51
|
Chen PX, Zhang H, Marcone MF, Pauls KP, Liu R, Tang Y, Zhang B, Renaud JB, Tsao R. Anti-inflammatory effects of phenolic-rich cranberry bean ( Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
|
52
|
Zeng L, Ai CX, Wang YH, Zhang JS, Wu CW. Abrupt salinity stress induces oxidative stress via the Nrf2-Keap1 signaling pathway in large yellow croaker Pseudosciaena crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:955-964. [PMID: 28616764 DOI: 10.1007/s10695-016-0334-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/12/2016] [Accepted: 12/18/2016] [Indexed: 05/14/2023]
Abstract
The aim of the present study was to evaluate the effects of abrupt salinity stress (12, 26 (control), and 40) on lipid peroxidation, activities and mRNA levels of antioxidant enzymes (Cu/Zn-SOD, CAT, GPx, and GR), and gene expression of the Nrf2-Keap1 signaling molecules at different times (6, 12, 24, and 48 h) in the liver of large yellow croaker Pseudosciaena crocea. The results showed that lipid peroxidation was sharply reduced at 6 h and increased at 12 h before returning to control levels in the hypo-salinity group. Similarly, lipid peroxidation was significantly decreased at 6 h followed by a sharp increase towards the end of the exposure in the hyper-salinity group. Negative relationships between lipid peroxidation and antioxidant enzyme activities and positive relationships between activities and gene expression of antioxidant enzymes were observed, suggesting that the changes at molecular levels and enzyme activity levels may provide protective roles against damage from salinity stress. Obtained results also showed a coordinated transcriptional regulation of antioxidant genes, suggesting that Nrf2 is required for regulating these genes. Furthermore, there was a positive relationship between the mRNA levels of Nrf2 and Keap1, indicating that Keap1 plays an important role in switching off the Nrf2 response. In conclusion, this is the first study to elucidate effects of salinity stress on antioxidant responses in large yellow croaker through the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong-Hong Wang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jian-She Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Chang-Wen Wu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
53
|
Qiu P, Dong Y, Li B, Kang XJ, Gu C, Zhu T, Luo YY, Pang MX, Du WF, Ge WH. Dihydromyricetin modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate ethanol-induced hepatic injury. Toxicol Lett 2017; 274:31-41. [PMID: 28419832 DOI: 10.1016/j.toxlet.2017.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that dihydromyricetin (DMY) contains highly effective antioxidative, anti-inflammatory, anti-microbial and anti-diabetic properties. Nevertheless, the underlying hepatoprotective mechanisms of DMY have infrequently been reported thus far. In the present study, C57BL/6 mice were fed with the Lieber-DeCarli diet containing alcohol or isocaloric maltose dextrin as a control diet with or without DMY (75 and 150mg/kg/d bw) for 6 weeks. DMY significantly attenuated hepatic enzyme release, hepatic lipid peroxidation and triglyceride deposition induced by chronic alcohol exposure. In addition, DMY dramatically attenuated the alcohol-triggered elevation of the level of inflammatory cytokines and partially recovered hepatic pathological changes. Notably, DMY remarkably modified aberrant expression of CYP2E1, Keap-1 and HO-1 in the liver and simultaneously ameliorated disordered nuclear localization of NF-κB and Nrf2 to exert its hepatoprotective effects. Further mechanistic exploration suggested that DMY activated Nrf2, possibly mediated through the autophagy pathway. Analysis of the crosstalk among p62, Keap-1 and Nrf2 demonstrated that the p62 upregulation caused by DMY contributes to a positive feedback loop in Nrf2 activation. In summary, DMY likely modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate liver steatosis and the inflammatory response in the pathological progression of ALD.
Collapse
Affiliation(s)
- Ping Qiu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Yu Dong
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province 310007, China
| | - Bo Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Xian-Jie Kang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Chao Gu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Tao Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Yun-Yun Luo
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Min-Xia Pang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Wei-Feng Du
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Wei-Hong Ge
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.
| |
Collapse
|
54
|
Zhang C, Li XN, Xiang LR, Qin L, Lin J, Li JL. Atrazine triggers hepatic oxidative stress and apoptosis in quails (Coturnix C. coturnix) via blocking Nrf2-mediated defense response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:49-56. [PMID: 27915142 DOI: 10.1016/j.ecoenv.2016.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2016] [Revised: 11/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The bioaccumulation and environmental persistence of atrazine (ATZ) poses a severe hazard to animal ecosystem. Quail has strong sensitivity to environmental pollutant, thus it is one of the most important ecological pollution indicator. However, true proof for the effects of ATZ exposure on the liver of quails is lacking. To evaluate the liver injury and the role of Nrf2-mediated defense responses during ATZ exposure, male quails were treated with ATZ (0, 50, 250 and 500mg/kg) by oral gavage for 45 days. Histopathological and ultrastructural changes, oxidative stress indices, apoptosis-related factors and Nrf2 pathway were detected. ATZ caused irreparable mitochondrial damage and destroyed morphophysiological integrity of the quail liver. Lower level ATZ (<250mg/kg) activated Nrf2 signaling pathway to protect liver against oxidative stress and apoptosis via enhancing antioxidative activity. Higher level ATZ (>500mg/kg) induced oxidative stress and apoptosis through decrease of non-enzymatic antioxidant, antioxidant enzymes and anti-apoptosis factors and increase of apoptosis factors expressions. Taken together, our results suggested that ATZ-induced hepatotoxicity in quails was associated with blocking Nrf2-mediated defense response.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Li-Run Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Laboratory animal centre, Qiqihar Medical University, Qiqihar 161006, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
55
|
The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4680732. [PMID: 28163821 PMCID: PMC5259652 DOI: 10.1155/2017/4680732] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/15/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.
Collapse
|
56
|
Leung TM, Lu Y. Alcoholic Liver Disease: from CYP2E1 to CYP2A5. Curr Mol Pharmacol 2017; 10:172-178. [PMID: 26278389 PMCID: PMC5856453 DOI: 10.2174/1874467208666150817111846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
Abstract
This article reviews recent studies on CYP2E1-mediated alcoholic liver injury, the induction of CYP2A5 by alcohol and the mechanism for this upregulation, especially the permissive role of CYP2E1 in the induction of CYP2A5 by alcohol and the CYP2E1-ROS-Nrf2 pathway, and protective effects of CYP2A5 against ethanol-induced oxidative liver injury. Ethanol can induce CYP2E1, an active generator of reactive oxygen species (ROS), and CYP2E1 is a contributing factor for alcoholinduced oxidative liver injury. CYP2A5, another isoform of cytochrome P450, can also be induced by ethanol. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity, protein and mRNA levels as compared to pair-fed controls. This induction was blunted in CYP2E1 knockout (cyp2e1-/-) mice but was restored when human CYP2E1 was reintroduced and expressed in cyp2e1-/- mice. Ethanol-induced CYP2E1 co-localized with CYP2A5 and preceded the elevation of CYP2A5. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol elevation of ROS and blunted the alcohol induction of CYP2A5, but not CYP2E1, suggesting ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. The antioxidants blocked the activation of Nrf2, a transcription factor known to upregulate expression of CYP2A5. When alcohol-induced liver injury was enhanced in Nrf2 knockout (Nrf2-/-) mice, alcohol elevation of CYP2A5 but not CYP2E1 was also lower in Nrf2-/- mice. CYP2A5 knockout (cyp2a5-/-) mice exhibited an enhanced alcoholic liver injury compared with WT mice as indicated by serum ALT, steatosis and necroinflammation. Alcohol-induced hyperglycemia were observed in cyp2a5-/- mice but not in WT mice.
