51
|
Hsu CL, Zhao X, Milstein AD, Spruston N. Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. Neuron 2018; 99:147-162.e8. [PMID: 29909995 DOI: 10.1016/j.neuron.2018.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023]
Abstract
The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal's position ("place cells") and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
Collapse
Affiliation(s)
- Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Xinyu Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aaron D Milstein
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
52
|
Non-structured spike sequences of hippocampal neuronal ensembles in awake animals. Neurosci Res 2018; 142:1-6. [PMID: 29842894 DOI: 10.1016/j.neures.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
The hippocampal network generates synchronized spikes of a large population of pyramidal neurons associated with sharp-wave ripples in local field potential signals. Ample evidence demonstrates that the synchronized spikes are created by sequential activation of hippocampal place cells that correspond to the animal's past or future trajectories and are hypothesized to play instrumental roles in mnemonic functions. However, not all place-cell spike sequences are precisely organized, and some sequences are composed of spikes from non-spatial cells, implying that not all hippocampal synchronized events directly replicate learned behavioral episodes. While less attention has been given to such non-ordered spike sequences, variable and dynamic selection of active neuronal assemblies may be optimal mechanisms for rapidly reorganizing functional circuits and self-developing novel representations to enable flexible decision-making processes. We recently showed that specific neurons, including both spatial and non-spatial cells, are preferentially recruited in synchronous events for particular time periods, suggesting that there are temporally fluctuating background states of the hippocampal network that determine active neuronal ensembles. Based on recent reports, this review discusses potential roles of the low-fidelity, heterogeneous repertoire of synchronized spike sequences of hippocampal neurons.
Collapse
|
53
|
Swallow KM, Kemp JT, Candan Simsek A. The role of perspective in event segmentation. Cognition 2018; 177:249-262. [PMID: 29738924 DOI: 10.1016/j.cognition.2018.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Abstract
People divide their ongoing experience into meaningful events. This process, event segmentation, is strongly associated with visual input: when visual features change, people are more likely to segment. However, the nature of this relationship is unclear. Segmentation could be bound to specific visual features, such as actor posture. Or, it could be based on changes in the activity that are correlated with visual features. This study distinguished between these two possibilities by examining whether segmentation varies across first- and third-person perspectives. In two experiments, observers identified meaningful events in videos of actors performing everyday activities, such as eating breakfast or doing laundry. Each activity was simultaneously recorded from a first-person perspective and a third-person perspective. These videos presented identical activities but differed in their visual features. If segmentation is tightly bound to visual features then observers should identify different events in first- and third-person videos. In addition, the relationship between segmentation and visual features should remain unchanged. Neither prediction was supported. Though participants sometimes identified more events in first-person videos, the events they identified were mostly indistinguishable from those identified for third-person videos. In addition, the relationship between the video's visual features and segmentation changed across perspectives, further demonstrating a partial dissociation between segmentation and visual input. Event segmentation appears to be robust to large variations in sensory information as long as the content remains the same. Segmentation mechanisms appear to flexibly use sensory information to identify the structure of the underlying activity.
Collapse
Affiliation(s)
- Khena M Swallow
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA.
| | - Jovan T Kemp
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA.
| | - Ayse Candan Simsek
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA.
| |
Collapse
|
54
|
Pearn ML, Schilling JM, Jian M, Egawa J, Wu C, Mandyam CD, Fannon-Pavlich MJ, Nguyen U, Bertoglio J, Kodama M, Mahata SK, DerMardirossian C, Lemkuil BP, Han R, Mobley WC, Patel HH, Patel PM, Head BP. Inhibition of RhoA reduces propofol-mediated growth cone collapse, axonal transport impairment, loss of synaptic connectivity, and behavioural deficits. Br J Anaesth 2018; 120:745-760. [PMID: 29576115 PMCID: PMC6200100 DOI: 10.1016/j.bja.2017.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. METHODS RhoA activation, growth cone morphology, and axonal transport were measured in neonatal rat neurones (5-7 days in vitro) exposed to propofol. Synapse counts (electron microscopy), dendritic arborisation (Golgi-Cox), and network connectivity were measured in mice (age 28 days) previously exposed to propofol at postnatal day 5-7. Memory was assessed in adult mice (age 3 months) previously exposed to propofol at postnatal day 5-7. RESULTS Propofol increased RhoA activation, collapsed growth cones, and impaired retrograde axonal transport of quantum dot-labelled brain-derived neurotrophic factor, all of which were prevented with TAT-C3. Adult mice previously treated with propofol had decreased numbers of total hippocampal synapses and presynaptic vesicles, reduced hippocampal dendritic arborisation, and infrapyramidal mossy fibres. These mice also exhibited decreased hippocampal-dependent contextual fear memory recall. All anatomical and behavioural changes were prevented with TAT-C3 pre-treatment. CONCLUSION Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.
Collapse
Affiliation(s)
- M L Pearn
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J M Schilling
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M Jian
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - J Egawa
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - C Wu
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - C D Mandyam
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M J Fannon-Pavlich
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - U Nguyen
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J Bertoglio
- INSERM U749, Institut Gustave Roussy, Universite Paris-sud, Paris, France
| | - M Kodama
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA; Department of Anesthesiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - S K Mahata
- Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA
| | - C DerMardirossian
- Department of Immunology and Microbial Sciences, TSRI, La Jolla, CA, USA; Department of Cell and Molecular Biology, TSRI, La Jolla, CA, USA
| | - B P Lemkuil
- Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - R Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - W C Mobley
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - H H Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - P M Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - B P Head
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
| |
Collapse
|
55
|
Abstract
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Collapse
|
56
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
57
|
Retailleau A, Morris G. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release. Curr Biol 2018; 28:836-846.e4. [DOI: 10.1016/j.cub.2018.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
|
58
|
Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018; 2018:7292540. [PMID: 29593785 PMCID: PMC5822921 DOI: 10.1155/2018/7292540] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3β) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes.
