51
|
Gupta S, Kumar P, Das BC. HPV: Molecular pathways and targets. Curr Probl Cancer 2018; 42:161-174. [PMID: 29706467 DOI: 10.1016/j.currproblcancer.2018.03.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Infection of high-risk human papillomaviruses (HPVs) is a prerequisite for the development of cervical carcinoma. HPV infections are also implicated in the development of other types of carcinomas. Chronic or persistent infection of HPV is essential but HPV alone is inadequate, additional endogenous or exogenous cues are needed along with HPV to induce cervical carcinogenesis. The strategies that high-risk HPVs have developed in differentiating epithelial cells to reach a DNA-synthesis competent state leading to tumorigenic transformation are basically due to overexpression of the E6 and E7 oncoproteins and the activation of diverse cellular regulatory or signaling pathways that are targeted by them. Moreover, the Wnt/β-catenin/Notch and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways are deregulated in various cancers, and have also been implicated in HPV-induced cancers. These are basically related to the "cancer hallmarks," and include sustaining proliferative signals, the evasion of growth suppression and immune destruction, replicative immortality, inflammation, invasion, metastasis and angiogenesis, as well as genome instability, resisting cell death, and deregulation of cellular energetics. These information could eventually aid in identifying or developing new diagnostic, prognostic biomarkers, and may contribute to design more effective targeted therapeutics and treatment strategies. Although surgery, chemotherapy and radiotherapy can cure more than 90% of women with early stage cervical cancer, the recurrent and metastatic disease remains a major cause of cancer mortality. Numerous efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent years, research on treatment strategies has proposed several options, including the role of HPV E5, E6, and E7 oncogenes, which are retained and overexpressed in most of the cervical cancers and whose respective oncoproteins are critical to the induction and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cell cycle control, perturbation of antitumor immune response, alteration of gene expression, deregulation of microRNA and cancer stem cell and stemness related markers expression could serve as novel molecular targets for reliable diagnosis and treatment of HPV-positive cancers. However, the search for new proposals for disease control and prevention has brought new findings and approaches in the context of molecular biology indicating innovations and perspectives in the early detection and prevention of the disease. Thus, in this article, we discuss molecular signaling pathways activated by HPV and potential targets or biomarkers for early detection or prevention and the treatment of HPV-associated cancers.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
52
|
Wang X, Lin P, Ho JWK. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest. BMC Genomics 2018; 19:929. [PMID: 29363433 PMCID: PMC5780765 DOI: 10.1186/s12864-017-4340-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs – a motif grammar – located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. Results We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Conclusions Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific. Electronic supplementary material The online version of this article (10.1186/s12864-017-4340-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Wang
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| | - Peijie Lin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
53
|
Hao Y, Zhu L, Yan L, Liu J, Liu D, Gao N, Tan M, Gao S, Lin B. c-Fos mediates α1, 2-fucosyltransferase 1 and Lewis y expression in response to TGF-β1 in ovarian cancer. Oncol Rep 2017; 38:3355-3366. [PMID: 29130097 PMCID: PMC5783580 DOI: 10.3892/or.2017.6052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
FUT1 is a key rate-limiting enzyme in the synthesis of Lewis y, a membrane-associated carbohydrate antigen. The aberrant upregulation of FUT1 and Lewis y antigen is related to proliferation, invasion and prognosis in malignant epithelial tumors. A c-Fos/activator protein-1 (AP-1) binding site was found in the FUT1 promoter. However, the mechanisms of transcriptional regulation of FUT1 remain poorly understood. TGF-β1 is positively correlated to Lewis y. In the present study, we investigated the molecular mechanism of FUT1 gene expression in response to TGF-β1. We demonstrated that c-Fos was highly expressed in 77.50% of ovarian epithelial carcinoma cases and was significantly correlated with Lewis y. Using luciferase activity and chromatin immunoprecipitation (ChIP) assay, we further revealed that c-Fos interacted with the FUT1 promoter in ovarian cancer cells and transcriptional capacity of the heterodimer formed by c-Fos and c-Jun was stronger than that of the c-Fos or c-Jun homodimers. Then, we demonstrated that TGF-β1 induced dose-dependent c-Fos expression, which was involved in TGF-β1-induced ovarian cancer cell proliferation. In addition, inhibition of MAPK activation or TGF-β1 receptor by pharmacological agents prevented TGF-β1-induced c-Fos and Lewis y expression. Silencing of c-Fos prevented TGF-β1-induced Lewis y expression. Collectively, the results of these studies demonstrated that TGF-β1 regulated FUT1 and Lewis y expression by activating the MAPK/c-Fos pathway.
Collapse
Affiliation(s)
- Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
54
|
Rubio L, Bach J, Marcos R, Hernández A. Synergistic role of nanoceria on the ability of tobacco smoke to induce carcinogenic hallmarks in lung epithelial cells. Nanomedicine (Lond) 2017; 12:2623-2635. [PMID: 29094638 DOI: 10.2217/nnm-2017-0205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Since controversial results have been obtained in studies dealing with nanoceria usefulness in biomedical applications, the transforming effects of long-term exposure to nanoceria in lung epithelial cells, alone or together with cigarette smoke condensate (CSC), were evaluated. MATERIALS & METHODS In vitro cell transformation techniques were used to study several hallmarks of carcinogenesis. Morphology, cell proliferation, gene expression, cell migration, anchorage-independent cell growth and cell secretome were analyzed. RESULTS & CONCLUSION Data evidence no transforming ability of nanoceria, but support a synergistic role on CSC's transforming ability. A more noticeable spindle-like phenotype, increased proliferation rate, higher degree of differentiation status dysregulation, higher migration capacity, increased anchorage-independent cell growth and higher levels of MMP-9 and cell growth promoting capability, were observed. In addition, nanoceria co-exposure exacerbates the expression of FRA-1.
