nitrite production in control cells and increased nitrite production in cells co-treated with TII. RNAseq analysis of microglia exposed for 24 h to alcohol identified 312 differentially expressed mRNAs ("Alc-DEs"), with changes confirmed by qPCR analysis. Gene ontology analysis identified phagosome as one of the highest-ranking KEGG pathways including transcripts regulating phagocytosis. Alcohol also increased several complement-related mRNAs that have roles in phagocytosis, including C1qa, b, and c; C3; and C3aR1. RNAseq analysis identified over 3000 differentially expressed mRNAs in microglia following overnight incubation with TII; and comparison to the group of Alc-DEs revealed 87 mRNAs modulated by alcohol but not by TII, including C1qa, b, and c. Consistent with observed changes in phagocytosis-related mRNAs, the uptake of amyloid beta1-42, by primary microglia, was reduced by alcohol. CONCLUSIONS Our results define alterations that occur to microglial gene expression following alcohol exposure and suggest that alcohol effects on phagocytosis could contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Marta González-Prieto
- Department of Pharmacology, University Complutense, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, 28040 Spain
| | - Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, 00168 Rome, Italy
| | - Handojo Kusumo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Michael T. Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Jose L. M. Madrigal
- Department of Pharmacology, University Complutense, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, 28040 Spain
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
- Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 USA
- Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
86
|
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 2018; 9:9/392/eaaf6295. [PMID: 28566429 DOI: 10.1126/scitranslmed.aaf6295] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/01/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;C3 KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;C3 KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1;C3 KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;C3 KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.
Collapse
Affiliation(s)
- Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Saba Chowdhury
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Rong Ma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Soyon Hong
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA 02115, USA.,Harvard NeuroDiscovery Center NeuroBehavior Laboratory, Department of Neurology, Brigham and Women's Hospital, Harvard Institute of Medicine, Room 945, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA. .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
87
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
88
|
Dai CL, Hu W, Tung YC, Liu F, Gong CX, Iqbal K. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. ALZHEIMERS RESEARCH & THERAPY 2018; 10:13. [PMID: 29386065 PMCID: PMC5793372 DOI: 10.1186/s13195-018-0341-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
Background Accumulating evidence indicates that Tau pathology can spread from neuron to neuron by intake and coaggregation of the hyperphosphorylated Tau (p-Tau) seeds with the host neuron protein. Thus, clearance of Tau seeds by immunization with Tau antibodies could provide a potential therapeutic opportunity to block the spread of the pathology in Alzheimer’s disease (AD) and other tauopathies. We report prevention of the seeding and spread of tau pathology with mouse monoclonal antibody 43D against the N-terminal projection domain of Tau (Tau 6–18) in triple-transgenic AD (3 × Tg-AD) mice. Methods Female 11- to 12-month-old 3 × Tg-AD mice were intravenously immunized weekly for 6 weeks with 15 μg/injection of mouse monoclonal antibody 43D or with mouse immunoglobulin G as a control. AD p-Tau isolated from a frozen autopsied AD brain was unilaterally injected into the right hippocampus on the day of the second dose of immunization. Tau pathology and its effect on Aβ pathology were assessed by immunohistochemical staining. Results We found that the injection of AD p-Tau into the hippocampus of 11- to 12-month-old 3 × Tg-AD mice time-dependently induced Tau aggregation in the hippocampus and promoted the spread of Tau pathology to the contralateral hippocampus. Tau pathology was observed as early as 6 weeks after AD p-Tau injection. Tau pathology templated by AD p-Tau was thioflavin-S-positive and was about two-fold greater than that seen in naive 18-month-old 3 × Tg-AD mice; Tau pathology in the latter was thioflavin-S-negative. Immunization with Tau antibody 43D dramatically blocked AD p-Tau seeding in the ipsilateral hippocampus and inhibited its propagation to the contralateral side in 3 × Tg-AD mice. Furthermore, AD p-Tau injection enhanced the amyloid plaque load in the ipsilateral side, and immunization with 43D showed a tendency to attenuate it. Conclusions These findings indicate that AD p-Tau-injected 3 × Tg-AD mice represent a practical model to study the seeding and spread of Tau pathology, their effect on Aβ pathology, and the effect of Tau immunotherapy on both Tau and Aβ pathologies. Immunization with Tau antibody 43D to Tau 6–18 can prevent the seeding and spread of Tau pathology, making it a potential therapeutic treatment for AD and related tauopathies.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
