51
|
Koga A, Thongsiri C, Kudo D, Phuong DND, Iwamoto Y, Fujii W, Nagai-Yoshioka Y, Yamasaki R, Ariyoshi W. Mechanisms Underlying the Suppression of IL-1β Expression by Magnesium Hydroxide Nanoparticles. Biomedicines 2023; 11:biomedicines11051291. [PMID: 37238962 DOI: 10.3390/biomedicines11051291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, magnesium hydroxide has been widely studied due to its bioactivity and biocompatibility. The bactericidal effects of magnesium hydroxide nanoparticles on oral bacteria have also been reported. Therefore, in this study, we investigated the biological effects of magnesium hydroxide nanoparticles on inflammatory responses induced by periodontopathic bacteria. Macrophage-like cells, namely J774.1 cells, were treated with LPS derived from Aggregatibacter actinomycetemcomitans and two different sizes of magnesium hydroxide nanoparticles (NM80/NM300) to evaluate their effects on the inflammatory response. Statistical analysis was performed using an unresponsive Student's t-test or one-way ANOVA followed by Tukey's post hoc test. NM80 and NM300 inhibited the expression and secretion of IL-1β induced by LPS. Furthermore, IL-1β inhibition by NM80 was dependent on the downregulation of PI3K/Akt-mediated NF-κB activation and the phosphorylation of MAPK molecules such as JNK, ERK1/2, and p38 MAPK. By contrast, only the deactivation of the ERK1/2-mediated signaling cascade is involved in IL-1β suppression by NM300. Although the molecular mechanism involved varied with size, these results suggest that magnesium hydroxide nanoparticles have an anti-inflammatory effect against the etiologic factors of periodontopathic bacteria. These properties of magnesium hydroxide nanoparticles can be applied to dental materials.
Collapse
Affiliation(s)
- Ayaka Koga
- Department of Health Sciences, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Chuencheewit Thongsiri
- Department of Conservative Dentistry and Prosthodontics, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Daisuke Kudo
- SETOLAS Holdings Inc., Sakaide 762-0012, Kagawa, Japan
| | | | | | - Wataru Fujii
- Unit of Interdisciplinary Promotion, School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| |
Collapse
|
52
|
McIntosh K, Khalaf YH, Craig R, West C, McCulloch A, Waghmare A, Lawson C, Chan EYW, Mackay S, Paul A, Plevin R. IL-1β stimulates a novel, IKKα -dependent, NIK -independent activation of non-canonical NFκB signalling. Cell Signal 2023; 107:110684. [PMID: 37080443 DOI: 10.1016/j.cellsig.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1β2 (LTα1β2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1β (IL-1β) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1β and LTα1β2. In contrast, knockdown of IKKβ using siRNA or pharmacological inhibition of IKKβ activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1β induced phosphorylation of p100 however, the response to LTα1β2 was virtually abolished. Surprisingly IL-1β also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1β2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1β.
Collapse
Affiliation(s)
- Kathryn McIntosh
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| | - Yousif H Khalaf
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Rachel Craig
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher West
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ajay Waghmare
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Edmond Y W Chan
- Department of Biomedical and Molecular sciences, Queens University, Botterell Hall, Room 563, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Simon Mackay
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
53
|
Shabbir S, Khurram E, Moorthi VS, Eissa YTH, Kamal MA, Butler AE. The interplay between androgens and the immune response in polycystic ovary syndrome. J Transl Med 2023; 21:259. [PMID: 37062827 PMCID: PMC10105935 DOI: 10.1186/s12967-023-04116-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic-reproductive-endocrine disorder that, while having a genetic component, is known to have a complex multifactorial etiology. As PCOS is a diagnosis of exclusion, standardized criteria have been developed for its diagnosis. The general consensus is that hyperandrogenism is the primary feature of PCOS and is associated with an array of physiological dysfunctions; excess androgens, for example, have been correlated with cytokine hypersecretion, adipocyte proliferation, and signaling pathway dysregulation. Another key feature of PCOS is insulin resistance, resulting in aberrant glucose and fatty acid metabolism. Additionally, the immune system plays a key role in PCOS. Hyperandrogenism stimulates some immune cells while it inhibits others, thereby disrupting the normal balance of immune cells and creating a state of chronic inflammation. This low-grade inflammation could contribute to infertility since it induces ovarian dysfunction. This dysregulated immune response in PCOS exhibits autoimmunity characteristics that require further investigation. This review paper examines the relationship between androgens and the immune response and how their malfunction contributes to PCOS.