Collapse
|
59
|
Jiang JX, Liu H, Huang ZZ, Cui Y, Zhang XQ, Zhang XL, Cui Y, Xin WJ. The role of CA3-LS-VTA loop in the formation of conditioned place preference induced by context-associated reward memory for morphine. Addict Biol 2018; 23:41-54. [PMID: 27862708 DOI: 10.1111/adb.12468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022]
Abstract
Addiction-related behaviors, such as conditioned place preference (CPP), require animals to remember an association between environmental cue and drug treatment, and exposure to environmental cue is one of the key contributing factors to relapse. However, how central neural circuit participates in the formation of CPP induced by stimulus of morphine-paired environment remains unknown. In the present study, we found that reexposure to morphine-paired environment significantly increased the activity of hippocampal CA3 neurons, increased the excitability of GABAergic neurons and expression of glutamic acid decarboxylase 65/67 in the caudal lateral septum (LSc) and decreased the activity of GABAergic neurons and GAD65/67 expression in ventral tegmental area (VTA), leading to activation (disinhibition) of dopaminergic neurons. Inactivation of CA3 neurons attenuated GABAergic neurons activity and decreased the upregulation of GAD65/67 in LSc, prevented the dopaminergic neurons activation,and GAD65/67 downregulation in VTA and ameliorated the CPP behavior following exposure to morphine-paired context. Blockade of NMDA receptor in LSc also prevented the upregulation of GAD65/67 in LSc and formation of CPP induced by stimulus of morphine-paired environment. Suppression of GAD activity in LSc also remarkably attenuated the dopaminergic neurons activation and the GAD65/67 downregulation in VTA and prevented the formation of CPP induced by reexposure to morphine-associated context. Collectively, these results, for the first time, illustrated the involvement of neural circuitry of CA3-LSc-VTA, through integration of the contexts and reward information, participated in the reinstatement of CPP induced by exposure to morphine-associated context, which advanced our understanding on neurobiological basis for the context-associated memory and rewarding behavior.
Collapse
Affiliation(s)
- Jin-Xiang Jiang
- Department of Psychology; Guangzhou Medical University; China
| | - Huan Liu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Forensic Medicine, Zhongshan Medical School; Sun Yat-Sen University; China
| | - Zhen-Zhen Huang
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Forensic Medicine, Zhongshan Medical School; Sun Yat-Sen University; China
| | - Yue Cui
- Department of Physiology; Shenyang Medical College; China
| | - Xue-Qin Zhang
- Department of Psychology; Guangzhou Medical University; China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; China
| | - Xiao-Long Zhang
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Forensic Medicine, Zhongshan Medical School; Sun Yat-Sen University; China
| | - Yu Cui
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Forensic Medicine, Zhongshan Medical School; Sun Yat-Sen University; China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Forensic Medicine, Zhongshan Medical School; Sun Yat-Sen University; China
| |
Collapse
|
60
|
Abstract
Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such "autopilot" behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based "autopilot role" for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.
Collapse
|
61
|
Place field assembly distribution encodes preferred locations. PLoS Biol 2017; 15:e2002365. [PMID: 28898248 PMCID: PMC5609775 DOI: 10.1371/journal.pbio.2002365] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/22/2017] [Accepted: 08/22/2017] [Indexed: 01/12/2023] Open
Abstract
The hippocampus is the main locus of episodic memory formation and the neurons there encode the spatial map of the environment. Hippocampal place cells represent location, but their role in the learning of preferential location remains unclear. The hippocampus may encode locations independently from the stimuli and events that are associated with these locations. We have discovered a unique population code for the experience-dependent value of the context. The degree of reward-driven navigation preference highly correlates with the spatial distribution of the place fields recorded in the CA1 region of the hippocampus. We show place field clustering towards rewarded locations. Optogenetic manipulation of the ventral tegmental area demonstrates that the experience-dependent place field assembly distribution is directed by tegmental dopaminergic activity. The ability of the place cells to remap parallels the acquisition of reward context. Our findings present key evidence that the hippocampal neurons are not merely mapping the static environment but also store the concurrent context reward value, enabling episodic memory for past experience to support future adaptive behavior. Episodic memories relate positive or negative experiences to environmental context. The neurophysiological mechanisms of this connection, however, remain unknown. Hippocampal place cells represent location, but it is unclear if they encode only the spatial representation of the environment or if they are also processing information about the reward valence for different locations. Here, we use population analysis to test the hypothesis that the place cells process the dual encoding of spatial representation and experience-dependent reward expectation. We show a unique population code for the experience-dependent value of the context. We present evidence that the accumulation of the place fields mediates the learning of the reward context of the environment. Our data reveal that the causal link between place field distribution and behavioral place preference is mediated by the tegmental dopaminergic activity. Optogenetic control of the ventral tegmental area demonstrates that dopaminergic signaling integrates the encoding of location and reward from hippocampal neurons. These findings shed a new light on the ability of hippocampal neurons to store the experience-dependent context reward value, enabling episodic memory for past experience to support future adaptive behavior.
Collapse
|
62
|
Vilarroya O. Neural Representation. A Survey-Based Analysis of the Notion. Front Psychol 2017; 8:1458. [PMID: 28900406 PMCID: PMC5581880 DOI: 10.3389/fpsyg.2017.01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/14/2017] [Indexed: 01/16/2023] Open
Abstract
The word representation (as in “neural representation”), and many of its related terms, such as to represent, representational and the like, play a central explanatory role in neuroscience literature. For instance, in “place cell” literature, place cells are extensively associated with their role in “the representation of space.” In spite of its extended use, we still lack a clear, universal and widely accepted view on what it means for a nervous system to represent something, on what makes a neural activity a representation, and on what is re-presented. The lack of a theoretical foundation and definition of the notion has not hindered actual research. My aim here is to identify how active scientists use the notion of neural representation, and eventually to list a set of criteria, based on actual use, that can help in distinguishing between genuine or non-genuine neural-representation candidates. In order to attain this objective, I present first the results of a survey of authors within two domains, place-cell and multivariate pattern analysis (MVPA) research. Based on the authors’ replies, and on a review of neuroscientific research, I outline a set of common properties that an account of neural representation seems to require. I then apply these properties to assess the use of the notion in two domains of the survey, place-cell and MVPA studies. I conclude by exploring a shift in the notion of representation suggested by recent literature.
Collapse
Affiliation(s)
- Oscar Vilarroya
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de BarcelonaBarcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)Barcelona, Spain
| |
Collapse
|
63
|
Zou D, Nishimaru H, Matsumoto J, Takamura Y, Ono T, Nishijo H. Experience-Related Changes in Place Cell Responses to New Sensory Configuration That Does Not Occur in the Natural Environment in the Rat Hippocampus. Front Pharmacol 2017; 8:581. [PMID: 28878682 PMCID: PMC5572398 DOI: 10.3389/fphar.2017.00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
The hippocampal formation (HF) is implicated in a comparator that detects sensory conflict (mismatch) among convergent inputs. This suggests that new place cells encoding the new configuration with sensory mismatch develop after the HF learns to accept the new configuration as a match. To investigate this issue, HF CA1 place cell activity in rats was analyzed after the adaptation of the rats to the same sensory mismatch condition. The rats were placed on a treadmill on a stage that was translocated in a figure 8-shaped pathway. We recorded HF neuronal activities under three conditions; (1) an initial control session, in which both the stage and the treadmill moved forward, (2) a backward (mismatch) session, in which the stage was translocated backward while the rats locomoted forward on the treadmill, and (3) the second control session. Of the 161 HF neurons, 56 place-differential activities were recorded from the HF CA1 subfield. These place-differential activities were categorized into four types; forward-related, backward-related, both-translocation-related, and session-dependent. Forward-related activities showed predominant spatial firings in the forward sessions, while backward-related activities showed predominant spatial firings in the backward sessions. Both-translocation-related activities showed consistent spatial firings in both the forward and backward conditions. On the other hand, session-dependent activities showed different spatial firings across the sessions. Detailed analyses of the place fields indicated that mean place field sizes were larger in the forward-related, backward-related, and both-translocation-related activities than in the session-dependent activities. Furthermore, firing rate distributions in the place fields were negatively skewed and asymmetric, which is similar to place field changes that occur after repeated experience. These results demonstrate that the HF encodes a naturally impossible new configuration of sensory inputs after adaptation, suggesting that the HF is capable of updating its stored memory to accept a new configuration as a match by repeated experience.