Collapse
Affiliation(s)
- Tung Ming Leung
- Graduate Program in Public Health, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount. United States
| | - Yongke Lu
- Department of Structural and Chemical Biology, Box 1677, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029. United States
| |
Collapse
|
57
|
Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453926. [PMID: 28101296 PMCID: PMC5215260 DOI: 10.1155/2016/3453926] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.
Collapse
|
58
|
Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice. Chem Biol Interact 2016; 260:22-32. [DOI: 10.1016/j.cbi.2016.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
|
59
|
Zeng L, Zheng JL, Wang YH, Xu MY, Zhu AY, Wu CW. The role of Nrf2/Keap1 signaling in inorganic mercury induced oxidative stress in the liver of large yellow croaker Pseudosciaena crocea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:345-352. [PMID: 27362492 DOI: 10.1016/j.ecoenv.2016.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2015] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to evaluate the effects of acute inorganic Hg exposure (0, 32 and 64μgHgL(-1)) on lipid peroxidation, activities and gene expression of antioxidant enzymes (Cu/Zn-SOD, CAT, GPx, GR and GST), and mRNA levels of the Keap1-Nrf2 signaling molecules at different exposure times (6h, 12h, 24h, 48h, and 96h) in the liver of large yellow croaker Pseudosciaena crocea. The results showed that lipid peroxidation was sharply reduced by 32μg Hg L(-1) during 6-12h before returning to control levels. Similarly, lipid peroxidation was significantly reduced during 6-12h followed by a sharp increase towards the end of the exposure in the 64μgHgL(-1) group. There was a negative relationship between lipid peroxidation and antioxidant enzyme activities, and positive relationship between activities and gene expression of antioxidant enzymes, suggesting that the changes at a molecular level may underlie enzymatic level and accordingly affect hepatic lipid peroxidation. Obtained results also showed a coordinated transcriptional regulation of antioxidant genes, suggesting that Nrf2 is required for the protracted induction of these genes. Furthermore, a negative relationship between the mRNA levels of Nrf2 and Keap1 indicated that Keap1 may play an important role in switching off the Nrf2 response. In conclusion, this is the first study to elucidate effects of waterborne Hg on antioxidant system in large yellow croaker through the Keap1-Nrf2 pathway, which will aid our understanding of the molecular mechanisms of waterborne heavy metal on antioxidant responses in fish.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yong-Hong Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei-Ying Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ai-Yi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
60
|
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17:327. [PMID: 26950115 PMCID: PMC4813189 DOI: 10.3390/ijms17030327] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.
Collapse
Affiliation(s)
- Hafiz Maher Ali Zeeshan
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Geum Hwa Lee
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
61
|
Rushchak VV, Chashchyn MO. Cytochrome P450 2E1 participation in the pathogenesis of experimental metabolic syndrome in guinea pigs. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:98-106. [PMID: 29227611 DOI: 10.15407/ubj88.02.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
In this work the experimental metabolic syndrome on the basis of protamine sulfate modeling in
guinea pigs was reproduced and pathological processes in the liver of experimental animals were studied.
We determined the level of free radicals and markers of liver damage in the blood of experimental animals.
We investigated the liver glycogen content and K+,Na+-ATPase activity in the liver of experimental animals
as well as measured the cytochrome P450 2E1 (CY P2E1) expression – one of the main factors of oxidative
stress. Evidence of development of hepatotoxic processes, increasing of the CY P2E1 level as well as of the
free radical level in the animals with metabolic syndrome were found. Using of CY P2E1 inhibitors had shown
that the free radical level in the blood of experimental animals depended on the level of the enzyme expression
and activity. The obtained results suggest that the changes in the CY P2E1 expression play an important
role in the development of hepatotoxic processes upon experimental metabolic syndrome. It was assumed that
pharmacological correction of the enzyme expression may be an important mechanism for the influence on
the metabolic syndrome clinical course.
Collapse
|
62
|
Lu Y, Cederbaum AI. Alcohol Upregulation of CYP2A5: Role of Reactive Oxygen Species. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 1:117-130. [PMID: 29756048 PMCID: PMC5944604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Hepatic cytochrome P450 (CYP) 2E1 and CYP2A5 activate many important drugs and hepatotoxins. CYP2E1 is induced by alcohol, but whether CYP2A5 is upregulated by alcohol is not known. This article reviews recent studies on the induction of CYP2A5 by alcohol and the mechanism and role of reactive oxygen species (ROS) in this upregulation. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity and protein and mRNA levels. This induction was blunted in CYP2E1 knockout mice and by a CYP2E1 inhibitor, but was restored in CYP2E1 knockin mice, suggesting a role for CYP2E1 in the induction of CYP2A5 by alcohol. Since CYP2E1 actively generates ROS, the possible role of ROS in the induction of CYP2A5 by alcohol was determined. ROS production was elevated by ethanol treatment. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol-induced elevation of ROS and blunted the alcohol-mediated induction of CYP2A5. These results suggest that ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. Alcohol treatment activated nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), a transcription factor which up-regulates expression of CYP2A5. The antioxidants blocked the activation of Nrf2. The alcohol-induced elevation of CYP2A5, but not CYP2E1, was lower in Nrf2 knockout mice. We propose that increased generation of ROS from the alcohol-induced CYP2E1 activates Nrf2, which subsequently up-regulates the expression of CYP2A5. Thus, a novel consequence of the alcohol-mediated induction of CYP2E1 and increase in ROS is the activation of redox-sensitive transcription factors, such as Nrf2, and expression of CYP2A5. Further perspectives on this alcohol-CYP2E1-ROS-Nrf2-CYP2A5 pathway are presented.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
63
|
Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K, Sharma K, Singh PK, Chaurasia M, Surendar Reddy B, Chourasia MK. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release 2015; 220:368-387. [PMID: 26528900 DOI: 10.1016/j.jconrel.2015.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023]
Abstract
The scope of RNAi based therapeutics is unquestionable. However, if we dissect the current trend of clinical trials for afore mentioned drug class, some stark trends appear: 1) naked siRNA only exerts influence in topical mode whilst systemic delivery requires a carrier and 2) even after two decades of extensive efforts, not even a single siRNA containing product is commercially available. It was therefore felt that a perspective simplifying the unique intricacies of working with a merger of siRNA and liposomes from a pharmaceutical viewpoint could draw the attention of a wider array of interested researchers. We begin from the beginning and attempt to conduit the gap between theoretical logic and experimental/actual constraints. This, in turn could stimulate the next generation of investigators, gearing them to tackle the conundrum, which is siRNA delivery.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Tomar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shariq Khan
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj K Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohini Chaurasia
- Amity Institute of Pharmacy, Amity University, Lucknow, UP 226028, India
| | - B Surendar Reddy
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
64
|
Cui Y, Wang Q, Yi X, Zhang X. Effects of Fatty Acids on CYP2A5 and Nrf2 Expression in Mouse Primary Hepatocytes. Biochem Genet 2015; 54:29-40. [PMID: 26423681 DOI: 10.1007/s10528-015-9697-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2014] [Accepted: 09/19/2015] [Indexed: 01/15/2023]
Abstract
Abnormal fatty acid metabolism is observed throughout nonalcoholic fatty liver disease (NAFLD) pathogenesis, and fatty acid storage is an important inducing factor in insulin resistance, lipid oxidation, hepatic cell damage, and inflammation. During NAFLD pathogenesis, changes in blood and liver contents of different fatty acid types also vary. Cytochrome P450 2A5 (CYP2A5), an important enzyme in mouse liver, metabolizes many drugs and activates multiple pro-carcinogens with widely varying structures. According to the changes in liver fatty acid profiles observed in NAFLD animal models developed in our laboratory and others, saturated (PA/palmitic, and SA/stearic acids) and unsaturated (OA/oleic, LA/linoleic, ALA/α-linolenic and AA/arachidonic acids) fatty acids were selected to induce mouse primary hepatocytes, at concentrations under 1 mM, as detected by MTT assay. After 24 h treatment with various fatty acid concentrations and types, CYP2A5 mRNA and protein amounts, and enzyme activity were determined by real-time PCR, Western blot, and Coumarin 7-hydroxylation, respectively. Meanwhile, Nrf2 mRNA and protein levels were evaluated by real-time PCR and Western blot. The results indicated that saturated fatty acids are more potent in inducing CYP2A5 than unsaturated ones, except arachidonic acid. In addition, the changes in CYP2A5 expression were consistent with the alterations observed in Nrf2 expression, indicating that Nrf2 might play a regulatory role in CYP2A5 expression.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xing Yi
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiuying Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No.59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
65
|
Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 2015; 3:109-23. [PMID: 25465468 PMCID: PMC4297931 DOI: 10.1016/j.redox.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. Hepatotoxic agents including alcohol and high fat elevate nitroxidative stress. Increased nitroxidative stress promotes post-translational protein modifications. Post-translational protein modifications of many proteins lead to their inactivation. Inactivation of mitochondrial proteins contributes to mitochondrial dysfunction. Mitochondrial dysfunction contributes to necrotic or apoptotic tissue injury.