Collapse
Affiliation(s)
- Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Bach
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Spain
| |
Collapse
|
55
|
Dong P, Xiong Y, Hanley SJB, Yue J, Watari H. Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:150. [PMID: 29073938 PMCID: PMC5659032 DOI: 10.1186/s13046-017-0617-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/09/2017] [Indexed: 01/16/2023]
Abstract
Background Although previous studies have shown promise for targeting Musashi RNA-binding protein 2 (MSI-2) in diverse tumors, the role and mechanism of MSI-2 for cervical cancer (CC) progression and the regulation of MSI-2 expression remains unclear. Methods Using gene expression and bioinformatic analysis, together with gain- and loss-of-function assays, we identified MSI-2 as a novel oncogenic driver and a poor prognostic marker in CC. We explored the regulation of c-FOS by MSI-2 via RNA-immunoprecipitation and luciferase assay, and confirmed a direct inhibition of MSI-2 by miR-143/miR-107 using luciferase assay. We assessed the effect of a natural antibiotic Mithramycin A on p53, miR-143/miR-107 and MSI-2 expression in CC cells. Results MSI-2 mRNA is highly expressed in CC tissues and its overexpression correlates with lower overall survival. MSI-2 promotes CC cell growth, invasiveness and sphere formation through directly binding to c-FOS mRNA and by increasing c-FOS protein expression. Furthermore, miR-143/miR-107 are two tumor suppressor miRNAs that directly bind and inhibit MSI-2 expression in CC cells, and downregulation of miR-143/miR-107 associates with poor patient prognosis. Importantly, we found that p53 decreases the expression of MSI-2 through elevating miR-143/miR-107 levels, and treatment with a natural antibiotic Mithramycin A increased p53 and miR-143/miR-107 expression and reduced MSI-2 expression, resulting in the inhibition of CC cell proliferation, invasion and sphere formation. Conclusions These results suggest that MSI-2 plays a crucial role in promoting the aggressive phenotypes of CC cells, and restoration of miR-143/miR-107 by Mithramycin A via activation of p53 may represent a novel therapeutic approach for CC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
56
|
Tyagi A, Vishnoi K, Kaur H, Srivastava Y, Roy BG, Das BC, Bharti AC. Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci Rep 2017; 7:4781. [PMID: 28684765 PMCID: PMC5500478 DOI: 10.1038/s41598-017-05162-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Transcription factor AP-1 plays a central role in HPV-mediated cervical carcinogenesis. AP-1 has also been implicated in chemo-radio-resistance but the mechanism(s) remained unexplored. In the present study, cervical cancer stem-like cells (CaCxSLCs) isolated and enriched from cervical cancer cell lines SiHa and C33a demonstrated an elevated AP-1 DNA-binding activity in comparison to non-stem cervical cancer cells. Upon UV-irradiation, CaCxSLCs showed a UV exposure duration-dependent higher proliferation and highly increased AP-1 activity whereas it was completely abolished in non-stem cancer cells. CaCxSLCs also showed differential overexpression of c-Fos and c-Jun at transcript as well as in protein level. The loss of AP-1 activity and expression was accompanied by decrease in cell viability and proliferation in UV-irradiated non-stem cancer cells. Interestingly, CaCxSLCs treated with curcumin prior to UV-irradiation abolished AP-1 activity and a concomitant reduction in SP cells leading to abrogation of sphere forming ability, loss of proliferation, induction of apoptosis and the cells were poorly tumorigenic. The curcumin pre-treatment abolished the expression of c-Fos and c-Jun but upregulated Fra-1 expression in UV-irradiated CaCxSLCs. Thus, the study suggests a critical role of AP-1 protein in the manifestation of radioresistance but targeting with curcumin helps in radiosensitizing CaCxSLCs through upregulation of Fra-1.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India.,Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India.,Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Kanchan Vishnoi
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India
| | - Harsimrut Kaur
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Yogesh Srivastava
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India
| | - Bal Gangadhar Roy
- Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Delhi, 110 054, India
| | - Bhudev C Das
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India. .,Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India.
| | - Alok C Bharti
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India. .,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
57
|
Qin Y, Ekmekcioglu S, Forget MA, Szekvolgyi L, Hwu P, Grimm EA, Jazaeri AA, Roszik J. Cervical Cancer Neoantigen Landscape and Immune Activity is Associated with Human Papillomavirus Master Regulators. Front Immunol 2017; 8:689. [PMID: 28670312 PMCID: PMC5473350 DOI: 10.3389/fimmu.2017.00689] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/29/2017] [Indexed: 01/22/2023] Open
Abstract
Human papillomaviruses (HPVs) play a major role in development of cervical cancer, and HPV oncoproteins are being targeted by immunotherapies. Although these treatments show promising results in the clinic, many patients do not benefit or the durability is limited. In addition to HPV antigens, neoantigens derived from somatic mutations may also generate an effective immune response and represent an additional and distinct immunotherapy strategy against this and other HPV-associated cancers. To explore the landscape of neoantigens in cervix cancer, we predicted all possible mutated neopeptides in two large sequencing data sets and analyzed whether mutation and neoantigen load correlate with antigen presentation, infiltrating immune cell types, and a HPV-induced master regulator gene expression signature. We found that targetable neoantigens are detected in most tumors, and there are recurrent mutated peptides from known oncogenic driver genes (KRAS, MAPK1, PIK3CA, ERBB2, and ERBB3) that are predicted to be potentially immunogenic. Our studies show that HPV-induced master regulators are not only associated with HPV load but may also play crucial roles in relation to mutation and neoantigen load, and also the immune microenvironment of the tumor. A subset of these HPV-induced master regulators positively correlated with expression of immune-suppressor molecules such as PD-L1, TGFB1, and IL-10 suggesting that they may be involved in abrogating antitumor response induced by the presence of mutations and neoantigens. Based on these results, we predict that HPV master regulators identified in our study might be potentially effective targets in cervical cancer.