Collapse
Affiliation(s)
- Dan Zou
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan.,Department of Pathophysiology, Shenyang Medical CollegeShenyang, China
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| |
Collapse
|
64
|
Huffman DJ, Stark CEL. The influence of low-level stimulus features on the representation of contexts, items, and their mnemonic associations. Neuroimage 2017; 155:513-529. [PMID: 28400264 PMCID: PMC5511560 DOI: 10.1016/j.neuroimage.2017.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 11/17/2022] Open
Abstract
Since the earliest attempts to characterize the "receptive fields" of neurons, a central aim of many neuroscience experiments is to elucidate the information that is represented in various regions of the brain. Recent studies suggest that, in the service of memory, information is represented in the medial temporal lobe in a conjunctive or associative form with the contextual aspects of the experience being the primary factor or highest level of the conjunctive hierarchy. A critical question is whether the information that has been observed in these studies reflects notions such as a cognitive representation of context or whether the information reflects the low-level sensory differences between stimuli. We performed two functional magnetic resonance imaging experiments to address this question and we found that associative representations observed between context and item (and order) in the human brain can be highly influenced by low-level sensory differences between stimuli. Our results place clear constraints on the experimental design of studies that aim to investigate the representation of contexts and items during performance of associative memory tasks. Moreover, our results raise interesting theoretical questions regarding the disambiguation of memory-related representations from processing-related representations.
Collapse
Affiliation(s)
- Derek J Huffman
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States.
| |
Collapse
|
65
|
Sreekumar V. Hippocampal Activity Patterns Reflect the Topology of Spaces: Evidence from Narrative Coding. J Neurosci 2017; 37:5975-5977. [PMID: 28637920 PMCID: PMC5481938 DOI: 10.1523/jneurosci.0357-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vishnu Sreekumar
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20810
| |
Collapse
|
66
|
IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria. PLoS Pathog 2017; 13:e1006322. [PMID: 28448579 PMCID: PMC5407765 DOI: 10.1371/journal.ppat.1006322] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/28/2017] [Indexed: 01/16/2023] Open
Abstract
Cerebral malaria (CM) is associated with a high mortality rate and long-term neurocognitive impairment in survivors. The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA)-infection reproduces several of these features. We reported recently increased levels of IL-33 protein in brain undergoing ECM and the involvement of IL-33/ST2 pathway in ECM development. Here we show that PbA-infection induced early short term and spatial memory defects, prior to blood brain barrier (BBB) disruption, in wild-type mice, while ST2-deficient mice did not develop cognitive defects. PbA-induced neuroinflammation was reduced in ST2-deficient mice with low Ifng, Tnfa, Il1b, Il6, CXCL9, CXCL10 and Cd8a expression, associated with an absence of neurogenesis defects in hippocampus. PbA-infection triggered a dramatic increase of IL-33 expression by oligodendrocytes, through ST2 pathway. In vitro, IL-33/ST2 pathway induced microglia expression of IL-1β which in turn stimulated IL-33 expression by oligodendrocytes. These results highlight the IL-33/ST2 pathway ability to orchestrate microglia and oligodendrocytes responses at an early stage of PbA-infection, with an amplification loop between IL-1β and IL-33, responsible for an exacerbated neuroinflammation context and associated neurological and cognitive defects. The cerebral complication of malaria caused by Plasmodium falciparum infection, is associated with long-term neurological sequelae in survivors. The mechanisms involved in neurocognitive impairments during cerebral malaria development are still unknown. We reported recently the essential role of IL-33/ST2 pathway in experimental cerebral malaria (ECM) development. In this study we investigated the capacity of IL-33, highly expressed in oligodendrocytes, to promote ECM-associated neurological and cognitive damages. We found that IL-33/ST2 pathway through glial cells is involved in neurocognitive impairments, associated with exacerbated neuroinflammation, and altered neurogenesis. Interestingly, the implication of glial cells with a high level of IL-33 production in neurocognitive disorders, occurs at an early stage of ECM development, prior to blood brain barrier permeabilization. We propose the link between microglial IL-1β and oligodendrocytes IL-33 production in neurological symptoms associated with ECM.
Collapse
|
67
|
Krächan EG, Fischer AU, Franke J, Friauf E. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus. J Physiol 2017; 595:839-864. [PMID: 27673320 PMCID: PMC5285727 DOI: 10.1113/jp272799] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Auditory brainstem neurons involved in sound source localization are equipped with several morphological and molecular features that enable them to compute interaural level and time differences. As sound source localization works continually, synaptic transmission between these neurons should be reliable and temporally precise, even during sustained periods of high-frequency activity. Using patch-clamp recordings in acute brain slices, we compared synaptic reliability and temporal precision in the seconds-minute range between auditory and two types of hippocampal synapses; the latter are less confronted with temporally precise high-frequency transmission than the auditory ones. We found striking differences in synaptic properties (e.g. continually high quantal content) that allow auditory synapses to reliably release vesicles at much higher rate than their hippocampal counterparts. Thus, they are indefatigable and also in a position to transfer information with exquisite temporal precision and their performance appears to be supported by very efficient replenishment mechanisms. ABSTRACT At early stations of the auditory pathway, information is encoded by precise signal timing and rate. Auditory synapses must maintain the relative timing of events with submillisecond precision even during sustained and high-frequency stimulation. In non-auditory brain regions, e.g. telencephalic ones, synapses are activated at considerably lower frequencies. Central to understanding the heterogeneity of synaptic systems is the elucidation of the physical, chemical and biological factors that determine synapse performance. In this study, we used slice recordings from three synapse types in the mouse auditory brainstem and hippocampus. Whereas the auditory brainstem nuclei experience high-frequency activity in vivo, the hippocampal circuits are activated at much lower frequencies. We challenged the synapses with sustained high-frequency stimulation (up to 200 Hz for 60 s) and found significant performance differences. Our results show that auditory brainstem synapses differ considerably from their hippocampal counterparts in several aspects, namely resistance to synaptic fatigue, low failure rate and exquisite temporal precision. Their high-fidelity performance supports the functional demands and appears to be due to the large size of the readily releasable pool and a high release probability, which together result in a high quantal content. In conjunction with very efficient vesicle replenishment mechanisms, these properties provide extremely rapid and temporally precise signalling required for neuronal communication at early stations of the auditory system, even during sustained activation in the minute range.