Collapse
|
66
|
Hong F, Liu X, Ward S, Xiong H, Cederbaum AI, Lu Y. Absence of cytochrome P450 2A5 enhances alcohol-induced liver injury in mice. Dig Liver Dis 2015; 47:470-7. [PMID: 25804444 PMCID: PMC4442740 DOI: 10.1016/j.dld.2015.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ethanol can induce cytochrome P450 2E1, an active generator of reactive oxygen species, and this cytochrome is considered a risk factor for oxidative liver injury. Recently, we found that in addition to P450 2E1 also cytochrome P450 2A5, another isoform of cytochrome P450, can be induced by ethanol, and that ethanol induction of cytochrome P450 2A5 is P450 2E1-dependent. AIMS To investigate the role of cytochrome P450 2A5 in alcohol-induced liver injury. METHODS Cytochrome P450 2A5-knockout mice and wild type mice were fed the Lieber-Decarli ethanol liquid diet to induce liver injury. Controls were fed the Lieber-Decarli control diet. RESULTS After 4 weeks of feeding with Lieber-Decarli diet, ethanol-induced liver injury was enhanced in the knockout mice compared with wild type mice, as indicated by serum transaminases, hepatic fat accumulation (steatosis), and necroinflammation observed in liver sections with Haematoxylin & Eosin staining. Ethanol-induced oxidative stress was also higher in the knockout mice than the wild types. Ethanol feeding induced cytochrome P450 2A5 in wild type mice but not in the knockout mice, while induction of cytochrome P450 2E1 was comparable in the knockout and wild type mice. CONCLUSION These results suggest that cytochrome P450 2A5 protects against ethanol-induced oxidative liver injury.
Collapse
Affiliation(s)
- Feng Hong
- Institute of liver diseases, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Bethune Hospital, Jilin University, Jilin 130021, China
| | - Stephen Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029
| | - Huabao Xiong
- Division of Immunology, Department of medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029
| | - Arthur I. Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029
| | - Yongke Lu
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029
| |
Collapse
|
67
|
Yeh A, Kruse SE, Marcinek DJ, Gallagher EP. Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47. Toxicol In Vitro 2015; 29:672-80. [PMID: 25659769 PMCID: PMC4479582 DOI: 10.1016/j.tiv.2015.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2013] [Revised: 12/08/2014] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
Abstract
High levels of the flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) have been detected in Pacific salmon sampled near urban areas, raising concern over the safety of salmon consumption. However, salmon fillets also contain the antioxidants eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose oxidation products induce cellular antioxidant responses. Because oxidative stress is a mechanism of BDE 47 toxicity, we hypothesized that oxidized EPA and DHA can ameliorate the cellular and mitochondrial toxicity of BDE 47. HepG2 cells were treated with a mixture of oxidized EPA and DHA (oxEPA/oxDHA) at a ratio relevant to salmon consumption (1.5/1 oxEPA/oxDHA) followed by exposure to 100 μM BDE 47. Pretreatment with oxEPA/oxDHA for 12 h prior to BDE 47 exposure prevented BDE 47-mediated depletion of glutathione, and increased expression of antioxidant response genes. oxEPA/oxDHA also reduced the level of reactive oxygen species production by BDE 47. The oxEPA/oxDHA antioxidant responses were associated with partial protection against BDE 47-induced loss of viability and also mitochondrial membrane potential. Mitochondrial electron transport system functional analysis revealed extensive inhibition of State 3 respiration and maximum respiratory capacity by BDE 47 were partially reversed by oxEPA/oxDHA. Our findings indicate that the antioxidant effects of oxEPA/oxDHA protect against short exposures to BDE 47, including a protective role of these compounds on maintaining cellular and mitochondrial function.
Collapse
Affiliation(s)
- Andrew Yeh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - Shane E Kruse
- Department of Radiology, University of Washington Medical School, Seattle, WA 98195, United States
| | - David J Marcinek
- Department of Radiology, University of Washington Medical School, Seattle, WA 98195, United States
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
68
|
Rejitha S, Prathibha P, Indira M. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism. Redox Rep 2015; 20:75-80. [PMID: 25314146 PMCID: PMC6837355 DOI: 10.1179/1351000214y.0000000108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
Abstract
Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.
Collapse
Affiliation(s)
- S. Rejitha
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India
| | - P. Prathibha
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India
| | - M. Indira
- Department of BiochemistryUniversity of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India
| |
Collapse
|
69
|
Amin A, Gad A, Salilew-Wondim D, Prastowo S, Held E, Hoelker M, Rings F, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol Reprod Dev 2015; 81:497-513. [PMID: 25057524 DOI: 10.1002/mrd.22316] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
In present study, we sought to examine the ability of preimplantation bovine embryos to activate the NF-E2-related factor 2 (NRF2)-mediated oxidative-stress response under an oxidative stress environment. In vitro 2-, 4-, 8-, 16-cell-, and blastocyst-stage embryos were cultured under low (5%) or high (20%) oxygen levels. The expression of NRF2, KEAP1 (NRF2 inhibitor), antioxidants downstream of NRF2, and genes associated with embryo metabolism were analyzed between the embryo groups using real-time quantitative PCR. NRF2 and KEAP1 protein abundance, mitochondrial activity, and accumulation of reactive oxygen species (ROS) were also investigated in blastocysts of varying competence that were derived from high- or low-oxygen levels. The expression levels of NRF2 and its downstream antioxidant genes were higher in 8-cell, 16-cell, and blastocyst stages under high oxygen tension, whereas KEAP1 expression was down-regulated under the same conditions. Higher expression of NRF2 and lower ROS levels were detected in early (competent) blastocysts compared to their late (noncompetent) counterparts in both oxygen-tension groups. Similarly, higher levels of active nuclear NRF2 protein were detected in competent blastocysts compared to their noncompetent counterparts. Thus, the survival and developmental competence of embryos cultured under oxidative stress are associated with activity of the NRF2-mediated oxidative stress response pathway during bovine pre-implantation embryo development.