89
|
Tanshinone IIA decreases the levels of inflammation induced by Aβ1-42 in brain tissues of Alzheimer's disease model rats. Neuroreport 2018; 27:883-93. [PMID: 27348015 DOI: 10.1097/wnr.0000000000000618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To study the pathogenesis of Alzheimer's disease (AD) and explore the possible anti-inflammatory mechanism of tanshinone IIA (TanIIA), we evaluated the quantity of neurons and the expression levels of interleukin-1β (IL-1β), IL-6, glial fibrillary acidic protein, CD11b, C1q, C3c, and C3d in brain tissues of AD rats treated with TanIIA. Thirty male Sprague-Dawley rats were randomized into three groups: sham group, TanIIA treatment group, and Aβ1-42 group. Aβ1-42 treatment was performed by injecting Aβ into the hippocampus of rats and then tagged position. Brain tissue morphological structure has been observed with HE staining and the staining of exogenously injected Aβ1-42 was observed by immunohistochemistry, which confirms the success of the Aβ1-42 group. After TanIIA treatment, levels of IL-1β, IL-6, glial fibrillary acidic protein, CD11b, C1q, C3c, and C3d were measured in paraffinized brain tissue sections from all groups by immunohistochemistry staining. The results showed that no 6E10 was detected in the control group, and the difference in the expression levels of 6E10 between the Aβ1-42 group and the TanIIA treatment group was not significant (P>0.05), suggesting that both the Aβ1-42 group and the TanIIA treatment group received the same amount of Aβ. The Aβ1-42 group showed a significant increase in the expression levels of inflammatory markers compared with the sham group (P<0.05) and the TanIIA treatment group showed a partial improvement in reducing inflammation. Therefore, Aβ triggered brain inflammation and activated the complement system. TanIIA treatment reduced the number of astrocytes and microglial cells, and induced a partial decrease in complement molecules in the brain of AD rats. These findings suggested that TanIIA may represent a potential therapeutic treatment in neurodegenerative diseases such as AD to support the survival of neurons by reducing expression levels of inflammatory factors.
Collapse
|
90
|
Abstract
Temporal and spatial patterns of pathological changes such as loss of neurons and presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer's disease and Parkinson's disease. These patterns are consistent with the propagation of protein misfolding and aggregation reminiscent of the prion diseases. There is a surge of evidence that suggests that large protein aggregates of a range of proteins are able to enter cells via macropinocytosis. Our recent work suggests that this process is activated by the binding of aggregates to the neuron cell surface. The current review considers the potential role of cell surface receptors in the triggering of macropinocytosis by protein aggregates and the possibility of utilizing macropinocytosis pathways as a therapeutic target.
Collapse
Affiliation(s)
- Justin J Yerbury
- a Proteostasis and Disease Research Center, School of Biological Sciences, Faculty of Science, Medicine and Health , University of Wollongong , Wollongong , Australia ; Illawarra Health and Medical Research Institute , Wollongong , Australia
| |
Collapse
|
91
|
Peacock ME, Arce RM, Cutler CW. Periodontal and other oral manifestations of immunodeficiency diseases. Oral Dis 2017; 23:866-888. [PMID: 27630012 PMCID: PMC5352551 DOI: 10.1111/odi.12584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
The list of immunodeficiency diseases grows each year as novel disorders are discovered, classified, and sometimes reclassified due to our ever-increasing knowledge of immune system function. Although the number of patients with secondary immunodeficiencies (SIDs) greatly exceeds those with primary immunodeficiencies (PIDs), the prevalence of both appears to be on the rise probably because of scientific breakthroughs that facilitate earlier and more accurate diagnosis. Primary immunodeficiencies in adults are not as rare as once thought. Globally, the main causes of secondary immunodeficiency are HIV infection and nutritional insufficiencies. Persons with acquired immune disorders such as AIDS caused by the human immunodeficiency virus (HIV) are now living long and fulfilling lives as a result of highly active antiretroviral therapy (HAART). Irrespective of whether the patient's immune-deficient state is a consequence of a genetic defect or is secondary in nature, dental and medical practitioners must be aware of the constant potential for infections and/or expressions of autoimmunity in these individuals. The purpose of this review was to study the most common conditions resulting from primary and secondary immunodeficiency states, how they are classified, and the detrimental manifestations of these disorders on the periodontal and oral tissues.