Collapse
Affiliation(s)
- Elisa G Krächan
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Alexander U Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Jürgen Franke
- Chair for Applied Mathematical Statistics, Department of MathematicsUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
68
|
Wright M. The Hippocampus. WIKIJOURNAL OF MEDICINE 2017. [DOI: 10.15347/wjm/2017.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
69
|
Becker S. Neurogenesis and pattern separation: time for a divorce. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 28026915 DOI: 10.1002/wcs.1427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/09/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
The generation of new neurons in the adult mammalian brain has led to numerous theories as to their functional significance. One of the most widely held views is that adult neurogenesis promotes pattern separation, a process by which overlapping patterns of neural activation are mapped to less overlapping representations. While a large body of evidence supports a role for neurogenesis in high interference memory tasks, it does not support the proposed function of neurogenesis in mediating pattern separation. Instead, the adult-generated neurons seem to generate highly overlapping and yet distinct distributed representations for similar events. One way in which these immature, highly plastic, hyperactive neurons may contribute to novel memory formation while avoiding interference is by virtue of their extremely sparse connectivity with incoming perforant path fibers. Another intriguing proposal, awaiting empirical confirmation, is that the young neurons' recruitment into memory formation is gated by a novelty/mismatch mechanism mediated by CA3 or hilar back-projections. Ongoing research into the intriguing link between neurogenesis, stress-related mood disorders, and age-related neurodegeneration may lead to promising neurogenesis-based treatments for this wide range of clinical disorders. WIREs Cogn Sci 2017, 8:e1427. doi: 10.1002/wcs.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Suzanna Becker
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| |
Collapse
|
70
|
Chang SD, Liang KC. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus 2016; 27:145-155. [DOI: 10.1002/hipo.22679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shih-Dar Chang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
| | - K. C. Liang
- Department of Psychology; National Taiwan University; Taipei 10617 Taiwan
- Graduate Institute for Brain and Mind Science, National Taiwan University; Taipei 10617 Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
71
|
Law LM, Bulkin DA, Smith DM. Slow stabilization of concurrently acquired hippocampal context representations. Hippocampus 2016; 26:1560-1569. [PMID: 27650572 DOI: 10.1002/hipo.22656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 11/07/2022]
Abstract
Hippocampal neurons exhibit spatially localized firing patterns that, at the population level, represent a particular environment or context. Many studies have examined how hippocampal neurons switch from an existing representation to a new one when the environment is changed, a process referred to as remapping. New representations were commonly thought to emerge rapidly, within a few minutes and then remain remarkably stable thereafter. However, a number of recent studies suggest that hippocampal representations may be more fluid than previously thought and most of the previous studies only required that subjects switch from a familiar environment to a novel one. In the present study, we examined the concurrent development of two distinct hippocampal representations by exposing rats to two distinct environmental contexts in an ABAB pattern and we recorded neuronal activity for eight daily training sessions. Hippocampal neurons exhibited normal place fields with typical firing properties during the initial exposure to each context on the first day. However, when the rats were returned to the original context after having spent 15 min in the second context, many of the neurons fired in new locations (i.e., they remapped) as if the rat had encountered a new environment. By the third day, the representations had stabilized and were highly consistent across visits to the same context. These results suggest that when subjects concurrently encode multiple contexts, hippocampal representations may require repeated experiences to fully stabilize. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L Matthew Law
- Department of Translational Neurotrauma, BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - David A Bulkin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York
| |
Collapse
|
72
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
73
|
Daugherty AM, Raz N. A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults. Neuroimage 2016; 146:492-506. [PMID: 27659539 DOI: 10.1016/j.neuroimage.2016.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits.
Collapse
Affiliation(s)
- Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
74
|
A single low dose of valproic acid in late prenatal life alters postnatal behavior and glutamic acid decarboxylase levels in the mouse. Behav Brain Res 2016; 314:190-8. [PMID: 27498245 DOI: 10.1016/j.bbr.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
RATIONALE Rodents exposed to valproic acid (VPA) in prenatal life exhibit post-natal characteristics analogous to autism spectrum disorder (ASD). Many previous studies used relatively high doses of VPA during early pregnancy, potentially confounding interpretation because the offspring are the 'survivors' of a toxic insult. Low dose or late gestation exposure has not been widely studied. OBJECTIVES We examined the behavioral sequelae of late gestation exposure to low dose VPA in the mouse. We also examined postnatal levels of glutamic acid decarboxylase (GAD65 and GAD67) as markers for GABA neurons, because GABA pathology and subsequent excitatory/inhibitory imbalance is strongly implicated in ASD. METHODS Pregnant C57BL/6N mice received a single subcutaneous injection of 100 or 200mg/kg on gestation day 17. The control group received a saline injection on the same day. The offspring were tested in a battery of behavioral tests in adolescence and adulthood. Six brain regions were harvested and GAD65 and GAD67 were measured by western blotting. RESULTS Compared to saline-exposed controls, adult mice exposed to prenatal VPA had impaired novel object exploration and fear conditioning anomalies. GAD67 was decreased in midbrain, olfactory bulb, prefrontal cortex and increased in cerebellum, hippocampus and striatum; GAD65 was decreased in all 6 regions. CONCLUSIONS Our results suggest that a low dose of VPA in late pregnancy has persistent effects on brain development, and in particular the GABA system, which may be relevant to ASD. Further attention to the impact of gestation time and dose of exposure in VPA-induced ASD models is encouraged.
Collapse
|
75
|
Abstract
UNLABELLED The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as "in sequence" or "out of sequence". We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items-in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20-40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4-12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia.