Collapse
|
70
|
|
71
|
Liu Y, Song H, Wang L, Xu H, Shu X, Zhang L, Li Y, Li D, Ji G. Hepatoprotective and antioxidant activities of extracts from Salvia-Nelumbinis naturalis against nonalcoholic steatohepatitis induced by methionine- and choline-deficient diet in mice. J Transl Med 2014; 12:315. [PMID: 25406833 PMCID: PMC4239328 DOI: 10.1186/s12967-014-0315-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), the advanced stage of nonalcoholic fatty liver disease that is characterized by both steatosis and severe injury in liver, still lacks efficient treatment. The traditional Chinese formula Salvia-Nelumbinis naturalis (SNN) is effectively applied to improve the symptoms of nonalcoholic simple fatty liver (NAFL) patients. Previous studies have confirmed that SNN could reduce the liver lipid deposition and serum transaminases of NAFL experimental models. This study aims to determine whether SNN is effective for murine NASH model and investigate the underlying pharmacological mechanisms. METHODS C57BL/6 J mice were fed with methionine- and choline-deficient (MCD) diet for six weeks to induce NASH. Simultaneously, SNN or saline was intragastrically administered daily to the mice in the SNN or model group, respectively. A standard diet was given to the control mice. Serum biochemical indices and tumor necrosis factor-α were measured. Liver histopathology was observed, and the contents of triglycerides and lipid peroxide malondialdehyde (MDA) in liver homogenates were evaluated. The hepatic expression and/or activation of genes associated with inflammation, apoptosis, and oxidative stress were determined by quantitative RT-PCR or Western blot analysis. RESULTS The prominent liver steatosis displayed in the NASH model was prevented by SNN. The liver injury of NASH mice was obviously manifested by the increased levels of serum transaminases and bilirubin, as well as the lobular inflammation, elevated pro-inflammatory cytokines, and upregulated apoptosis in liver tissues. SNN administration improved the aforementioned pathological changes. The increased hepatic levels of MDA and cytochrome P450 2E1 of the model confirmed the unregulated balance of oxidative stress. The hepatic expression of nuclear factor erythroid 2-related factor 2 and its target genes decreased, whereas c-Jun N-terminal kinase activation in the model mice increased. Treating the mice with SNN significantly improved oxidative stress-related harmful factors. CONCLUSIONS This study shows that SNN can protect the liver from severe steatosis and damage induced by MCD diet, which suggests the potential use of SNN on the treatment of NASH patient. The results also indicate that improving the hepatic antioxidant capability of the liver may contribute to the underlying hepatoprotective mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
72
|
Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12. Mol Neurobiol 2014; 52:1504-1520. [PMID: 25367877 DOI: 10.1007/s12035-014-8928-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.
Collapse
|
73
|
Tang W, Jiang YF, Ponnusamy M, Diallo M. Role of Nrf2 in chronic liver disease. World J Gastroenterol 2014; 20:13079-13087. [PMID: 25278702 PMCID: PMC4177487 DOI: 10.3748/wjg.v20.i36.13079] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
74
|
Abstract
The transcription factor Nrf2 regulates the expression of important cytoprotective enzymes. Induction of cytochrome P450 2E1(CYP2E1) is one of the central pathways by which ethanol generates oxidative stress. CYP2E1 can be induced by ethanol and several low molecular weight chemicals such as pyrazole. The chapter discusses biochemical and toxicological effects of CYP2E1 and the effects of Nrf2 in modulating these actions of CYP2E1.Besides ethanol, CYP2E1 metabolizes and activates many other important toxicological compounds. One approach to try to understand basic effects and actions of CYP2E1 was to establish HepG2 cell lines that constitutively express human CYP2E1. Ethanol, polyunsaturated fatty acids and iron were toxic to the HepG2 cells which express CYP2E1 (E47 cells) but not control C34HepG2 cells which do not express CYP2E1.Toxicity was associated with enhanced oxidant stress and could be prevented by antioxidants and potentiated if glutathione (GSH) was removed. The E47 cells had higher GSH levels and a Twofold increase in catalase, cytosolic and microsomal glutathione transferase, and heme oxygenase-1 (HO-1) than control HepG2 cells due to activation of their respective genes. These activations were prevented by antioxidants, suggesting that reactive oxygen species (ROS) generated by CYP2E1 were responsible for the up-regulation of these antioxidant genes. This upregulation of antioxidant genes may reflect an adaptive mechanism to remove CYP2E1-derived oxidants. Increases in Nrf2 protein and mRNA were observed in livers of chronic alcohol-fed mice or rats and of pyrazole-treated rats or mice, conditions known to elevate CYP2E1. E47 cells showed increased Nrf2 mRNA and protein expression compared with control HepG2 C34 cells. Upregulation of antioxidant genes in E47 cells is dependent on Nrf2 and is prevented by siRNA-Nrf2. Blocking Nrf2 by siRNA-Nrf2 decreases GSH and increases ROS and lipid peroxidation, resulting in decreased mitochondrial membrane potential and loss of cell viability of E47 cells but not C34 cells. Nrf2 is activated and levels of Nrf2 protein and mRNA are increased when CYP2E1 is elevated. These results suggest that Nrf2 plays a key role in the adaptive response against increased oxidative stress caused by CYP2E1 in the HepG2 cells.
Collapse
Affiliation(s)
- Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave L Levy Place, 1603, New York, 10029, NY, USA,
| |
Collapse
|
75
|
Han F, Guo PR, Wang F, Hou DJ, Sun YF. Nrf2 and Nrf2 activators in hepatic diseases. Shijie Huaren Xiaohua Zazhi 2014; 22:1651-1657. [DOI: 10.11569/wcjd.v22.i12.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is evidently related to hepatic diseases. Nuclear erythroid-2 related factor 2 (Nrf2) is one of the most important regulators of cells' protection against oxidative stress. Nrf2 induces the transcription of a wide array of genes encoding antioxidant enzymes and detoxification enzymes, cleans reactive oxygen species and relieves apoptosis. This review aims to illustrate the Nrf2/Keap1-ARE antioxidant pathway, investigate its relation with hepatic diseases and discuss the potential therapeutic effect of Nrf2 activators.