Collapse
Affiliation(s)
- Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lorant Szekvolgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
58
|
Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors 2017; 43:331-346. [PMID: 27896883 DOI: 10.1002/biof.1344] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
Curcumin, the bioactive polyphenolic ingredient of turmeric, has been extensively studied for its effects on human papilloma virus (HPV) infection as well as primary and malignant squamous cervical cancers. HPV infections, especially those related to HPV 16 and 18 types, have been established as the leading cause of cervical cancer; however, there are also additional contributory factors involved in the etiopathogenesis of cervical cancers. Curcumin has emerged as having promising chemopreventive and anticancer effects against both HPV-related and nonrelated cervical cancers. In this review, we first discuss the biological relevance of curcumin and both its pharmacological effects and pharmaceutical considerations from a chemical point of view. Next, the signaling pathways that are modulated by curcumin and are relevant to the elimination of HPV infection and treatment of cervical cancer are discussed. We also present counter arguments regarding the effects of curcumin on signaling pathways and molecular markers dysregulated by benzo(a)pyrene (Bap), a carcinogen found in pathological cervical lesions of women who smoke frequently, and estradiol, as two important risk factors involved in persistent HPV-infection and cervical cancer. Finally, various strategies to enhance the pharmacological activity and pharmacokinetic characteristics of curcumin are discussed with examples of studies in experimental models of cervical cancer. © 2016 BioFactors, 43(3):331-346, 2017.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91775-1365, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Gattoc L, Frew PM, Thomas SN, Easley KA, Ward L, Chow HHS, Ura CA, Flowers L. Phase I dose-escalation trial of intravaginal curcumin in women for cervical dysplasia. OPEN ACCESS JOURNAL OF CLINICAL TRIALS 2016; 9:1-10. [PMID: 28592920 PMCID: PMC5459318 DOI: 10.2147/oajct.s105010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This is a Phase I trial demonstrating safety and tolerability of intravaginal curcumin for future use in women with cervical neoplasia. OBJECTIVE The objective of this study was to assess the safety, tolerability, and pharmacokinetics of intravaginal curcumin in healthy women. STUDY DESIGN We conducted a 3+3 dose-escalation Phase I trial in a group of women aged 18-45 years. Thirteen subjects were given one of four doses of curcumin powder (500 mg, 1,000 mg, 1,500 mg, and 2,000 mg) packed in gelatin capsules, which was administered intravaginally daily for 14 days. The primary end point for this study was safety based on severe adverse events regarding laboratory toxicity, clinical findings, and colposcopic abnormalities. We administered an acceptability questionnaire to assess product experience and attributes. RESULTS No dose-limiting toxicities (0/13) were experienced (95% confidence interval: 0.0%-22.8%) in this study. The pharmacokinetics data demonstrated that curcumin and curcumin conjugates were not measurable in the serum and negligible in the urine of the study participants. Although 23 adverse events occurred during the course of the trial, all events were grade I based on the National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.0 and were resolved by the end of the study in an average of 9 days. Fifty-six percent of the adverse events were related to the study drug, which included genital pruritus (23% of subjects), vaginal discharge (100%), vaginal dryness (15%), abnormal prothrombin (23%), and hypokalemia (8%). CONCLUSION Intravaginal curcumin was well tolerated by all subjects and safe. In this Phase I trial, there were no severe adverse events observed at any of the administered dose levels. All adverse events were grade I and did not result in early termination of the study. There was no evidence of systemic absorption or significant local absorption of intravaginally administered curcumin.
Collapse
Affiliation(s)
- Leda Gattoc
- Division of Gynecologic Oncology, Wayne State University, Detroit,
MI, USA
| | - Paula M Frew
- Division of Infectious Diseases, Department of Medicine, Emory
University School of Medicine, LA, USA
- Department of Behavioral Sciences and Health Education, LA,
USA
- Hubert Department of Global Health, LA, USA
| | | | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of
Public Health, Emory University, Atlanta, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of
Public Health, Emory University, Atlanta, GA, USA
| | - H-H Sherry Chow
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Chiemi A Ura
- Division of Gynecologic Oncology, Department of Obstetrics and
Gynecology, Emory University School of Medicine, Atlanta GA, USA
| | - Lisa Flowers
- Division of Gynecologic Oncology, Department of Obstetrics and
Gynecology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
60
|
Ivanović V, Dedović-Tanić N, Milovanović Z, Lukić S, Nikolić S, Baltić V, Stojiljković B, Demajo M, Mandušić V, Dimitrijević B. Case with triple-negative breast cancer shows overexpression of both cFOS and TGF-β1 in node-positive tissue. Per Med 2016; 13:523-530. [PMID: 29754549 DOI: 10.2217/pme-2016-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present herein a case report style article on a rare advanced triple-negative breast cancer (TNBC) patient with 6-month disease-free interval, and 10-month overall survival. Our results demonstrate that the poor clinical outcome of this patient was associated with pronounced, more than fivefold higher, overexpression of both cFOS and TGF-β1 proteins in its metastatic nodal tissue extracts, when compared with the values of the two non-TNBC controls (with 'zero' disease-free interval and overall survival). This original observation suggests, for the first time, that both the cFOS and TGF-β1 may be considered as a pair of biomarkers for an early assessment of poor prognosis for TNBC patients. The possible clinical implication of this observation is discussed.
Collapse
Affiliation(s)
- Vesna Ivanović
- Department for Radiobiology & Molecular Genetics, Institute of Nuclear Sciences 'Vinča', University of Belgrade, Belgrade, Serbia
| | - Nasta Dedović-Tanić
- Department for Radiobiology & Molecular Genetics, Institute of Nuclear Sciences 'Vinča', University of Belgrade, Belgrade, Serbia
| | | | - Silvana Lukić
- Institute of Oncology & Radiology of Serbia, Belgrade, Serbia
| | - Srdjan Nikolić
- Institute of Oncology & Radiology of Serbia, Belgrade, Serbia
| | | | | | - Miroslav Demajo
- Department for Radiobiology & Molecular Genetics, Institute of Nuclear Sciences 'Vinča', University of Belgrade, Belgrade, Serbia
| | - Vesna Mandušić
- Department for Radiobiology & Molecular Genetics, Institute of Nuclear Sciences 'Vinča', University of Belgrade, Belgrade, Serbia
| | - Bogomir Dimitrijević
- Department for Radiobiology & Molecular Genetics, Institute of Nuclear Sciences 'Vinča', University of Belgrade, Belgrade, Serbia
| |
Collapse
|
61
|
Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34:813-826. [DOI: 10.1016/j.biotechadv.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
62
|
The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer-An Overview. Molecules 2016; 21:molecules21081055. [PMID: 27548122 PMCID: PMC6274328 DOI: 10.3390/molecules21081055] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer represents the second leading cause of death for women worldwide. The importance of the diet and its impact on specific types of neoplasia has been highlighted, focusing again interest in the analysis of dietary phytochemicals. Polyphenols have shown a wide range of cellular effects: they may prevent carcinogens from reaching the targeted sites, support detoxification of reactive molecules, improve the elimination of transformed cells, increase the immune surveillance and the most important factor is that they can influence tumor suppressors and inhibit cellular proliferation, interfering in this way with the steps of carcinogenesis. From the studies reviewed in this paper, it is clear that certain dietary polyphenols hold great potential in the prevention and therapy of cervical cancer, because they interfere in carcinogenesis (in the initiation, development and progression) by modulating the critical processes of cellular proliferation, differentiation, apoptosis, angiogenesis and metastasis. Specifically, polyphenols inhibit the proliferation of HPV cells, through induction of apoptosis, growth arrest, inhibition of DNA synthesis and modulation of signal transduction pathways. The effects of combinations of polyphenols with chemotherapy and radiotherapy used in the treatment of cervical cancer showed results in the resistance of cervical tumor cells to chemo- and radiotherapy, one of the main problems in the treatment of cervical neoplasia that can lead to failure of the treatment because of the decreased efficiency of the therapy.