Collapse
Affiliation(s)
- Sania Shabbir
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Emaan Khurram
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | | | | | - Mohammad Azhar Kamal
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
- Department of Pharmaceutics, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | |
Collapse
|
54
|
Carrillo-Beltrán D, Osorio JC, Blanco R, Oliva C, Boccardo E, Aguayo F. Interaction between Cigarette Smoke and Human Papillomavirus 16 E6/E7 Oncoproteins to Induce SOD2 Expression and DNA Damage in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24086907. [PMID: 37108069 PMCID: PMC10138975 DOI: 10.3390/ijms24086907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both carcinogenic factors are associated with increased oxidative stress (OS) and DNA damage. It has been suggested that superoxide dismutase 2 (SOD2) can be independently regulated by cigarette smoke and HPV, increasing adaptation to OS and tumor progression. In this study, we analyzed SOD2 levels and DNA damage in oral cells ectopically expressing HPV16 E6/E7 oncoproteins and exposed to cigarette smoke condensate (CSC). Additionally, we analyzed SOD2 transcripts in The Cancer Genome Atlas (TCGA) Head and Neck Cancer Database. We found that oral cells expressing HPV16 E6/E7 oncoproteins exposed to CSC synergistically increased SOD2 levels and DNA damage. Additionally, the SOD2 regulation by E6, occurs in an Akt1 and ATM-independent manner. This study suggests that HPV and cigarette smoke interaction in HNC promotes SOD2 alterations, leading to increased DNA damage and, in turn, contributing to development of a different clinical entity.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
55
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
56
|
Thieme E, Bruss N, Sun D, Dominguez EC, Coleman D, Liu T, Roleder C, Martinez M, Garcia-Mansfield K, Ball B, Pirrotte P, Wang L, Xia Z, Danilov AV. CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Mol Cancer 2023; 22:64. [PMID: 36998071 PMCID: PMC10061728 DOI: 10.1186/s12943-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.
Collapse
Affiliation(s)
- Elana Thieme
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Nur Bruss
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Duanchen Sun
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA
- grid.27255.370000 0004 1761 1174Present address: School of Mathematics, Shandong University, Jinan, 250100 Shandong China
| | - Edward C. Dominguez
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Daniel Coleman
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Tingting Liu
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Carly Roleder
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Melissa Martinez
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Krystine Garcia-Mansfield
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Brian Ball
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Patrick Pirrotte
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Lili Wang
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Zheng Xia
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Biomedical Engineering Department, Oregon Health & Science University, Portland, OR USA
| | - Alexey V. Danilov
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| |
Collapse
|
57
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
58
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
59
|
Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24055014. [PMID: 36902446 PMCID: PMC10002602 DOI: 10.3390/ijms24055014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.
Collapse
|
60
|
Oh J, Cho JY, Kim D. Hyptis obtusiflora C. Presl ex Benth Methanolic Extract Exhibits Anti-Inflammatory and Anti-Gastritis Activities via Suppressing AKT/NF-κB Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:1146. [PMID: 36904006 PMCID: PMC10005599 DOI: 10.3390/plants12051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is an indispensable part of the human body's self-defense mechanism against external stimuli. The interactions between Toll-like receptors and microbial components trigger the innate immune system via NF-κB signaling, which regulates the overall cell signaling including inflammatory responses and immune modulations. The anti-inflammatory effects of Hyptis obtusiflora C. Presl ex Benth, which has been used as a home remedy for gastrointestinal disorders and skin disease in rural areas of Latin America, have not yet been studied. Here, we investigate the medicinal properties of Hyptis obtusiflora C. Presl ex Benth methanol extract (Ho-ME) for inflammatory response suppression. Nitric oxide secretion in RAW264.7 cells triggered by TLR2, 3, or 4 agonists was reduced by Ho-ME. Reduction of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and interleukin (IL)-1b mRNA expression was observed. Decreased transcriptional activity in TRIF- and MyD88-overexpressing HEK293T cells was detected with a luciferase assay. Additionally, serially downregulated phosphorylation of kinase in the NF-κB pathway by Ho-ME was discovered in lipopolysaccharide-treated RAW264.7 cells. Together with the overexpression of its constructs, AKT was identified as a target protein of Ho-ME, and its binding domains were reaffirmed. Moreover, Ho-ME exerted gastroprotective effects in an acute gastritis mouse model generated by the administration of HCl and EtOH. In conclusion, Ho-ME downregulates inflammation via AKT targeting in the NF-κB pathway, and the combined results support Hyptis obtusiflora as a new candidate anti-inflammatory drug.