Collapse
|
76
|
CYP2E1-mediated oxidative stress regulates HO-1 and GST expression in maneb- and paraquat-treated rat polymorphonuclear leukocytes. Mol Cell Biochem 2014; 393:209-22. [DOI: 10.1007/s11010-014-2062-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2013] [Accepted: 04/11/2014] [Indexed: 11/26/2022]
|
77
|
Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou Z, Song Z. Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology 2014; 59:1381-92. [PMID: 24170703 PMCID: PMC3966965 DOI: 10.1002/hep.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/18/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Chronic alcohol consumption leads to hypertriglyceridemia, which is positively associated with alcoholic liver disease (ALD). However, whether and how it contributes to the development of fatty liver and liver injury are largely unknown. In this study we demonstrate that chronic alcohol exposure differently regulates the expression of very-low-density lipoprotein receptor (VLDLR) in adipose tissue and the liver. Whereas adipose tissue VLDLR is significantly down-regulated, its hepatic expression is dramatically increased after chronic alcohol feeding. While HepG2 cells stably overexpressing VLDLR manifests increased intracellular triglyceride accumulation, VLDLR-deficient mice are protective against fatty liver and liver injury after chronic alcohol exposure. Mechanistic investigations using both in vitro and in vivo systems reveal that oxidative stress-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation plays a critical role in alcohol-induced VLDLR up-regulation in hepatocytes, but not in adipocytes. Oxidative stress enhances VLDLR gene expression and protein abundance in primary hepatocytes, concomitant with the Nrf2 activation. Conversely, Nrf2 gene silencing abrogates oxidative stress-induced VLDLR up-regulation in the liver, but not in adipose tissue. In mice, alcohol exposure induces hepatic oxidative stress and Nrf2 activation. Supplementation of N-acetylcysteine alleviates fatty liver and liver injury induced by chronic alcohol exposure, which is associated with suppressed Nrf2 activation and attenuated VLDLR increase in the liver. Furthermore, in comparison to wild-type counterparts, Nrf2-deficient mice demonstrate attenuated hepatic VLDLR expression increase in response to chronic alcohol exposure. CONCLUSION Chronic alcohol consumption differently alters VLDLR expression in adipose tissue and the liver. Oxidative stress-induced Nrf2 activation is mechanistically involved in VLDLR overexpression in hepatocytes in response to chronic alcohol consumption. Hepatic VLDLR overexpression plays an important role in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,College of Laboratory Medical Science, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, P. R. China
| | - Xiaobing Dou
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Songtao Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Ximei Zhang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Xinguo Sun
- Center for Translational Biomedical Research, Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,Department of Pathology, University of Illinois Medical Center, Chicago, IL 60612
| |
Collapse
|
78
|
Galicia-Moreno M, Gutiérrez-Reyes G. Papel del estrés oxidativo en el desarrollo de la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014; 79:135-44. [DOI: 10.1016/j.rgmx.2014.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022]
|
79
|
Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014. [DOI: 10.1016/j.rgmxen.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
|
80
|
Duryee MJ, Willis MS, Schaffert CS, Reidelberger RD, Dusad A, Anderson DR, Klassen LW, Thiele GM. Precision-cut liver slices from diet-induced obese rats exposed to ethanol are susceptible to oxidative stress and increased fatty acid synthesis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G208-17. [PMID: 24284960 PMCID: PMC3920111 DOI: 10.1152/ajpgi.00124.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Oxidative stress from fat accumulation in the liver has many deleterious effects. Many believe that there is a second hit that causes relatively benign fat accumulation to transform into liver failure. Therefore, we evaluated the effects of ethanol on ex vivo precision-cut liver slice cultures (PCLS) from rats fed a high-fat diet resulting in fatty liver. Age-matched male Sprague-Dawley rats were fed either high-fat (obese) (45% calories from fat, 4.73 kcal/g) or control diet for 13 mo. PCLS were prepared, incubated with 25 mM ethanol for 24, 48, and 72 h, harvested, and evaluated for ethanol metabolism, triglyceride production, oxidative stress, and cytokine expression. Ethanol metabolism and acetaldehyde production decreased in PCLS from obese rats compared with age-matched controls (AMC). Increased triglyceride and smooth muscle actin production was observed in PCLS from obese rats compared with AMC, which further increased following ethanol incubation. Lipid peroxidation, measured by thiobarbituric acid reactive substances assay, increased in response to ethanol, whereas GSH and heme oxygenase I levels were decreased. TNF-α and IL-6 levels were increased in the PCLS from obese rats and increased further with ethanol incubation. Diet-induced fatty liver increases the susceptibility of the liver to toxins such as ethanol, possibly by the increased oxidative stress and cytokine production. These findings support the concept that the development of fatty liver sensitizes the liver to the effects of ethanol and leads to the start of liver failure, necrosis, and eventually cirrhosis.
Collapse
Affiliation(s)
- Michael J. Duryee
- 1Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; ,2Experimental Immunology Laboratory, University of Nebraska Medical Center, Department of Internal Medicine, Division of Rheumatology, Omaha, Nebraska;
| | - Monte S. Willis
- 3Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina;
| | - Courtney S. Schaffert
- 1Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; ,2Experimental Immunology Laboratory, University of Nebraska Medical Center, Department of Internal Medicine, Division of Rheumatology, Omaha, Nebraska;
| | | | - Anand Dusad
- 1Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; ,2Experimental Immunology Laboratory, University of Nebraska Medical Center, Department of Internal Medicine, Division of Rheumatology, Omaha, Nebraska;
| | - Daniel R. Anderson
- 3Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina;
| | - Lynell W. Klassen
- 1Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; ,2Experimental Immunology Laboratory, University of Nebraska Medical Center, Department of Internal Medicine, Division of Rheumatology, Omaha, Nebraska;
| | - Geoffrey M. Thiele
- 1Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Omaha, Nebraska; ,2Experimental Immunology Laboratory, University of Nebraska Medical Center, Department of Internal Medicine, Division of Rheumatology, Omaha, Nebraska; ,5University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, Nebraska; and
| |
Collapse
|
81
|
Song MO, Mattie MD, Lee CH, Freedman JH. The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 2014; 322:39-50. [PMID: 24462598 DOI: 10.1016/j.yexcr.2014.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
Recent evidences indicated Nrf2 is more potent than Nrf1 in the activation of antioxidant genes. However, the roles of Nrf proteins in the regulation of copper-responsive transcription have not been well addressed. We took the toxicogenomic approach and the present network and Gene Ontology analyses results showed that Nrf1 and Nrf2 are distinctively involved in copper-responsive transcriptional regulation in HepG2 transcriptome. Cells deficient in either Nrf1 or Nrf2 were more susceptible to copper exposure than wild type cells. Nrf1 and Nrf2 null cells were transfected with the luciferase reporters containing either ARE(s) or a combination of ARE(s) and MREs, and then treated with copper. In Nrf2-null (Nrf2(-/-)) cells, copper did not activate transcription of reporter genes, whereas Nrf1 deficiency did not affect copper-inducible activation. Ectopic expression of Nrf2 restored copper-inducible transcription in Nrf2(-/-) cells. However, the changes in the intrinsic mRNA levels of MT-1 in Nrf null cells following copper treatment showed that Nrf1 and Nrf2 equally contributed to MT-1 activation after 4h, while Nrf1involved more than Nrf2 following 24h exposure. These results suggest that while Nrf2 is crucial for MRE/ARE-mediated transcription in response to copper, Nrf1 may activate MT-1 expression by a mechanism different from that Nrf2 employs.
Collapse
Affiliation(s)
- Min Ok Song
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangwon-do 210-702, Republic of Korea.
| | - Michael D Mattie
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA.
| | - Chang-Ho Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangwon-do 210-702, Republic of Korea
| | - Jonathan H Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
82
|
Takahashi Y, Kobayashi Y, Kawata K, Kawamura K, Sumiyoshi S, Noritake H, Watanabe S, Chida T, Souda K, Sakaguchi T, Nakamura H, Suda T. Does hepatic oxidative stress enhance activation of nuclear factor-E2-related factor in patients with nonalcoholic steatohepatitis? Antioxid Redox Signal 2014; 20:538-43. [PMID: 23822105 DOI: 10.1089/ars.2013.5470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The imbalance of hepatic oxidant and antioxidant status is an important pathophysiological mechanism in nonalcoholic steatohepatitis (NASH). The nuclear factor-E2-related factor (Nrf2) is a key transcription factor regulating a plethora of antioxidant genes involved in antioxidant defense. To clarify the mechanisms of hepatic antioxidant defenses in human NASH, the aim of the current study was to examine oxidative stress-induced Nrf2 activation in the livers of patients with NASH. Liver biopsies were obtained from 19 NASH patients. Normal liver tissue was obtained from surgical resection specimens of 15 patients. The proportion of hepatocytes with 8-hydroxydeoxyguanosine (8-OHdG)-positive nuclei was increased in NASH livers compared with that in normal livers. Hepatic Nrf2 protein levels were increased with enhanced accumulation of hepatocellular nuclear Nrf2, which was positively correlated with that of 8-OHdG. Hepatic expression of γ-glutamylcysteine synthetase (γGCS), glutathione peroxidase 2 (GPx2), thioredoxin (TRX), and heme oxygenese 1 (HO-1), but not thioredoxin reductase 1 (TrxR1), was upregulated, and the protein levels of γGCS were positively correlated with those of Nrf2. Collectively, our findings lead to the hypothesis that oxidative stress may enhance Nrf2 activation in the livers of patients with NASH.
Collapse
Affiliation(s)
- Yurimi Takahashi
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Zhou R, Lin J, Wu D. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:209-18. [PMID: 24060752 PMCID: PMC3859691 DOI: 10.1016/j.bbagen.2013.09.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. METHOD The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. RESULTS The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. CONCLUSIONS Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. GENERAL SIGNIFICANCE The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study.