Collapse
|
63
|
Zheng Y, Liang W, Yuan Y, Xiong C, Xie S, Wang H, Chai Y, Yuan R. Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: A newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosens Bioelectron 2016; 81:423-430. [DOI: 10.1016/j.bios.2016.03.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
|
64
|
Conrad RJ, Ott M. Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses. ACS Chem Biol 2016; 11:669-80. [PMID: 26845514 DOI: 10.1021/acschembio.5b00999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent viral infections are widespread and represent significant public health burdens. Some viruses endure in a latent state by co-opting the host epigenetic machinery to manipulate viral gene expression. Small molecules targeting epigenetic pathways are now in the clinic for certain cancers and are considered as potential treatment strategies to reverse latency in HIV-infected individuals. In this review, we discuss how drugs interfering with one epigenetic pathway, protein acetylation, perturb latency of three families of pathogenic human viruses-retroviruses, herpesviruses, and papillomaviruses.
Collapse
Affiliation(s)
- Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| |
Collapse
|
65
|
Tyagi A, Vishnoi K, Mahata S, Verma G, Srivastava Y, Masaldan S, Roy BG, Bharti AC, Das BC. Cervical Cancer Stem Cells Selectively Overexpress HPV Oncoprotein E6 that Controls Stemness and Self-Renewal through Upregulation of HES1. Clin Cancer Res 2016; 22:4170-84. [PMID: 26988248 DOI: 10.1158/1078-0432.ccr-15-2574] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Perturbation of keratinocyte differentiation by E6/E7 oncoproteins of high-risk human papillomaviruses that drive oncogenic transformation of cells in squamocolumnar junction of the uterine cervix may confer "stem-cell like" characteristics. However, the crosstalk between E6/E7 and stem cell signaling during cervical carcinogenesis is not well understood. We therefore examined the role of viral oncoproteins in stem cell signaling and maintenance of stemness in cervical cancer. EXPERIMENTAL DESIGN Isolation and enrichment of cervical cancer stem-like cells (CaCxSLCs) was done from cervical primary tumors and cancer cell lines by novel sequential gating using a set of functional and phenotypic markers (ABCG2, CD49f, CD71, CD133) in defined conditioned media for assessing sphere formation and expression of self-renewal and stemness markers by FACS, confocal microscopy, and qRT-PCR. Differential expression level and DNA-binding activity of Notch1 and its downstream targets in CaCxSLCs as well as silencing of HPVE6/Hes1 by siRNA was evaluated by gel retardation assay, FACS, immunoblotting, and qRT-PCR followed by in silico and in vivo xenograft analysis. RESULTS CaCxSLCs showed spheroid-forming ability, expressed self-renewal and stemness markers Oct4, Sox2, Nanog, Lrig1, and CD133, and selectively overexpressed E6 and HES1 transcripts in both cervical primary tumors and cancer cell lines. The enriched CaCxSLCs were highly tumorigenic and did recapitulate primary tumor histology in nude mice. siRNA silencing of HPVE6 or Hes1 abolished sphere formation, downregulated AP-1-STAT3 signaling, and induced redifferentiation. CONCLUSIONS Our findings suggest the possible mechanism by which HPVE6 potentially regulate and maintain stem-like cancer cells through Hes1. Clin Cancer Res; 22(16); 4170-84. ©2016 AACR.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Kanchan Vishnoi
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Yogesh Srivastava
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Shashank Masaldan
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Bal Gangadhar Roy
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Alok C Bharti
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.
| | - Bhudev C Das
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India.
| |
Collapse
|
66
|
Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:3186051. [PMID: 27034707 PMCID: PMC4789371 DOI: 10.1155/2016/3186051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/15/2022]
Abstract
Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC) using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes) and differentially expressed genes (DEGs) between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application.
Collapse
|
67
|
Curcumin Nanoformulation for Cervical Cancer Treatment. Sci Rep 2016; 6:20051. [PMID: 26837852 PMCID: PMC4738284 DOI: 10.1038/srep20051] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer.
Collapse
|
68
|
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release 2016; 225:1-30. [PMID: 26778694 DOI: 10.1016/j.jconrel.2016.01.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
Collapse
Affiliation(s)
- Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
69
|
Chen J, Xu T, Chen C. The critical roles of miR-21 in anti-cancer effects of curcumin. ANNALS OF TRANSLATIONAL MEDICINE 2016; 3:330. [PMID: 26734640 DOI: 10.3978/j.issn.2305-5839.2015.09.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Curcumin is a well-known phytochemical that has various anti-cancer effects. Although it has been demonstrated that curcumin can inhibit multiple signalling pathways, the exact mechanisms for its demonstrated anti-cancer effects are not fully understood. Recent studies have revealed that curcumin may affect cancer initiation and progression through regulating microRNAs (miRs). In this review, we focus on the roles of microRNA-21 (miR-21) in the anti-cancer effects of curcumin and regulatory mechanisms for the effects of curcumin on miR-21. MiR-21 mediates various effects of curcumin on cancer cells including proliferation, apoptosis, metastasis and anti-cancer drug resistance. Several downstream pathways of miR-21 have been identified including phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death protein 4 (PDCD4) and NF-κB pathways. Curcumin decreases miR-21 levels through both increasing miR-21 exosome exclusion from the cells and inhibiting the transcription of the miR-21 gene in the cells by binding to its promoter.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 School of Biomedical Sciences, The University of Queensland, St Lucia, QLD4072, Australia ; 2 Cancer Institute of Hainan Medical College, Affiliated Hospital of Hainan Medical College, Haikou 570102, China
| | - Tiefeng Xu
- 1 School of Biomedical Sciences, The University of Queensland, St Lucia, QLD4072, Australia ; 2 Cancer Institute of Hainan Medical College, Affiliated Hospital of Hainan Medical College, Haikou 570102, China
| | - Chen Chen
- 1 School of Biomedical Sciences, The University of Queensland, St Lucia, QLD4072, Australia ; 2 Cancer Institute of Hainan Medical College, Affiliated Hospital of Hainan Medical College, Haikou 570102, China
| |
Collapse
|
70
|
Delcuratolo M, Fertey J, Schneider M, Schuetz J, Leiprecht N, Hudjetz B, Brodbeck S, Corall S, Dreer M, Schwab RM, Grimm M, Wu SY, Stubenrauch F, Chiang CM, Iftner T. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4. PLoS Pathog 2016; 12:e1005366. [PMID: 26727473 PMCID: PMC4699637 DOI: 10.1371/journal.ppat.1005366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
Abstract
We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. Human Papillomaviruses (HPV) are the etiological agents of cervical cancer and of skin cancer in individuals with the inherited disease epidermodysplasia verruciformis (EV). While the role of the viral oncogenes E6/E7 as drivers of tumorigenesis in cervical cancer has been firmly established, the contribution of the early viral genes in skin cancer is less clear. For EV-associated HPV8 and for the skin cancer model system using cottontail rabbit PV, an important role of the viral E2 protein in tumorigenesis was suggested earlier and regulation of cellular genes by E2 through different mechanisms was demonstrated. We show now that the viral E2 and cellular Brd4 act together to induce the cellular gene c-Fos, which as a member of the AP-1 complex, is involved in the regulation of cellular genes and the viral promoter driving the expression of viral oncogenes. As c-Fos has also been shown to be essential for skin cancer, E2 contributes to tumorigenesis via expression of E6/E7 as well as by increasing c-Fos.