Collapse
Affiliation(s)
- Mark E Peacock
- Associate Professor, Departments of Periodontics, Oral Biology
| | - Roger M. Arce
- Assistant Professor, Departments of Periodontics, Oral Biology
| | - Christopher W Cutler
- Professor, Departments of Periodontics, Oral Biology; Chair, Department of Periodontics, Associate Dean for Research, The Dental College of Georgia at Augusta University
| |
Collapse
|
92
|
Amyloid-beta neurotoxicity and clearance are both regulated by glial group II metabotropic glutamate receptors. Neuropharmacology 2017; 123:274-286. [DOI: 10.1016/j.neuropharm.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 11/20/2022]
|
93
|
Guo X, Tang P, Chen L, Liu P, Hou C, Zhang X, Liu Y, Chong L, Li X, Li R. Amyloid β-Induced Redistribution of Transcriptional Factor EB and Lysosomal Dysfunction in Primary Microglial Cells. Front Aging Neurosci 2017; 9:228. [PMID: 28769785 PMCID: PMC5515861 DOI: 10.3389/fnagi.2017.00228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Impaired clearance of Amyloid β (Aβ) by microglia in the brain may be associated with the senile plaque formation, a pathological hallmark relevant to Alzheimer's disease. Microglial cells in the brain are not able to efficiently degrade Aβ, suggesting that microglial lysosome impairment may occur. However, the mechanism of Aβ-induced impairment of microglia remains poorly understood. We observed the effects of Aβ on the trafficking of nuclear transcriptional factor EB (TFEB), a master regulator of lysosome biogenesis, and the expression of a downstream osteoporosis-associated transmembrane protein 1 (OSTM1), a vital molecule involved in lysosome acidification in primary microglial cells. Aβ1−42 but not Aβ42−1 resulted in a significant release of tumor necrosis factor-α in primary microglia, but the total cellular TFEB was not changed. Further, Aβ induced a dose-dependent reduction of the TFEB in the nucleus of primary microglial cells, coincident with the increase in the plasma, as revealed by Western blot and confocal microscopy. In addition, a dramatic decrease of OSTM1 expression was observed in the Aβ-challenged microglial cells, along with the intracellular pH steady state, indicating the inadequate lysosomal acidification. These data suggest that Aβ might result in a lysosomal dysfunction via inhibiting nuclear TFEB translocation in microglial cells.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Peng Tang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Peng Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Chen Hou
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Xin Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Yue Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Li Chong
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Xiaoqing Li
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| |
Collapse
|
94
|
Hoeijmakers L, Ruigrok SR, Amelianchik A, Ivan D, van Dam AM, Lucassen PJ, Korosi A. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model. Brain Behav Immun 2017; 63:160-175. [PMID: 28027926 DOI: 10.1016/j.bbi.2016.12.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimer's disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid β (Aβ) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aβ neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aβ plaque load at 10months of age, demonstrating that ES affects Aβ load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aβ neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1β expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aβ neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aβ neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aβ neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anna Amelianchik
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Daniela Ivan
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1108, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
95
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
96
|
Czirr E, Castello NA, Mosher KI, Castellano JM, Hinkson IV, Lucin KM, Baeza-Raja B, Ryu JK, Li L, Farina SN, Belichenko NP, Longo FM, Akassoglou K, Britschgi M, Cirrito JR, Wyss-Coray T. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med 2017; 214:1081-1092. [PMID: 28298456 PMCID: PMC5379986 DOI: 10.1084/jem.20162011] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Czirr et al. report that microglia lacking complement receptor 3 display increased extracellular Aβ degrading activity and that targeting the receptor with a small molecule increases Aβ clearance in vivo, thus identifying a microglial receptor as a novel therapeutic target. Recent genetic evidence supports a link between microglia and the complement system in Alzheimer’s disease (AD). In this study, we uncovered a novel role for the microglial complement receptor 3 (CR3) in the regulation of soluble β-amyloid (Aβ) clearance independent of phagocytosis. Unexpectedly, ablation of CR3 in human amyloid precursor protein–transgenic mice results in decreased, rather than increased, Aβ accumulation. In line with these findings, cultured microglia lacking CR3 are more efficient than wild-type cells at degrading extracellular Aβ by secreting enzymatic factors, including tissue plasminogen activator. Furthermore, a small molecule modulator of CR3 reduces soluble Aβ levels and Aβ half-life in brain interstitial fluid (ISF), as measured by in vivo microdialysis. These results suggest that CR3 limits Aβ clearance from the ISF, illustrating a novel role for CR3 and microglia in brain Aβ metabolism and defining a potential new therapeutic target in AD.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas A Castello