Collapse
|
76
|
Wu T, He K, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms. Int J Nanomedicine 2016; 11:2737-55. [PMID: 27358562 PMCID: PMC4912344 DOI: 10.2147/ijn.s104985] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in neuroscience, including basic neurological studies and diagnosis or therapy for neurological disorders, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs, with a growing number of studies. However, knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, even if several studies have attempted to evaluate the toxicity of QDs on neural cells. The aim of this study was to evaluate the adverse effects of intrahippocampal injection in rats of 3-mercaptopropionic acid (MPA)-modified CdTe QDs and underlying mechanisms. First of all, we observed impairments in learning efficiency and spatial memory in the MPA-modified CdTe QD-treated rats by using open-field and Y-maze tests, which could be attributed to pathological changes and disruption of ultrastructure of neurons and synapses in the hippocampus. In order to find the mechanisms causing these effects, transcriptome sequencing (RNA-seq), an advanced technology, was used to gain the potentially molecular targets of MPA-modified CdTe QDs. According to ample data from RNA-seq, we chose the signaling pathways of PI3K–Akt and MPAK–ERK to do a thorough investigation, because they play important roles in synaptic plasticity, long-term potentiation, and spatial memory. The data demonstrated that phosphorylated Akt (p-Akt), p-ERK1/2, and c-FOS signal transductions in the hippocampus of rats were involved in the mechanism underlying spatial learning and memory impairments caused by 3.5 nm MPA-modified CdTe QDs.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Shengjun Ang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Jiali Ying
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Shihan Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
77
|
Cortisol disrupts the neural correlates of extinction recall. Neuroimage 2016; 133:233-243. [DOI: 10.1016/j.neuroimage.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
|
78
|
Guo SJ, Cui Y, Huang ZZ, Liu H, Zhang XQ, Jiang JX, Xin WJ. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Addict Biol 2016; 21:547-59. [PMID: 25757577 DOI: 10.1111/adb.12236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence indicates that the hippocampal dentate gyrus (DG), a critical brain region contributing to learning and memory, is involved in the addiction and relapse to abused drugs. Emerging studies also suggest the role of orexin signaling in the rewarding behavior induced by repeated exposure to opiates. In the present study, we investigated the dynamic adaptation of orexin signaling in the DG and its functional significance in the acquisition, expression, maintenance of and relapse to rewarding behavior induced by morphine. Repeated place conditioning with morphine significantly increased the orexin A content released from the lateral hypothalamic area projecting neurons into the DG. Local infusions of orexin A into the DG sensitized the acquisition of and relapse to the conditioned place preference induced by morphine. The application of the orexin receptor type 1 (OXR1) antagonist SB334867 significantly abolished the acquisition, expression and maintenance of the conditioned place preference induced by repeated exposure to morphine. Furthermore, the significant increase of the phosphorylation of AKT in the DG was associated with preference for the morphine-paired chamber in rats, which was reversed by the local administration of an OXR1 antagonist. Thus, these findings suggested that the dynamic upregulation of orexin A signaling, via the AKT pathway in the DG, may promote the acquisition and maintenance of opioid-induced craving behaviors and may increase sensitivity to the rewarding effect of subsequent opioids.
Collapse
Affiliation(s)
- Sui-Jun Guo
- Department of Psychology; Guangzhou Medical University; China
| | - Yu Cui
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Huan Liu
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Xue-Qin Zhang
- Department of Psychology; Guangzhou Medical University; China
| | - Jin-Xiang Jiang
- Department of Psychology; Guangzhou Medical University; China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| |
Collapse
|
79
|
Bulkin DA, Law LM, Smith DM. Placing memories in context: Hippocampal representations promote retrieval of appropriate memories. Hippocampus 2016; 26:958-71. [PMID: 26934366 DOI: 10.1002/hipo.22579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 11/05/2022]
Abstract
Returning to a familiar context triggers retrieval of relevant memories, making memories from other contexts less likely to intrude and cause interference. We investigated the physiology that underlies the use of context to prevent interference by recording hippocampal neurons while rats learned two conflicting sets of discrimination problems, either in the same context or in two distinct contexts. Rats that learned the conflicting problem sets in the same context maintained similar neural representations, and performed poorly because conflicting memories interfered with new learning. In contrast, rats that learned in different contexts formed distinct ensemble representations and performed significantly better. We also measured trial-to-trial variation in representations and found that hippocampal activity was directly linked with performance: on trials where an old representation was active, rats were far more likely to make errors. These results show that the formation of distinct hippocampal representations is critical for contextually appropriate memory retrieval. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David A Bulkin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - L Matthew Law
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York
| |
Collapse
|
80
|
Pratama F, Mastrogiovanni F, Lee SG, Chong NY. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture. J EXP THEOR ARTIF IN 2016. [DOI: 10.1080/0952813x.2015.1134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
81
|
Cazzulino AS, Martinez R, Tomm NK, Denny CA. Improved specificity of hippocampal memory trace labeling. Hippocampus 2016; 26:752-62. [PMID: 26662713 DOI: 10.1002/hipo.22556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Recent studies have focused on the identification and manipulation of memory traces in rodent models. The two main mouse models utilized are either a CreER(T2) /loxP tamoxifen (TAM)- or a tetracycline transactivator/tetracycline-response element doxycycline-inducible system. These systems, however, could be improved to label a more specific population of activated neurons corresponding to behavior. Here, we sought to identify an improved selective estrogen receptor (ER) modulator (SERM) in which we could label an individual memory trace in ArcCreER(T2) mice. We found that 4-hydroxytamoxifen (4-OHT) is a selective SERM in the ArcCreER(T2) × Rosa26-CAG-stop(flox) -channelrhodospin (ChR2)-enhanced yellow fluorescent protein (eYFP) mice. The half-life of 4-OHT is shorter than TAM, allowing for more specificity of memory trace labeling. Furthermore, 4-OHT allowed for context-specific labeling in the dentate gyrus and CA3. In summary, we believe that 4-OHT improves the specificity of memory trace labeling and will allow for refined memory trace studies in the future. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alejandro S Cazzulino
- Department of Psychiatry, Columbia University, New York, New York.,Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, New York
| | - Randy Martinez
- Brain Research Apprenticeships in New York at Columbia University (BRAINYAC), New York, New York
| | - Nicole K Tomm
- Department of Psychiatry, Columbia University, New York, New York.,Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, New York
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, New York.,Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, New York
| |
Collapse
|
82
|
Chronic Stress Alters Spatial Representation and Bursting Patterns of Place Cells in Behaving Mice. Sci Rep 2015; 5:16235. [PMID: 26548337 PMCID: PMC4637823 DOI: 10.1038/srep16235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Chronic uncontrollable stress has been shown to produce various physiological alterations and impair mnemonic functions in the rodent hippocampus. Impacts on neuronal activities, however, have not been well investigated. The present study examined dorsal CA1 place cells to elucidate the computational changes associated with chronic stress effects on cognitive behaviors. After administering chronic restraint stress (CRS; 6 hours/day for ≥21 consecutive days) to adult male mice, several hippocampal characteristics were examined; i.e., spatial learning, in vitro synaptic plasticity, in vivo place cell recording, and western blot analysis to determine protein levels related to learning and memory. Behaviorally, CRS significantly impeded spatial learning but enhanced non-spatial cue learning on the Morris water maze. Physiologically, CRS reduced long-term potentiation (LTP) of Schaffer collateral/commisural-CA1 pathway, phospho-αCaMKII (alpha Ca2(+)/calmodulin-dependent protein kinase II) level in the hippocampus, and stability of spatial representation and the mean firing rates (FRs) of place cells. Moreover, the local cue-dependency of place fields was increased, and the intra-burst interval (IntraBI) between consecutive spikes within a burst was prolonged following CRS. These results extend the previous findings of stress impairing LTP and spatial learning to CRS modifying physical properties of spiking in place cells that contribute to changes in navigation and synaptic plasticity.