Collapse
Affiliation(s)
- Maria Delcuratolo
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Fertey
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Markus Schneider
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Schuetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Natalie Leiprecht
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Hudjetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Brodbeck
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Silke Corall
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Marcel Dreer
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Roxana Michaela Schwab
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Shwu-Yuan Wu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Frank Stubenrauch
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Thomas Iftner
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
71
|
Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer. Sci Rep 2015; 5:16811. [PMID: 26581505 PMCID: PMC4652185 DOI: 10.1038/srep16811] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is most aggressive head and neck cancer often associated with HR-HPV infection. The role of AP-1 which is an essential regulator of HPV oncogene expression and tumorigenesis is not reported in tongue cancer. One hundred tongue tissue biopsies comprising precancer, cancer and adjacent controls including two tongue cancer cell lines were employed to study the role of HPV infection and AP-1 family proteins. An exclusive prevalence (28%) of HR-HPV type 16 was observed mainly in well differentiated tongue carcinomas (78.5%). A higher expression and DNA binding activity of AP-1 was observed in tongue tumors and cancer cell lines with c-Fos and Fra-2 as the major binding partners forming the functional AP-1 complex but c-Jun participated only in HPV negative and poorly differentiated carcinoma. Knocking down of Fra-2 responsible for aggressive tongue tumorigenesis led to significant reduction in c-Fos, c-Jun, MMP-9 and HPVE6/E7 expression but Fra-1 and p53 were upregulated. The binding and expression of c-Fos/Fra-2 increased as a function of severity of tongue lesions, yet selective participation of c-Jun appears to promote poor differentiation and aggressive tumorigenesis only in HPV negative cases while HPV infection leads to well differentiation and better prognosis preferably in nonsmokers.
Collapse
|
72
|
Mishra A, Das BC. Curcumin as an anti-human papillomavirus and anti-cancer compound. Future Oncol 2015; 11:2487-90. [PMID: 26278542 DOI: 10.2217/fon.15.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Alok Mishra
- Institute of Cytology & Preventive Oncology, I-7, Sector -39, Noida, Uttar Pradesh 201301, India.,Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110 007, India
| | - Bhudev C Das
- Institute of Cytology & Preventive Oncology, I-7, Sector -39, Noida, Uttar Pradesh 201301, India.,Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110 007, India.,Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh 201313, India (current address)
| |
Collapse
|
73
|
Shi L, Lei Y, Srivastava R, Qin W, Chen JJ. Gallic acid induces apoptosis in human cervical epithelial cells containing human papillomavirus type 16 episomes. J Med Virol 2015; 88:127-34. [DOI: 10.1002/jmv.24291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/23/2015] [Accepted: 05/30/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Lin Shi
- Department of Immunology and Microbiology; Xi'an Jiaotong University Health Science Center; Xi'an China
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts USA
| | - Yanjun Lei
- Department of Immunology and Microbiology; Xi'an Jiaotong University Health Science Center; Xi'an China
| | - Ranjana Srivastava
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts USA
| | - Weihua Qin
- SoonFast Pharma Science & Technology; Guangzhou; China
| | - Jason J. Chen
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts USA
- Cancer Research Center; Shandong University School of Medicine; Jinan Shandong China
| |
Collapse
|
74
|
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 2015; 20:9183-213. [PMID: 26007179 PMCID: PMC6272784 DOI: 10.3390/molecules20059183] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.
Collapse
Affiliation(s)
- Yan He
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yuan Yue
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Xi Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Kun Zhang
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Shaohua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510030, China.
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
75
|
Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC, Sarker S, Dey D, Saluja D, Das B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience 2015; 9:525. [PMID: 25932049 PMCID: PMC4407748 DOI: 10.3332/ecancer.2015.525] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/29/2022] Open
Abstract
In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.
Collapse
Affiliation(s)
- Alok Mishra
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; National Cancer Institute, NIH, Bethesda, MD, USA 20892
| | - Rakesh Kumar
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; Mayo Clinic, Rochester, MN, USA 55905 ; Rakesh Kumar deceased
| | - Abhishek Tyagi
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India
| | - Indu Kohaar
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; National Cancer Institute, NIH, Bethesda, MD, USA 20892
| | - Suresh Hedau
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Alok C Bharti
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Subhodeep Sarker
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Dipankar Dey
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Daman Saluja
- Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India
| | - Bhudev Das
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; Amity University, Noida 201303, India
| |
Collapse
|
76
|
Thacker PC, Karunagaran D. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One 2015; 10:e0120045. [PMID: 25786122 PMCID: PMC4365016 DOI: 10.1371/journal.pone.0120045] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Pooja Chandrakant Thacker
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- * E-mail:
| |
Collapse
|
77
|
Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 2015; 47:506-15. [PMID: 25377084 DOI: 10.1111/cpr.12143] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
Natural products are chemical compounds or substances produced naturally by living organisms. With the development of modern technology, more and more plant extracts have been found to be useful to medical practice. Both micromolecules and macromolecules have been reported to have the ability to inhibit tumour progression, a novel weapon to fight cancer by targeting its 10 characteristic hallmarks. In this review, we focus on summarizing plant natural compounds and their derivatives with anti-tumour properties, into categories, according to their potential therapeutic strategies against different types of human cancer. Taken together, we present a well-grounded review of these properties, hoping to shed new light on discovery of novel anti-tumour therapeutic drugs from known plant natural sources.