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Kira I Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph M Castellano
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
| | - Izumi V Hinkson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Kurt M Lucin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Lulin Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Sasha N Farina
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO 63110.,Knight Alzheimer's Disease Research Center, Washington University Medical Center, St. Louis, MO 63110.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
97
|
Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci Biobehav Rev 2017; 77:148-164. [PMID: 28185874 DOI: 10.1016/j.neubiorev.2017.01.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
Chronic psychosocial stress is increasingly recognized as a risk factor for late-onset Alzheimer's disease (LOAD) and associated cognitive deficits. Chronic stress also primes microglia and induces inflammatory responses in the adult brain, thereby compromising synapse-supportive roles of microglia and deteriorating cognitive functions during aging. Substantial evidence demonstrates that failure of microglia to clear abnormally accumulating amyloid-beta (Aβ) peptide contributes to neuroinflammation and neurodegeneration in AD. Moreover, genome-wide association studies have linked variants in several immune genes, such as TREM2 and CD33, the expression of which in the brain is restricted to microglia, with cognitive dysfunctions in LOAD. Thus, inflammation-promoting chronic stress may create a vicious cycle of aggravated microglial dysfunction accompanied by increased Aβ accumulation, collectively exacerbating neurodegeneration. Surprisingly, however, little is known about whether and how chronic stress contributes to microglia-mediated neuroinflammation that may underlie cognitive impairments in AD. This review aims to summarize the currently available clinical and preclinical data and outline potential molecular mechanisms linking stress, microglia and neurodegeneration, to foster future research in this field.
Collapse
|
98
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
99
|
Dai CL, Tung YC, Liu F, Gong CX, Iqbal K. Tau passive immunization inhibits not only tau but also Aβ pathology. ALZHEIMERS RESEARCH & THERAPY 2017; 9:1. [PMID: 28073379 PMCID: PMC5225540 DOI: 10.1186/s13195-016-0227-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Background Accumulation of hyperphosphorylated tau protein is a histopathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Currently, there is no effective treatment available for these progressive neurodegenerative diseases. In recent years, tau immunotherapy has shown great potential in animal models. We report the effect of immunization with tau antibodies 43D against tau 6–18 and 77E9 against tau 184–195 on tau and amyloid-β (Aβ) pathologies and cognition in triple-transgenic (3×Tg)-AD mice at mild to moderate stages of the disease. Methods We immunized 12-month-old female 3×Tg-AD mice with two to six or seven intravenous weekly doses of 15 μg of mouse monoclonal antibody 43D, 77E9, a combination of one-half dose each of 43D and 77E9, or as control of mouse immunoglobulin G (IgG). Age-matched wild-type mice treated with mouse IgG or a mixture of 43D and 77E9 were also used as controls. The effect of immunization with tau antibodies on tau and Aβ pathologies was assessed by Western blot and immunofluorescence analysis, and the effect on cognition was analyzed by using Morris water maze, one-trial novel object recognition, and novel object location tasks. Results We found that two doses of 43D and 77E9 reduced total tau but had no significant impact on hyperphosphorylation of tau. However, six doses of 43D reduced levels of both total tau and tau hyperphosphorylated at Ser262/356 and Ser396/404 sites in the hippocampus. Importantly, both 43D and 77E9 antibodies rescued spatial memory and short-term memory impairments in 3×Tg-AD mice. The beneficial effect of 43D and 77E9 antibodies on cognitive performance was sustained up to 3 months after the last dose. Six doses of immunization with 43D also decreased amyloid precursor protein (APP) level in CA1 and amyloid plaques in subiculum, and showed a trend toward reducing Aβ40 and Aβ42 in the forebrain. Immunization with 43D increased levels of complement components C1 and C9 and resulted in activation of microglia, especially surrounding Aβ plaques. Conclusions These findings suggest the potential of passive immunization targeting proximal N-terminal domain tau 6–18 as a disease-modifying approach to AD and related tauopathies.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Yunn Chyn Tung
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
100
|
Zhu K, Sun J, Kang Z, Zou Z, Wu G, Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Front Neurosci 2017; 10:613. [PMID: 28119561 PMCID: PMC5222794 DOI: 10.3389/fnins.2016.00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination.
Collapse
Affiliation(s)
- Keying Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zheng Kang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zaofeng Zou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| |
Collapse
|