Collapse
Affiliation(s)
- Richard Zhou
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jianjun Lin
- Liver Disease Center, Xiamen Chinese Medicine Hospital, Fujian Chinese Medicine University, Xiamen, China
| | - Defeng Wu
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
84
|
Kato R, Shigemoto K, Akiyama H, Ieda A, Ijiri Y, Hayashi T. Human Hepatocarcinoma Functional Liver Cell-4 Cell Line Exhibits High Expression of Drug-Metabolizing Enzymes in Three-Dimensional Culture. Biol Pharm Bull 2014; 37:1782-7. [DOI: 10.1248/bpb.b14-00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryuji Kato
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Kota Shigemoto
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Hiromasa Akiyama
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Asaka Ieda
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yoshio Ijiri
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Tetsuya Hayashi
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
85
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.
Collapse
Affiliation(s)
- Y Sumida
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine , Kyoto , Japan
| | | | | | | |
Collapse
|
86
|
Ye Q, Wang X, Wang Q, Xia M, Zhu Y, Lian F, Ling W. Cytochrome P4502E1 inhibitor, chlormethiazole, decreases lipopolysaccharide-induced inflammation in rat Kupffer cells with ethanol treatment. Hepatol Res 2013; 43:1115-23. [PMID: 23421770 DOI: 10.1111/hepr.12063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/11/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 12/20/2022]
Abstract
AIM To investigate the role of Cytochrome P4502E1 in sensitizing Kupffer cells to lipopolysaccharide (LPS)-mediated inflammation after ethanol induction. METHODS Sprague-Dawley rats were fed a liquid ethanol diet, control diet or ethanol diet supplemented with CYP2E1 inhibitor, chlormethiazole (CMZ), for 4 weeks. Hepatic CYP2E1 protein, nuclear factor-kappa B (NF-κB) p65 protein and tumor necrosis factor (TNF)-α mRNA were measured. In vitro, isolated Kupffer cells from control rats were exposed to ethanol with different CMZ concentration; CYP2E1 expression and reactive oxygen species (ROS) generation were compared. The identified CMZ concentration was further utilized to evaluate the role of CYP2E1 on the sensitization of ethanol-induced Kupffer cell to LPS. The effect of LPS alone was tested in controlled Kupffer cells without ethanol. TNF-α, nuclear NF-κB p65 and cytoplasm IκB-α were monitored for all groups. RESULTS Ethanol feeding increased hepatic CYP2E1 level, nuclear accumulation of NF-κB p65 and TNF-α expression in rats. These changes were inhibited by CMZ supplementation. In cultured Kupffer cells, increased CYP2E1 content and ROS production by in vitro ethanol induction were dose-dependently inhibited by CMZ. Compared with LPS alone, the ethanol induction group produced significantly more TNF-α, nuclear NF-κB p65 and less cytoplasm IκB-α under LPS stimuli. CMZ abolished the effects of ethanol on LPS-stimulated NF-κB translocation and TNF-α generation in Kupffer cells. CONCLUSION In cultured Kupffer cell, using CMZ as inhibitor, ethanol-induced CYP2E1 overexpression was proved to contribute to the sensitization of Kupffer cells to LPS stimuli, with amplification of ROS production and activation of NF-κB, resulting in increased TNF-α production.
Collapse
Affiliation(s)
- Qinyuan Ye
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China; Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Cornejo P, Vargas R, Videla LA. Nrf2-regulated phase-II detoxification enzymes and phase-III transporters are induced by thyroid hormone in rat liver. Biofactors 2013; 39:514-21. [PMID: 23554160 DOI: 10.1002/biof.1094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/02/2012] [Accepted: 12/28/2012] [Indexed: 01/09/2023]
Abstract
Thyroid hormone (T₃)-induced calorigenesis triggers the hepatic production of reactive oxygen species (ROS) and redox-sensitive nuclear transcription factor erythroid 2-related factor 2 (Nrf2) activation. The aim of this study was to test the hypothesis that in vivo T₃ administration upregulates the expression of phase II and III detoxification proteins that is controlled by Nrf2. Male Sprague-Dawley rats were given a single intraperitoneal dose of 0.1 mg T₃/kg or T₃ vehicle (controls). After treatment, rectal temperature of the animals, liver Nrf2 DNA binding (EMSA), protein levels of epoxide hydrolase 1 (Eh1), NADPH-quinone oxidoreductase 1 (NQO1), glutathione-S-transferases Ya (GST Ya) and Yp (GST Yp), and multidrug resistance-associated proteins 2 (MRP-2) and 4 (MRP-4) (Western blot), and MRP-3 (RT-PCR) were determined at different times. T₃ significantly rose the rectal temperature of the animals in the time period studied, concomitantly with increases (P < 0.05) of liver Nrf2 DNA binding at 1 and 2 h after treatment, which was normalized at 4-12 h. Within 1-2 h after T₃ treatment, liver phase II enzymes Eh1, NQO1, GST Ya, and GST Yp were enhanced (P < 0.05) as did phase III transporters MRP-2 and MRP-3, whereas MRP-4 remained unchanged. In conclusion, enhancement of liver Nrf2 DNA binding elicited by in vivo T₃ administration is associated with upregulation of the expression of detoxification and drug transport proteins. These changes, in addition to antioxidant protein induction previously observed, may represent cytoprotective mechanisms underlying T₃ preconditioning against liver injury mediated by ROS and chemical toxicity.
Collapse
Affiliation(s)
- Pamela Cornejo
- Faculty of Medicine, Diego Portales University, Santiago, Chile
| | | | | |
Collapse
|
88
|
Li R, Guo G, Cao Y, Wang Y, Liu F, Zhang X. Expression of cytochrome P450 2A5 in a C57BL/6J mouse model of nonalcoholic fatty liver disease. Pharmacology 2013; 92:26-31. [PMID: 23867551 DOI: 10.1159/000348575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
Cytochrome P450 2A5 (CYP2A5) expression is induced during the hepatotoxicity caused by various hepatotoxins and hepatitis. However, CYP2A5 expression during nonalcoholic fatty liver disease (NAFLD) is still unknown. In this study, serum biochemical parameters and liver histopathological analyses found that NAFLD had developed in C57BL/6J mice via administration of a high-fat diet continuously for 8 weeks. Subsequently, CYP2A5 expression was probed in the mice diagnosed with NAFLD that were treated with or without pyrazole, the inducer of chemical liver injury. It is shown that hepatic CYP2A5 mRNA, protein expression and coumarin 7-hydroxylase activity are enhanced with high-fat feed, and that pyrazole is able to further increase CYP2A5 expression and activity in mice with NAFLD. These results revealed that CYP2A5 is elevated during NAFLD and suggested that pyrazole and NAFLD act synergistically to induce the expression of CYP2A5 via an unclear mechanism.
Collapse
Affiliation(s)
- Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body's needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol-based redox signaling. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element-dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.
| |
Collapse
|
90
|
Hernández-Gea V, Hilscher M, Rozenfeld R, Lim MP, Nieto N, Werner S, Devi LA, Friedman SL. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol 2013; 59:98-104. [PMID: 23485523 PMCID: PMC3686909 DOI: 10.1016/j.jhep.2013.02.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/04/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Metabolic stress during liver injury enhances autophagy and provokes stellate cell activation, with secretion of scar matrix. Conditions that augment protein synthesis increase demands on the endoplasmic reticulum (ER) folding capacity and trigger the unfolded protein response (UPR) to cope with resulting ER stress. Generation of reactive oxygen species (ROS) is a common feature of hepatic fibrogenesis, and crosstalk between oxidant stress and ER stress has been proposed. The aim of our study was to determine the impact of oxidant and ER stress on stellate cell activation. METHODS Oxidant stress was induced in hepatic stellate cells using H2O2 in culture or by ethanol feeding in vivo, and the UPR was analyzed. Because the branch of the UPR mainly affected was IREα, we blocked this pathway in stellate cells and analyzed the fibrogenic response, together with autophagy and downstream MAPK signaling. The Nrf2 antioxidant response was also evaluated in stellate cells under oxidant stress conditions. RESULTS H2O2 treatment in culture or ethanol feeding in vivo increased the UPR based on splicing of XBP1 mRNA, which triggered autophagy. The Nrf2-mediated antioxidant response, as measured by qRT-PCR of its target genes was also induced under ER stress conditions. Conversely, blockade of the IRE1α pathway in stellate cells significantly decreased both their activation and autophagic activity in a p38 MAPK-dependent manner, leading to a reduced fibrogenic response. CONCLUSIONS These data implicate mechanisms underlying protein folding quality control in regulating the fibrogenic response in hepatic stellate cells.