Collapse
Affiliation(s)
- L Ouyang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
79
|
Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, Kang H, Chen X, Sun X, Xu J. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol 2015; 32:57. [PMID: 25647783 DOI: 10.1007/s12032-015-0490-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Small-molecule inhibitors targeted MAPK have been wildly used for some cancer therapeutics as a biologically viable model, but no one has been used for cervical caner. ERK1/2, one of MAPK kinases, is expressed high in cervical cancer tissue. The aim of the present study was to evaluate the effects of ERK1/2 inhibitor U0126 on proliferation and apoptosis of cervical cancer cells and appraise the correlated mechanism of the effects. In this study, the cell proliferation of Hela and C33A cervical cancer cells was tested by Cell Counting Kit-8 (CCK8) assay and cell counting after treated with ERK1/2 inhibitor U0126. The cell cycle and apoptosis were evaluated by flow cytometry (FCM). The protein levels of ERK1/2 and c-Fos and c-Jun were detected by Western blot. The results indicated that after down-regulating ERK1/2 proteins with the inhibitor U0126, Hela and C33A cells proliferation was inhibited, cell apoptosis was promoted, the proportions of G0/G1 stage in cell cycle increased, and G2/M stages decreased. After down-regulating ERK1/2 proteins of Hela and C33A cells, the expression levels of p-c-Fos protein decreased, while p-c-Jun protein increased. The results of this study indicated that ERK1/2 may promote the development of cervical cancer cells, suggesting ERK1/2 inhibitor may be used as an effective target for cervical cancer therapies working for. It might inhibit cervical cancer cells growth via regulating the transcription factors expression of c-Fos and c-Jun.
Collapse
Affiliation(s)
- Lixia Bai
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel) 2015; 7:266-86. [PMID: 25629808 PMCID: PMC4381258 DOI: 10.3390/cancers7010266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
Collapse
Affiliation(s)
- Louise Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| | - Hong Wan
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| |
Collapse
|
81
|
Smith AJ, Oertle J, Prato D. Multiple Actions of Curcumin Including Anticancer, Anti-Inflammatory, Antimicrobial and Enhancement via Cyclodextrin. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.63029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta Gen Subj 2014; 1850:1622-32. [PMID: 25534611 DOI: 10.1016/j.bbagen.2014.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cervical cancer is the second most common neoplastic disease among women worldwide. The initiating event of such cancer is the infection with certain types of human papillomavirus (HPV), a very common condition in the general population. However, the majority of HPV infections is subclinical and transitory and is resolved spontaneously. Intriguingly, viral oncogene expression, although necessary, is not per se sufficient to promote cervical cancer and other factors are involved in the progression of infected cells to the full neoplastic phenotype. In this perspective it has been suggested that the redox balance and the oxidative stress (OS) may represent interesting and under-explored candidates as promoting factors in HPV-initiated carcinogenesis. SCOPE OF THE REVIEW The current review discusses the possible interplay between the viral mechanisms modulating cell homeostasis and redox sensitive mechanisms. Experimental data and indirect evidences are presented on the activity of viral dependent functions on i) the regulation of enzymes and compounds involved in OS; ii) the protection from oxidation of detoxifying/antiapoptotic enzymes and redox-sensitive transcription factors; iii) the suppression of apoptosis; and iv) the modulation of host microRNAs regulating genes associated with antioxidant defense. MAJOR CONCLUSIONS The resulting tangled scenario suggests that viral hosting cells adapt their metabolisms in order to support their growth and survival in the increasingly oxidant micro-environment associated with HPV tumor initiation and progression. GENERAL SIGNIFICANCE HPV can modulate the host cell redox homeostasis in order to favor infection and possibly tumor transformation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Cesira Foppoli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
83
|
Sagar M, Pathak RK, Pandey RK, Singh DB, Pandey N, Gupta MK. Binding affinity analysis and ADMET prediction of epigallocatechine gallate (EGCG) derivatives for AP-1 protein: a drug target for liver cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13721-014-0066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
84
|
Wang H, Gao P, Zheng J. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells. Biochem Biophys Res Commun 2014; 451:556-61. [PMID: 25117446 DOI: 10.1016/j.bbrc.2014.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Peng Gao
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jie Zheng
- Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
85
|
Habbous S, Pang V, Xu W, Amir E, Liu G. Human papillomavirus and host genetic polymorphisms in carcinogenesis: a systematic review and meta-analysis. J Clin Virol 2014; 61:220-9. [PMID: 25174543 DOI: 10.1016/j.jcv.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND As the role of human papillomavirus (HPV) in carcinogenesis continues to rise, the role of genetic factors that modify this risk have become increasingly important. In this study, we reviewed the literature for associations between polymorphisms and HPV in carcinogenesis. OBJECTIVE To identify any associations of genetic polymorphisms with oncogenic HPV in carcinogenesis and to evaluate the methodology used. STUDY DESIGN Systematic literature review of HPV, genetic polymorphisms, and cancer risk. Odds ratios (OR), interaction terms, and p-values were tabulated. Meta-analyses and measures of heterogeneity were estimated using RevMan 5.1. RESULTS The cervix was the most frequently studied cancer site followed by the head and neck. Overall risk of cancer (cancer vs. control) was the most common comparison, whereas reports of initiation (pre-cancer vs. control) and progression (cancer vs. pre-cancer) were rare. Case-series and joint-effect of HPV and genotype on risk was evaluated frequently, but the independent effect of either risk factor alone was rarely provided. P53-Arg72Pro was the most commonly studied polymorphism studied. No consistent interaction was detected by meta-analysis in the HPV(+) [OR 0.98 (0.55-1.76)] or the HPV(-) [OR 1.10 (0.76-1.60)] subsets in head and neck cancer risk. Polymorphisms in genes known to encode proteins that physically interact with HPV were infrequently studied. CONCLUSION No consistent polymorphism-HPV interactions were observed. Study design, choice of candidate polymorphisms/genes, and a focus on overall risk rather than any specific portions of the carcinogenic pathway may have contributed to lack of significant findings.
Collapse
Affiliation(s)
- Steven Habbous
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Vincent Pang
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Wei Xu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Eitan Amir
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Division of Medical Oncology and Hematology, Toronto, Ontario, Canada M5G 2M9
| | - Geoffrey Liu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Medicine and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada M5G 2M9.