Collapse
|
83
|
Baker PM, Oh SE, Kidder KS, Mizumori SJY. Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Front Behav Neurosci 2015; 9:295. [PMID: 26582981 PMCID: PMC4631824 DOI: 10.3389/fnbeh.2015.00295] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
The lateral habenula (LHb) plays a role in a wide variety of behaviors ranging from maternal care, to sleep, to various forms of cognition. One prominent theory with ample supporting evidence is that the LHb serves to relay basal ganglia and limbic signals about negative outcomes to midbrain monoaminergic systems. This makes it likely that the LHb is critically involved in behavioral flexibility as all of these systems have been shown to contribute when flexible behavior is required. Behavioral flexibility is commonly examined across species and is impaired in various neuropsychiatric conditions including autism, depression, addiction, and schizophrenia; conditions in which the LHb is thought to play a role. Therefore, a thorough examination of the role of the LHb in behavioral flexibility serves multiple functions including understanding possible connections with neuropsychiatric illnesses and additional insight into its role in cognition in general. Here, we assess the LHb’s role in behavioral flexibility through comparisons of the roles its afferent and efferent pathways are known to play. Additionally, we provide new evidence supporting the LHb contributions to behavioral flexibility through organization of specific goal directed actions under cognitively demanding conditions. Specifically, in the first experiment, a majority of neurons recorded from the LHb were found to correlate with velocity on a spatial navigation task and did not change significantly when reward outcomes were manipulated. Additionally, measurements of local field potential (LFP) in the theta band revealed significant changes in power relative to velocity and reward location. In a second set of experiments, inactivation of the LHb with the gamma-aminobutyric acid (GABA) agonists baclofen and muscimol led to an impairment in a spatial/response based repeated probabilistic reversal learning task. Control experiments revealed that this impairment was likely due to the demands of repeated switching behaviors as rats were unimpaired on initial discrimination acquisition or retention of probabilistic learning. Taken together, these novel findings compliment other work discussed supporting a role for the LHb in action selection when cognitive or emotional demands are increased. Finally, we discuss future mechanisms by which a superior understanding of the LHb can be obtained through additional examination of behavioral flexibility tasks.
Collapse
Affiliation(s)
- Phillip M Baker
- Department of Psychology, University of Washington Seattle, WA, USA
| | - Sujean E Oh
- Department of Psychology, University of Washington Seattle, WA, USA
| | - Kevan S Kidder
- Department of Psychology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
84
|
Monasson R, Rosay S. Transitions between Spatial Attractors in Place-Cell Models. PHYSICAL REVIEW LETTERS 2015; 115:098101. [PMID: 26371684 DOI: 10.1103/physrevlett.115.098101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 06/05/2023]
Abstract
The spontaneous transitions between D-dimensional spatial maps in an attractor neural network are studied. Two scenarios for the transition from one map to another are found, depending on the level of noise: (i) through a mixed state, partly localized in both maps around positions where the maps are most similar, and (ii) through a weakly localized state in one of the two maps, followed by a condensation in the arrival map. Our predictions are confirmed by numerical simulations and qualitatively compared to recent recordings of hippocampal place cells during quick-environment-changing experiments in rats.
Collapse
Affiliation(s)
- R Monasson
- Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, UMR 8549, associé au CNRS et à l'UPMC, 24 rue Lhomond, 75005 Paris, France
| | - S Rosay
- Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, UMR 8549, associé au CNRS et à l'UPMC, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
85
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
86
|
Mizumori SJY, Tryon VL. Integrative hippocampal and decision-making neurocircuitry during goal-relevant predictions and encoding. PROGRESS IN BRAIN RESEARCH 2015; 219:217-42. [PMID: 26072241 DOI: 10.1016/bs.pbr.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has become clear that the hippocampus plays a critical role in the identification of new contexts and for the detection of changes in familiar contexts. The hippocampus accomplishes these goals through a continual process of comparing predicted features of a context or situation to those actually experienced. A mismatch between expected and experienced context expectations is thought to lead to the generation of a context prediction error (Mizumori, 2013) that functionally alerts connected brain areas to alter subsequent decision making and response selection. Little is understood about how hippocampal context analyses impact downstream decision processes. This issue is evaluated here first by comparing the nature of the information represented in hippocampus and decision-related midbrain-striatal structures, while rats perform a hippocampal-dependent spatial memory task in which rewards of different value are found at different locations. In contrast to place-specific and egocentric neural representations, neural representations of goal information are broadly distributed in hippocampal and decision neural circuitry, but they appear in different forms for different brain structures. It is suggested that further researching on how goal information processing occurs in hippocampus and decision neural circuitry may reveal insights into the nature of the interaction between memory and decision systems. The second part of this review describes neural pathways by which hippocampal context information might arrive within the decision circuit. The third section presents a hypothesis that the nature of the interactions between hippocampal and midbrain-striatal circuitry is regulated by the prefrontal cortex.
Collapse
Affiliation(s)
| | - Valerie L Tryon
- Psychology Department, University of Washington, Seattle, WA, USA
| |
Collapse
|
87
|
A temporal context repetition effect in rats during a novel object recognition memory task. Anim Cogn 2015; 18:1031-7. [PMID: 25917312 DOI: 10.1007/s10071-015-0871-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Recent research in humans has used formal models of temporal context, broadly defined as a lingering representation of recent experience, to explain a wide array of recall and recognition memory phenomena. One difficulty in extending this work to studies of experimental animals has been the challenge of developing a task to test temporal context effects on performance in rodents. The current study presents results from a novel object recognition memory paradigm that was adapted from a task used in humans and demonstrates a temporal context repetition effect in rats. Specifically, the findings indicate that repeating the first two objects from a once-encountered sequence of three objects incidentally cues memory for the third object, even in its absence. These results reveal that temporal context influences item memory in rats similar to the manner in which it influences memory in humans and also highlight a new task for future studies of temporal context in experimental animals.