Collapse
Affiliation(s)
- Virginia Hernández-Gea
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Role of the Nrf2-ARE pathway in liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:763257. [PMID: 23766860 PMCID: PMC3665261 DOI: 10.1155/2013/763257] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/31/2012] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
The liver is a central organ that performs a wide range of functions such as detoxification and metabolic homeostasis. Since it is a metabolically active organ, liver is particularly susceptible to oxidative stress. It is well documented that liver diseases including hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are highly associated with antioxidant capacity. NF-E2-related factor-2 (Nrf2) is an essential transcription factor that regulates an array of detoxifying and antioxidant defense genes expression in the liver. It is activated in response to electrophiles and induces its target genes by binding to the antioxidant response element (ARE). Therefore, the roles of the Nrf2-ARE pathway in liver diseases have been extensively investigated. Studies from several animal models suggest that the Nrf2-ARE pathway collectively exhibits diverse biological functions against viral hepatitis, alcoholic and nonalcoholic liver disease, fibrosis, and cancer via target gene expression. In this review, we will discuss the role of the Nrf2-ARE pathway in liver pathophysiology and the potential application of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
92
|
Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, Suttles J, McClain C, Feng W. Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury. J Nutr Biochem 2013; 24:1609-15. [PMID: 23618528 DOI: 10.1016/j.jnutbio.2013.02.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2012] [Revised: 01/14/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of probiotic treatment in alcoholic liver disease (ALD) have been studied in both patients and experimental animal models. Although the precise mechanisms of the pathogenesis of ALD are not fully understood, gut-derived endotoxin has been postulated to play a crucial role in hepatic inflammation. Previous studies have demonstrated that probiotic therapy reduces circulating endotoxin derived from intestinal gram-negative bacteria in ALD. In this study, we investigated the effects of probiotics on hepatic tumor necrosis factor-α (TNFα) production and inflammation in response to chronic alcohol ingestion. Mice were fed Lieber DeCarli liquid diet containing 5% alcohol for 8weeks, and Lactobacillus rhamnosus GG (LGG) was supplemented in the last 2 weeks. Eight-week alcohol feeding caused a significant increase in hepatic inflammation as shown by histological assessment and hepatic tissue myeloperoxidase activity assay. Two weeks of LGG supplementation reduced hepatic inflammation and liver injury and markedly reduced TNFα expression. Alcohol feeding increased hepatic mRNA expression of Toll-like receptors (TLRs) and CYP2E1 and decreased nuclear factor erythroid 2-related factor 2 expression. LGG supplementation attenuated these changes. Using human peripheral blood monocytes-derived macrophages, we also demonstrated that incubation with ethanol primes both lipopolysaccharide- and flagellin-induced TNFα production, and LGG culture supernatant reduced this induction in a dose-dependent manner. In addition, LGG treatment also significantly decreased alcohol-induced phosphorylation of p38 MAP kinase. In conclusion, probiotic LGG treatment reduced alcohol-induced hepatic inflammation by attenuation of TNFα production via inhibition of TLR4- and TLR5-mediated endotoxin activation.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Seymour EM, Bennink MR, Bolling SF. Diet-relevant phytochemical intake affects the cardiac AhR and nrf2 transcriptome and reduces heart failure in hypertensive rats. J Nutr Biochem 2013; 24:1580-6. [PMID: 23528973 DOI: 10.1016/j.jnutbio.2013.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023]
Abstract
Intake of phytochemical-rich diets is inversely related to hypertension. Phytochemicals alter in vitro aryl hydrocarbon receptor (AhR) and NF-E2 related factor (nrf2) transcription factor activity and related genes pertinent to antioxidant defense. However, it is unknown if these molecular effects occur in the heart with dietary intake of physiologically relevant phytochemicals and if this correlates with reduced hypertension-associated heart failure. This extended feeding study used whole grapes as a model of a phytochemical-rich food and hypertensive heart failure-prone rats to assess mechanisms of effect. Grape intake reduced cardiac hypertrophy and fibrosis and improved diastolic function. At the development of diastolic dysfunction, hypertensive rats show reduced AhR activity, reduced expression of AhR-regulated genes, reduced glutathione and reduced activity of glutathione-regulating proteins. However, grape intake significantly increased cardiac AhR and nrf2 activity, Phase I/II gene transcripts and protein activity related to antioxidant defense. Heart failure is the leading cause of morbidity and mortality in the aged and the intake of phytochemicals from fruits and vegetables decreases with age. Concentrated antioxidant nutrient trials have failed to affect heart failure. However, this study demonstrates that diet-relevant intake of non-nutrient phytochemicals significantly reduces heart failure progression. Therefore, this study suggests that higher intake of phytochemical-containing foods may achieve cardiac benefits that isolated antioxidant supplements may not. In summary, intake of diet-relevant phytochemicals altered the cardiac antioxidant transcriptome, antioxidant defense, oxidative damage and fibrosis. Regular phytochemical intake may therefore increase cardiac resistance to cardiac pathology instigated by prolonged hypertension.
Collapse
|
94
|
Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 2013; 58:395-8. [PMID: 22940046 DOI: 10.1016/j.jhep.2012.08.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/29/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/20/2022]
Abstract
Alcoholic (ALD) and non-alcoholic fatty liver diseases (NAFLD) are clinical conditions leading to hepatocellular injury and inflammation resulting from alcohol consumption, high fat diet, obesity and diabetes, among others. Oxidant stress is a major contributing factor to the pathogenesis of ALD and NAFLD. Multiple studies have shown that generation of reactive oxygen species (ROS) is key for the progression of fatty liver to steatohepatitis. Cytochrome P450 2E1 (CYP2E1) plays a critical role in ROS generation and CYP2E1 is also induced by alcohol itself. This review summarizes the role of CYP2E1 in ALD and NAFLD.
Collapse
Affiliation(s)
- Tung-Ming Leung
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
95
|
Bae SH, Sung SH, Lee HE, Kang HT, Lee SK, Oh SY, Woo HA, Kil IS, Rhee SG. Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid Redox Signal 2012; 17:1351-61. [PMID: 22490042 PMCID: PMC3437045 DOI: 10.1089/ars.2011.4334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
AIMS To define the mechanisms underlying pyrazole-induced oxidative stress and the protective role of peroxiredoxins (Prxs) and sulfiredoxin (Srx) against such stress. RESULTS Pyrazole increased Srx expression in the liver of mice in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner and induced Srx translocation from the cytosol to the endoplasmic reticulum (ER) and mitochondria. Pyrazole also induced the expression of CYP2E1, a primary reactive oxygen species (ROS) source for ethanol-induced liver injury, in ER and mitochondria. However, increased CYP2E1 levels only partially accounted for the pyrazole-mediated induction of Srx, prompting the investigation of CYP2E1-independent ROS generation downstream of pyrazole. Indeed, pyrazole increased ER stress, which is known to elevate mitochondrial ROS. In addition, pyrazole up-regulated CYP2E1 to a greater extent in mitochondria than in ER. Accordingly, among Prxs I to IV, PrxIII, which is localized to mitochondria, was preferentially hyperoxidized in the liver of pyrazole-treated mice. Pyrazole-induced oxidative damage to the liver was greater in PrxIII(-/-) mice than in wild-type mice. Such damage was also increased in Srx(-/-) mice treated with pyrazole, underscoring the role of Srx as the guardian of PrxIII. INNOVATION The roles of Prxs, Srx, and ER stress have not been previously studied in relation to pyrazole toxicity. CONCLUSION The concerted action of PrxIII and Srx is important for protection against pyrazole-induced oxidative stress arising from the convergent induction of CYP2E1-derived and ER stress-derived ROS in mitochondria.