| |
Collapse
|
86
|
Bai LX, Ding L, Jiang SW, Kang HJ, Gao CF, Chen C, Zhou Q, Wang JT. Down-regulation of FRα Inhibits Proliferation and Promotes Apoptosis of Cervical Cancer Cells in Vitro. Asian Pac J Cancer Prev 2014; 15:5667-72. [DOI: 10.7314/apjcp.2014.15.14.5667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
87
|
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:186864. [PMID: 24877064 PMCID: PMC4022204 DOI: 10.1155/2014/186864] [Citation(s) in RCA: 496] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hassan Tajik
- Department of Chemistry, Faculty of Sciences, Guilan University, Rasht, Iran
| | - Sazaly Abubakar
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr 3631, Iran
| |
Collapse
|
88
|
Sato T, Takahashi H, Hatakeyama S, Iguchi A, Ariga T. The TRIM-FLMN protein TRIM45 directly interacts with RACK1 and negatively regulates PKC-mediated signaling pathway. Oncogene 2014; 34:1280-91. [PMID: 24681954 DOI: 10.1038/onc.2014.68] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 12/19/2022]
Abstract
The receptor for activated C-kinase (RACK1), a scaffolding protein that participates in the protein kinase C (PKC) signaling pathway, has an important role in shuttling active PKCs to its substrate. Indeed, recent studies have revealed that RACK1 has an important role in tumorigenesis and that enhancement of the feed-forward mechanism of the c-Jun N-terminal kinase (JNK)-Jun pathway via RACK1 is associated with constitutive activation of MEK (MAPK-ERK kinase)-ERK (extracellular signal-regulated kinase) signaling in human melanoma cells. Taken together, RACK1 additionally has a very important role in the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we show that one of the tripartite motif-containing (TRIM) family ubiquitin ligases, TRIM45, is a novel RACK1-interacting protein and downregulates MAPK signal transduction. Importantly, the expression of TRIM45 is induced when growth-promoting extracellular stimuli activate the MAPK signaling pathway, resulting in attenuation of activation of the MAPK pathway. These findings suggest that TRIM45 functions as a member of the negative feedback loop of the MAPK pathway.
Collapse
Affiliation(s)
- T Sato
- 1] Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan [2] Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - A Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
89
|
Bharti AC, Shukla S, Mahata S, Hedau S, Das BC. Human papillomavirus and control of cervical cancer in India. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
90
|
Mahata S, Pandey A, Shukla S, Tyagi A, Husain SA, Das BC, Bharti AC. Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutr Cancer 2014; 65 Suppl 1:88-97. [PMID: 23682787 DOI: 10.1080/01635581.2013.785008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plant products of Phyllanthus emblica Linn. are traditionally consumed for its immense nutritive and medicinal values. However, the molecular mechanism(s) by which it exerts it effects is less understood. In this study, we investigated mechanism of action of P. emblica fruit extract (PE) by studying its effect on activator protein-1 (AP-1) activity and human papillomavirus (HPV) transcription that are essential for tumorigenicity of cervical cancer cells. PE resulted in a dose-and time-dependent inhibition of DNA binding activity of constitutively active AP-1 in both HPV16-positive (SiHa) and HPV18-positive (HeLa) cervical cancer cells. PE-induced AP-1 inhibition was found mediated through downregulation of constituent AP-1 proteins, c-Jun, JunB, JunD, and c-Fos; however, the kinetics of their inhibition varied in both the cell types. Inhibition of AP-1 by PE was accompanied by suppression of viral transcription that resulted in growth inhibition of cervical cancer cells. Growth inhibitory activity of PE was primarily manifested through induction of apoptotic cell death. These results suggest that P. emblica exhibits its anticancer activities through inhibition of AP-1 and targets transcription of viral oncogenes responsible for development and progression of cervical cancer thus indicating its possible utility for treatment of HPV-induced cervical cancers.
Collapse
Affiliation(s)
- Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (Indian Council of Medical Research), Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
91
|
Foppoli C, Coccia R, Perluigi M. Role of Oxidative Stress in Human Papillomavirus-Driven Cervical Carcinogenesis. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
92
|
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and Liver Disease: from Chemistry to Medicine. Compr Rev Food Sci Food Saf 2013; 13:62-77. [DOI: 10.1111/1541-4337.12047] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| | - Maria Daglia
- Dept. of Drug Sciences; Univ. of Pavia, Medicinal Chemistry and Pharmaceutical Technology Section; via Taramelli 12 27100 Pavia Italy
| | - Akbar Hajizadeh Moghaddam
- Amol Univ. of Special Modern Technologies; Amol Iran
- Dept. of Biology; Faculty of basic science; Univ. of Mazandaran; Babolsar Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories; Medway School of Science, Univ. of Greenwich; Central Ave. Chatham-Maritime Kent ME4 4TB U.K
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| |
Collapse
|
93
|
Shen S, Zhang Y, Zhang R, Gong X. Sarsasapogenin induces apoptosis via the reactive oxygen species-mediated mitochondrial pathway and ER stress pathway in HeLa cells. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2013.10.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
94
|
The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer 2013; 109:2248-58. [PMID: 24045665 PMCID: PMC3798957 DOI: 10.1038/bjc.2013.550] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a crucial process in cancer progression that provides cancer cells with the ability to escape from the primary focus, invade stromal tissues and migrate to distant regions. Cell lines that lack E-cadherin show increased tumorigenesis and metastasis, and the expression levels of E-cadherin and Snail correlate inversely with the prognosis of patients suffering from breast cancer or oral squamous cell carcinoma (OSCC). Moreover, recent studies have shown that most EMT cases are regulated by soluble growth factors or cytokines. Among these factors, fibroblast growth factors (FGFs) execute diverse functions by binding to and activating members of the FGF receptor (FGFR) family, including FGFR1-4. Fibroblast growth factor receptor 1 is an oncoprotein that is involved in tumorigenesis, and PD173074 is known to be a selective inhibitor of FGFR1. However, the roles of FGFR1 and FGFR1 inhibitors have not yet been examined in detail. METHODS Here, we investigated the expression of FGFR1 in head and neck squamous cell carcinoma (HNSCC) and the role of the FGFR1 inhibitor PD173074 in carcinogenesis and the EMT process. RESULTS Fibroblast growth factor receptor 1 was highly expressed in 54% of HNSCC cases and was significantly correlated with malignant behaviours. Nuclear FGFR1 expression was also observed and correlated well with histological differentiation, the pattern of invasion and abundant nuclear polymorphism. Fibroblast growth factor receptor 1 was also overexpressed in EMT cell lines compared with non-EMT cell lines. Furthermore, treatment of HOC313 cells with PD173074 suppressed cellular proliferation and invasion and reduced ERK1/2 and p38 activation. These cells also demonstrated morphological changes, transforming from spindle- to cobble stone-like in shape. In addition, the expression levels of certain matrix metalloproteinases (MMPs), whose genes contain activator protein-1 (AP-1) promoter sites, as well as Snail1 and Snail2 were reduced following PD173074 treatment. CONCLUSION Taken together, these data suggest that PD173074 inhibits the MAPK pathway, which regulates the activity of AP-1 and induces MET. Furthermore, this induction of MET likely suppresses cancer cell growth and invasion.