Collapse
|
88
|
Jacobson TK, Schmidt B, Hinman JR, Escabí MA, Markus EJ. Age-related decrease in theta and gamma coherence across dorsal ca1 pyramidale and radiatum layers. Hippocampus 2015; 25:1327-35. [DOI: 10.1002/hipo.22439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Tara K. Jacobson
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - Brandy Schmidt
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - James R. Hinman
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - Monty A. Escabí
- Departments of Psychology; University of Connecticut; Storrs Connecticut
- Departments of Biomedical Engineering; University of Connecticut; Storrs Connecticut
- Departments of Electrical and Computer Engineering; University of Connecticut; Storrs Connecticut
| | - Etan J. Markus
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| |
Collapse
|
89
|
Mallorquí-Bagué N, Bulbena A, Roé-Vellvé N, Hoekzema E, Carmona S, Barba-Müller E, Fauquet J, Pailhez G, Vilarroya O. Emotion processing in joint hypermobility: A potential link to the neural bases of anxiety and related somatic symptoms in collagen anomalies. Eur Psychiatry 2015; 30:454-8. [PMID: 25684692 DOI: 10.1016/j.eurpsy.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Joint hypermobility syndrome (JHS) has repeatedly been associated with anxiety and anxiety disorders, fibromyalgia, irritable bowel syndrome and temporomandibular joint disorder. However, the neural underpinnings of these associations still remain unclear. This study explored brain responses to facial visual stimuli with emotional cues using fMRI techniques in general population with different ranges of hypermobility. METHODS Fifty-one non-clinical volunteers (33 women) completed state and trait anxiety questionnaire measures, were assessed with a clinical examination for hypermobility (Beighton system) and performed an emotional face processing paradigm during functional neuroimaging. RESULTS Trait anxiety scores did significantly correlate with both state anxiety and hypermobility scores. BOLD signals of the hippocampus did positively correlate with hypermobility scores for the crying faces versus neutral faces contrast in ROI analyses. No results were found for any of the other studied ROIs. Additionally, hypermobility scores were also associated with other key affective processing areas (i.e. the middle and anterior cingulate gyrus, fusiform gyrus, parahippocampal region, orbitofrontal cortex and cerebellum) in the whole brain analysis. CONCLUSIONS Hypermobility scores are associated with trait anxiety and higher brain responses to emotional faces in emotion processing brain areas (including hippocampus) described to be linked to anxiety and somatic symptoms. These findings increase our understanding of emotion processing in people bearing this heritable variant of collagen and the mechanisms through which vulnerability to anxiety and somatic symptoms arises in this population.
Collapse
Affiliation(s)
- N Mallorquí-Bagué
- Department of Psychiatry and Forensic Medicine, School of Medicine, Campus de la Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Psychiatry, Psychology and Psychosomatics department, Institut Universitari Quirón Dexeus, Barcelona, Spain; Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain.
| | - A Bulbena
- Department of Psychiatry and Forensic Medicine, School of Medicine, Campus de la Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Anxiety Unit, Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Roé-Vellvé
- Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - E Hoekzema
- Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain; Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - S Carmona
- Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud mental, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - E Barba-Müller
- Department of Psychiatry and Forensic Medicine, School of Medicine, Campus de la Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - J Fauquet
- Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain; Department Psicobiologia i Metodologia de les Ciències de la Salut, Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - G Pailhez
- Department of Psychiatry and Forensic Medicine, School of Medicine, Campus de la Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Anxiety Unit, Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - O Vilarroya
- Department of Psychiatry and Forensic Medicine, School of Medicine, Campus de la Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Neuroimaging Research Group, Fundació IMIM, Doctor Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
90
|
Rubin DC, Umanath S. Event memory: A theory of memory for laboratory, autobiographical, and fictional events. Psychol Rev 2015; 122:1-23. [PMID: 25330330 PMCID: PMC4295926 DOI: 10.1037/a0037907] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An event memory is a mental construction of a scene recalled as a single occurrence. It therefore requires the hippocampus and ventral visual stream needed for all scene construction. The construction need not come with a sense of reliving or be made by a participant in the event, and it can be a summary of occurrences from more than one encoding. The mental construction, or physical rendering, of any scene must be done from a specific location and time; this introduces a "self" located in space and time, which is a necessary, but need not be a sufficient, condition for a sense of reliving. We base our theory on scene construction rather than reliving because this allows the integration of many literatures and because there is more accumulated knowledge about scene construction's phenomenology, behavior, and neural basis. Event memory differs from episodic memory in that it does not conflate the independent dimensions of whether or not a memory is relived, is about the self, is recalled voluntarily, or is based on a single encoding with whether it is recalled as a single occurrence of a scene. Thus, we argue that event memory provides a clearer contrast to semantic memory, which also can be about the self, be recalled voluntarily, and be from a unique encoding; allows for a more comprehensive dimensional account of the structure of explicit memory; and better accounts for laboratory and real-world behavioral and neural results, including those from neuropsychology and neuroimaging, than does episodic memory.
Collapse
Affiliation(s)
- David C Rubin
- Department of Psychology and Neuroscience, Duke University
| | - Sharda Umanath
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
91
|
Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 2014; 96:11-8. [PMID: 25549562 DOI: 10.1016/j.neuropharm.2014.12.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022]
Abstract
Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Susan L Patterson
- Temple University, Biology Life Science Building, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
92
|
Retrospectively and prospectively modulated hippocampal place responses are differentially distributed along a common path in a continuous T-maze. J Neurosci 2014; 34:13163-9. [PMID: 25253861 DOI: 10.1523/jneurosci.0819-14.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal place responses can be prospectively or retrospectively modulated by the animal's future or prior trajectory. Two main hypotheses explain this. The "multiple-map hypothesis" switches between different maps for different trajectories (rate remapping). In contrast, in the "buffer hypothesis," the hippocampus encodes an ongoing representation that includes the recent past and/or the impending future choice. This study examines the distribution of prospective and retrospective responses distributed along a common path in a continuous T-maze (providing all four combinations of provenance and destination) during a visual discrimination task. The multiple-map hypothesis predicts either uniform distributions or concerted shifts about a task-decision relevant point, whereas the buffer hypothesis predicts a time-limited overexpression around choice points (with retrospective responses after the central arm entry point and prospective responses nearer its exit). Here bilateral recordings in the dorsal CA1 region of the rat hippocampus show that retrospective responses were twice as prevalent as prospective responses. Furthermore, retrospective and prospective modulations have distinct spatial distributions, with retrospective primarily in the first two-thirds of the central arm and prospective restricted to the last third. To test for possible trial-by-trial remapping in relation to the two-thirds transition point, data from the first and second halves of the sessions were compared. Backward drift of path-modulated activity was significant only for retrospective, but not prospective, fields. Thus, these data are more consistent with the buffer hypothesis. Retrospective and prospective modulation would then participate in a single hippocampal representation of spatial and behavioral context.