Collapse
Affiliation(s)
- Soo Han Bae
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep 2012; 28:1959-67. [PMID: 23023193 PMCID: PMC3583472 DOI: 10.3892/or.2012.2057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2012] [Accepted: 05/22/2012] [Indexed: 01/25/2023] Open
Abstract
Nickel (II) is a toxic and carcinogenic metal which induces a redox imbalance following oxidative stress. Nuclear factor erythroid-2 related factor 2 (Nrf2) is a redox factor that regulates oxidation/reduction status and consequently mediates cytoprotective responses against exposure to environmental toxicants. In this study, we investigated the protective roles of the Nrf2 gene against oxidative stress and DNA damage induced by nickel at sub-lethal doses. Under nickel exposure conditions, we detected significantly increased intracellular ROS generation, in addition to higher amounts of DNA damage using comet assay and γ-H2AX immunofluorescence staining in Nrf2 lacking cells, as compared to Nrf2 wild-type cells. In addition, we attempted to identify potential nickel and Nrf2-responsive targets and the relevant pathway. The genomic expression data were analyzed using microarray for the selection of synergistic effect-related genes by Nrf2 knockdown under nickel treatment. In particular, altered expressions of 6 upregulated genes (CAV1, FOSL2, MICA, PIM2, RUNX1 and SLC7A6) and 4 downregulated genes (APLP1, CLSPN, PCAF and PRAME) were confirmed by qRT-PCR. Additionally, using bioinformatics tool, we found that these genes functioned principally in a variety of molecular processes, including oxidative stress response, necrosis, DNA repair and cell survival. Thus, we describe the potential biomarkers regarded as molecular candidates for Nrf2-related cellular protection against nickel exposure. In conclusion, these findings indicate that Nrf2 is an important factor with a protective role in the suppression of mutagenicity and carcinogenicity by environmental nickel exposure in terms of gene-environment interaction.
Collapse
Affiliation(s)
- Hye Lim Kim
- Department of Life Science, Dongguk University, Jung-gu, Seoul 100-715, Republic of Korea
| | | |
Collapse
|
97
|
Wu D, Wang X, Zhou R, Yang L, Cederbaum AI. Alcohol steatosis and cytotoxicity: the role of cytochrome P4502E1 and autophagy. Free Radic Biol Med 2012; 53:1346-57. [PMID: 22819980 PMCID: PMC3436962 DOI: 10.1016/j.freeradbiomed.2012.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/21/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023]
Abstract
The goal of the current study was to evaluate whether CYP2E1 plays a role in binge-ethanol induced steatosis and if autophagy impacts CYP2E1-mediated hepatotoxicity, oxidative stress and fatty liver formation produced by ethanol. Wild type (WT), CYP2E1 knockin (KI) and CYP2E1 knockout (KO) mice were gavaged with 3g/kg body wt ethanol twice a day for four days. This treatment caused fatty liver, elevation of CYP2E1 and oxidative stress in WT and KI mice but not KO mice. Autophagy was impaired in ethanol-treated KI mice compared to KO mice as reflected by a decline in the LC3-II/LC3-I ratio and lower total LC-3 and Beclin-1 levels coupled to increases in P62, pAKT/AKT and mTOR. Inhibition of macroautophagy by administration of 3-methyladenine enhanced the binge ethanol hepatotoxicity, steatosis and oxidant stress in CYP2E1 KI, but not CYP2E1 KO mice. Stimulation of autophagy by rapamycin blunted the elevated steatosis produced by binge ethanol. Treatment of HepG2 E47 cells which express CYP2E1 with 100mM ethanol for 8 days increased fat accumulation and oxidant stress but decreased autophagy. Ethanol had no effect on these reactions in HepG2 C34 cells which do not express CYP2E1. Inhibition of autophagy elevated ethanol toxicity, lipid accumulation and oxidant stress in the E47, but not C34 cells. The antioxidant N-acetylcysteine, and CYP2E1 inhibitor chlormethiazole blunted these effects of ethanol. These results indicate that CYP2E1 plays an important role in binge ethanol-induced fatty liver. We propose that CYP2E1-derived reactive oxygen species inhibit autophagy, which subsequently causes accumulation of lipid droplets. Inhibition of autophagy promotes binge ethanol induced hepatotoxicity, steatosis and oxidant stress via CYP2E1.
Collapse
Affiliation(s)
- Defeng Wu
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| | - Xiaodong Wang
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| | - Richard Zhou
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| | - Lili Yang
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| | - Arthur I. Cederbaum
- Department of Pharmacology & Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
98
|
Bezirtzoglou EEV. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:18370. [PMID: 23990816 PMCID: PMC3747728 DOI: 10.3402/mehd.v23i0.18370] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/19/2012] [Revised: 08/06/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
Abstract
Cytochromes P450 (CYPs) enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80%) followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450) cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.
Collapse
Affiliation(s)
- Eugenia Elefterios Venizelos Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Department of Food Science, Faculty of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| |
Collapse
|
99
|
Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver disease. Here, we focus on the most common liver diseases-nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease, and drug-induced liver injury-and highlight areas in the development of these conditions where activation of Nrf2 may alleviate disease progression.
Collapse
Affiliation(s)
- A M Bataille
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
100
|
Kim M, Yang SG, Kim JM, Lee JW, Kim YS, Lee JI. Silymarin suppresses hepatic stellate cell activation in a dietary rat model of non-alcoholic steatohepatitis: analysis of isolated hepatic stellate cells. Int J Mol Med 2012; 30:473-9. [PMID: 22710359 PMCID: PMC3573753 DOI: 10.3892/ijmm.2012.1029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2012] [Accepted: 05/02/2012] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular injury and initial fibrosis severity has been suggested as an important prognostic factor of NASH. Silymarin was reported to improve carbon tetrachloride-induced liver fibrosis and reduce the activation of hepatic stellate cells (HSC). We investigated whether silymarin could suppress the activation of HSCs in NASH induced by methionine- and choline-deficient (MCD) diet fed to insulin-resistant rats. NASH was induced by feeding MCD diet to obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were fed with standard chow and served as the control. OLETF rats were fed on either standard laboratory chow, or MCD diet or MCD diet mixed with silymarin. Histological analysis of the liver showed improved non-alcoholic fatty liver disease (NAFLD) activity score in silymarin-fed MCD-induced NASH. Silymarin reduced the activation of HSCs, evaluated by counting α-smooth muscle actin (SMA)-positive cells and measuring α-SMA mRNA expression in the liver lysates as well as in HSCs isolated from the experimental animals. Although silymarin decreased α1-procollagen mRNA expression in isolated HSCs, the anti-fibrogenic effect of silymarin was not prominent so as to show significant difference under histological analysis. Silymarin increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased tumor necrosis factor (TNF)-α mRNA expression in the liver. Our study suggested that the possible protective effect of silymarin in diet induced NASH by suppressing the activation of HSCs and disturbing the role of the inflammatory cytokine TNF-α.
Collapse
Affiliation(s)
- Mina Kim
- Department of Internal Medicine, Division of Gastroenterology, Inha University School of Medicine, Jung-Gu, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|