Collapse
|
95
|
Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 2013; 11:338-78. [PMID: 24381528 PMCID: PMC3744901 DOI: 10.2174/1570159x11311040002] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Since the second half of the last century, this traditional medicine has attracted the attention of scientists from multiple disciplines to elucidate its pharmacological properties. Of significant interest is curcumin's role to treat neurodegenerative diseases including Alzheimer's disease (AD), and Parkinson's disease (PD) and malignancy. These diseases all share an inflammatory basis, involving increased cellular reactive oxygen species (ROS) accumulation and oxidative damage to lipids, nucleic acids and proteins. The therapeutic benefits of curcumin for these neurodegenerative diseases appear multifactorial via regulation of transcription factors, cytokines and enzymes associated with (Nuclear factor kappa beta) NFκB activity. This review describes the historical use of curcumin in medicine, its chemistry, stability and biological activities, including curcumin's anti-cancer, anti-microbial, anti-oxidant, and anti-inflammatory properties. The review further discusses the pharmacology of curcumin and provides new perspectives on its therapeutic potential and limitations. Especially, the review focuses in detail on the effectiveness of curcumin and its mechanism of actions in treating neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and brain malignancies.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Ching-Yee Loo
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Frederick Luk
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Rebecca S Mason
- Physiology and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Ramin Rohanizadeh
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
96
|
Oxidative stress and HPV carcinogenesis. Viruses 2013; 5:708-31. [PMID: 23403708 PMCID: PMC3640522 DOI: 10.3390/v5020708] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023] Open
Abstract
Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be highlighted. The aim of this paper is to stimulate new areas of study and innovative approaches.
Collapse
|
97
|
Su PH, Lin YW, Huang RL, Liao YP, Lee HY, Wang HC, Chao TK, Chen CK, Chan MWY, Chu TY, Yu MH, Lai HC. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene 2013; 32:15-26. [PMID: 22330137 DOI: 10.1038/onc.2012.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 12/19/2022]
Abstract
Epigenetic modifications are a driving force in carcinogenesis. However, their role in cancer metastasis remains poorly understood. The present study investigated the role of DNA methylation in the cervical cancer metastasis. Here, we report evidence of the overexpression of DNA methyltransferases 3B (DNMT3B) in invasive cervical cancer and of the inhibition of metastasis by DNMT3B interference. Using methyl-DNA immunoprecipitation coupled with microarray analysis, we found that the protein tyrosine phosphatase receptor type R (PTPRR) was silenced through DNMT3B-mediated methylation in the cervical cancer. PTPRR inhibited p44/42 MAPK signaling, the expression of the transcription factor AP1, human papillomavirus (HPV) oncogenes E6/E7 and DNMTs. The methylation status of PTPRR increased in cervical scrapings (n=358) in accordance with disease severity, especially in invasive cancer. Methylation of the PTPRR promoter has an important role in the metastasis and may be a biomarker of invasive cervical cancer.
Collapse
Affiliation(s)
- P-H Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Aili A, Hasim A, Kelimu A, Guo X, Mamtimin B, Abudula A, Upur H. Association of the plasma and tissue riboflavin levels with C20orf54 expression in cervical lesions and its relationship to HPV16 infection. PLoS One 2013; 8:e79937. [PMID: 24260322 PMCID: PMC3832395 DOI: 10.1371/journal.pone.0079937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
Riboflavin deficiency can cause a variety of metabolic problems that lead to skin and mucosal disorders. Limited evidence suggests that high intake of riboflavin may reduce overall risks of cancer. However, association of this deficiency with cervical cancer and precancerous lesions are still not definitively known. In this study, we characterized the relationship between plasma and tissue riboflavin levels and C20orf54 protein expression in patients with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) as well as the relationship of these levels with human papillomavirus virus 16, 18 (HPV16/18) infections. High-performance liquid chromatography (HPLC) was used to measure blood riboflavin levels in patients with CIN and CSCC, and an enzyme-linked immunosorbent assay (ELISA) was used to determine tissue riboflavin levels in patients with CSCC and matched normal mucous epithelia. The expression of C20orf54 in fresh CSCC and matched tissues were detected by qRT-PCR and western blot, respectively. And it was further confirmed by immunohistochemistry (IHC) with formalin-fixed, paraffin-embedded CIN and CSCC. An HPV genotyping chip was used to analyze HPV infection and typing. The results showed that patients with CIN and CSCC had decreased plasma riboflavin levels as compared with normal controls. There was also significantly decreased riboflavin in tissues from CSCC patients, when compared with normal cervical epithelia. C20orf54 expression were significantly up-regulated in CSCC compared to matched control on both mRNA and protein level. Tissue riboflavin levels were significantly lower in HPV16/18 positive tissue compared with HPV16/18-negative tissue, and an inverse association was found between tissue riboflavin levels and C20orf54 mRNA and protein expression in CSCC. Additionally, C20orf54 was significantly correlated with tumor stages. In conclusion, C20orf54 tend to play a protective role in Uyghur cervical carcinogenesis of which modulating riboflavin absorption, and it is also related with HPV infection.
Collapse
Affiliation(s)
- Aixingzi Aili
- Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ayshamgul Hasim
- Department of Pathology of the Medical University of Xinjiang, Urumqi, Xinjiang, China
| | - Alimujiang Kelimu
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xia Guo
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Batur Mamtimin
- Pharmaceutical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Halmurat Upur
- Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail:
| |
Collapse
|
99
|
Healy S, Khan P, Davie JR. Immediate early response genes and cell transformation. Pharmacol Ther 2013; 137:64-77. [DOI: 10.1016/j.pharmthera.2012.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/20/2023]
|
100
|
The Extracts of Some Marine Invertebrates and Algae Collected off the Coast Waters of Vietnam Induce the Inhibitory Effects on the Activator Protein-1 Transcriptional Activity in JB6 Cl41 Cells. J CHEM-NY 2013. [DOI: 10.1155/2013/896709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has previously been shown that inhibition of the transcriptional activity of the oncogenic nuclear factor AP-1 can result in cancer prevention. Marine invertebrates and alga are a rich source of natural compounds that possess various biological activities. The inhibitory effects of the extracts of Vietnamese marine organisms in relation to the AP-1 transcriptional activity were examined by the luciferase method using JB6 Cl41 cells stably expressing a luciferase reporter gene controlled by AP-1 DNA binding sequence. As was found, 71 species of marine sponges out of 148 species studied contain inhibitors of the AP-1 transcriptional activity. Therefore, marine organisms as a source of biologically active compounds have a great potential for isolation of the new cancer preventive compounds that inhibit the oncogenic AP-1 nuclear factor.
Collapse
|