Collapse
|
93
|
Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions. Neurosci Biobehav Rev 2014; 54:120-30. [PMID: 25446945 DOI: 10.1016/j.neubiorev.2014.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Today, the idea that the integrity of the limbic thalamus is necessary for normal memory functions is well established. However, if the study of thalamic patients emphasized the anterior and the mediodorsal thalamus as the critical thalamic loci supporting cognitive functions, clinical studies have so far failed to attribute a specific role to each of these regions. In view of these difficulties, we review here the experimental data conducted in rodents harboring specific lesions of each thalamic region. These data clearly indicate a major functional dissociation within the limbic thalamus. The anterior thalamus provides critical support for hippocampal functions due to its cardinal location in the Papez circuit, while the mediodorsal thalamus may signal relevant information in a circuit encompassing the basolateral amygdala and the prefrontal cortex. Interestingly, while clinical studies have suggested that diencephalic pathologies may disconnect the medial temporal lobe from the cortex, experimental studies conducted in rodent show how this may differently affect distinct temporo-thalamo-cortical circuits, sharing the same general organization but supporting dissociable functions.
Collapse
|
94
|
Plank M, Snider J, Kaestner E, Halgren E, Poizner H. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment. J Neurophysiol 2014; 113:740-53. [PMID: 25376779 DOI: 10.1152/jn.00114.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans.
Collapse
Affiliation(s)
- Markus Plank
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Joseph Snider
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Erik Kaestner
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| | - Eric Halgren
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and Departments of Radiology, Neurosciences, and Psychiatry, University of California, San Diego, La Jolla, California
| | - Howard Poizner
- Institute for Neural Computation, University of California, San Diego, La Jolla, California; Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
95
|
Rozeske RR, Valerio S, Chaudun F, Herry C. Prefrontal neuronal circuits of contextual fear conditioning. GENES BRAIN AND BEHAVIOR 2014; 14:22-36. [PMID: 25287656 DOI: 10.1111/gbb.12181] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories.
Collapse
Affiliation(s)
- R R Rozeske
- INSERM U862, Neurocenter Magendie, Bordeaux, France
| | | | | | | |
Collapse
|
96
|
Crossley MJ, Ashby FG, Maddox WT. Context-dependent savings in procedural category learning. Brain Cogn 2014; 92C:1-10. [PMID: 25463134 DOI: 10.1016/j.bandc.2014.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 01/09/2023]
Abstract
Environmental context can have a profound influence on the efficacy of intervention protocols designed to eliminate undesirable behaviors. This is clearly seen in drug rehabilitation clinics where patients often relapse soon after leaving the context of the treatment facility. A similar pattern is commonly observed in controlled laboratory studies of context-dependent savings in instrumental conditioning, where simply placing an animal back into the original conditioning chamber can renew an extinguished instrumental response. Surprisingly, context-dependent savings in human procedural learning has not been carefully examined in the laboratory. Here, we provide the first known empirical demonstration of context-dependent savings in a perceptual categorization task known to recruit procedural learning. We also present a computational account of these savings using a biologically detailed model in which a key role is played by cholinergic interneurons in the striatum.
Collapse
Affiliation(s)
- Matthew J Crossley
- Department of Psychology, University of California, Berkeley, CA 94720, United States.
| | - F Gregory Ashby
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, United States.
| | - W Todd Maddox
- Department of Psychology, University of Texas, Austin, United States.
| |
Collapse
|
97
|
Dissociating effects of acute photic stress on spatial, episodic-like and working memory in the rat. Behav Brain Res 2014; 272:218-25. [DOI: 10.1016/j.bbr.2014.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 06/15/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
|
98
|
Stokes J, Kyle C, Ekstrom AD. Complementary roles of human hippocampal subfields in differentiation and integration of spatial context. J Cogn Neurosci 2014; 27:546-59. [PMID: 25269116 DOI: 10.1162/jocn_a_00736] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique circuitry of the hippocampus is thought to support the encoding and retrieval of context-rich episodic memories. Given the neuroanatomical differences between the hippocampal subfields, determining their functional roles during representation of contextual features in humans is an important yet unaddressed research goal. Prior studies suggest that, during the acquisition of information from the environment, the dentate gyrus (DG) and CA3 subfields rapidly differentiate competing contextual representations, whereas CA1, situated downstream from CA3/DG, is believed to process input from both CA3 and neocortical areas via the temporoammonic pathway. To further explore the functionality of these roles, we used high-resolution fMRI to investigate multivariate response patterns within CA3/DG and CA1 during the processing of spatial context. While undergoing functional imaging, participants viewed videos of virtual environments and were asked to discriminate between similar yet geometrically distinct cities. We manipulated a single contextual feature by systematically morphing the city configurations from one common geometric shape to another, resulting in four cities--two distinctively shaped cities and two intermediate "morphed" cities. Pattern similarity within CA3/DG scaled with geometric changes to the environment. In contrast, CA1 pattern similarity, as well as interregional pattern similarity between CA1 and parahippocampal cortex, increased for the regularly shaped configurations compared with the morphs. These results highlight different roles for subfields CA3/DG and CA1 in memory and advance our understanding of how subcomponents of the human hippocampal circuit represent contextual features of memories.
Collapse
|
99
|
Marrone DF, Satvat E, Odintsova IV, Gheidi A. Dissociation of spatial representations within hippocampal region CA3. Hippocampus 2014; 24:1417-20. [PMID: 25220839 DOI: 10.1002/hipo.22367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/29/2014] [Accepted: 09/09/2014] [Indexed: 11/12/2022]
Abstract
Classic models of the hippocampus uniformly ascribe pattern completion to CA3, but recent data suggest CA3c (enclosed by the dentate gyrus) may act in a manner more consistent with the dentate and aid in pattern separation. The ideal test for functional distinction within CA3, however, is to compare the responses in these regions in the same animal in multiple contexts. To accomplish this, animals visited two contexts with varying degrees of similarity and the pattern of repeated Arc expression was examined across the pyramidal cell layer. Under conditions of partial cue change, responses in CA3c are far more distinct than CA3a/b, consistent with evidence for functional diversity along the transverse axis of CA3. These data add to the mounting evidence that "classic" roles ascribed to CA3 in learning and memory require re-evaluation.
Collapse
Affiliation(s)
- Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada; McKnight Brain Institute, University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
100
|
Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 2014; 8:586. [PMID: 25140141 PMCID: PMC4122222 DOI: 10.3389/fnhum.2014.00586] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 11/13/2022] Open
Abstract
Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University Ithaca, NY, USA
| | | | - L Matthew Law
- Department of Psychology, Cornell University Ithaca, NY, USA
| | - David M Smith
- Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|