Collapse
Affiliation(s)
- Jieun Oh
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daewon Kim
- Laboratory of Bio-Informatics, Department of Multimedia Engineering, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
61
|
Choi EM, Park SY, Suh KS, Chon S. Apigenin attenuates tetrabromobisphenol A-induced cytotoxicity in neuronal SK-N-MC cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:152-162. [PMID: 36843298 DOI: 10.1080/10934529.2023.2182581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a reactive brominated flame retardant widely used in various industrial and household products. This compound is persistent in the environment and accumulates in living organisms through the food chain, and is toxic to animals and human beings. Studies have shown that TBBPA is toxic to various human cell lines, including neuronal cells. Apigenin is a dietary flavonoid that exhibits various beneficial health effects on biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated the cytoprotective effects of apigenin against TBBPA-mediated cytotoxicity in SK-N-MC cells. Our results demonstrated that treatment of SK-N-MC cells with apigenin increased the cell viability, which was decreased by TBBPA, and reduced apoptosis and autophagy induced by TBBPA. Although we did not observe any change in the levels of IL-1β and nitrite in cultured cells after TBBPA treatment, apigenin was found to decrease the production of these pro-inflammatory mediators. Apigenin decreased the intracellular Ca2+ concentration, NOX4 level, oxidative stress, and mitochondrial membrane potential loss and increased the mitochondrial biogenesis and nuclear Nrf2 levels that were reduced by TBBPA. Finally, apigenin treatment decreased Akt and ERK induction in cells exposed to TBBPA. Based on these results, apigenin could be a promising candidate for designing natural drugs to treat or prevent TBBPA-related neurological disorders.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
62
|
Tuli HS, Joshi H, Vashishth K, Ramniwas S, Varol M, Kumar M, Rani I, Rani V, Sak K. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:865-876. [PMID: 36773053 DOI: 10.1007/s00210-023-02416-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Mullana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh, 160012, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, 140413, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, 134007, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | | |
Collapse
|
63
|
Dalberto D, Garcia ALH, De Souza MR, Picinini J, Soares S, De Souza GMS, Chytry P, Dias JF, Salvador M, Da Silva FR, Da Silva J. Dry tobacco leaves: an in vivo and in silico approach to the consequences of occupational exposure. Mutagenesis 2023; 38:120-130. [PMID: 36738258 DOI: 10.1093/mutage/gead003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Exposure of tobacco workers handling dried tobacco leaves has been linked to an increased risk of toxicity and respiratory illness due to the presence of nicotine and other chemicals. This study aimed to evaluate the DNA damage caused by the exposure of tobacco growers during the dry leaf classification process and the relation to cellular mechanisms. A total of 86 individuals participated in the study, divided into a group exposed to dry tobacco (n = 44) and a control group (n = 42). Genotoxicity was evaluated using the alkaline comet assay and lymphocyte micronucleus (MN) assay (CBMN-Cyt), and measurement of telomere length. The levels of oxidative and nitrosative stress were evaluated through the formation of thiobarbituric acid reactive species, and nitric oxide levels, respectively. The inorganic elements were measured in the samples using particle-induced X-ray emission method. The combination of variables was demonstrated through principal component analysis and the interactions were expanded through systems biology. Comet assay, MN, death cells, thiobarbituric acid reactive species, and nitrosative stress showed a significant increase for all exposed groups in relation to the control. Telomere length showed a significant decrease for exposed women and total exposed group in relation to men and control groups, respectively. Bromine (Br) and rubidium (Rb) in the exposed group presented higher levels than control groups. Correlations between nitrate and apoptosis; Br and MN and necrosis; and Rb and telomeres; besides age and DNA damage and death cells were observed. The systems biology analysis demonstrated that tobacco elements can increase the nuclear translocation of NFKB dimers inducing HDAC2 expression, which, associated with BRCA1 protein, can potentially repress transcription of genes that promote DNA repair. Dry tobacco workers exposed to dry leaves and their different agents showed DNA damage by different mechanisms, including redox imbalance.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana L H Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.,Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Melissa R De Souza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Solange Soares
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Guilherme M S De Souza
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny F Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil
| | - Fernanda R Da Silva
- Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.,Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| |
Collapse
|
64
|
Urade R, Chou CK, Chou HL, Chen BH, Wang TN, Tsai EM, Hung CT, Wu SJ, Chiu CC. Phthalate derivative DEHP disturbs the antiproliferative effect of camptothecin in human lung cancer cells by attenuating DNA damage and activating Akt/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:332-342. [PMID: 36394428 DOI: 10.1002/tox.23686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plasticizers/phthalates play a facilitating role in the development of cancer and help the tumor to grow and metastasize. Camptothecin (CPT) and its derivatives are known to have anticancer properties of inhibiting cell growth, promoting cell apoptosis, and increasing autophagy. Therefore, in this study, we investigated whether the presence of di(2-ethylhexyl) phthalate (DEHP) could hinder apoptosis and autophagy caused by CPT in non-small cell lung cancer (NSCLC) cells. We found that DEHP interferes with CPT-induced apoptosis and autophagy and increases the prosurvival pathway by reducing the DNA damage marker γ-H2AX and activating the Akt and NF-κB pathways. Furthermore, we also confirmed that combining DEHP with 3-MA has additive effects in inhibiting autophagy and apoptosis in NSCLC cells. Taken together, our findings show that DEHP could affect CPT-induced anticancer treatment and provide evidence to show that DEHP induces chemoresistance in CPT-based chemotherapy.
Collapse
Affiliation(s)
- Ritesh Urade
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, People's Republic of China
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
65
|
Masoud AG, Lin J, Zhu LF, Tao K, Ness NW, Kassiri Z, Moore RB, Vanhaesebroeck B, West L, Anderson CC, Oudit GY, Murray AG. Endothelial phosphoinositide 3-kinase-β inactivation confers protection from immune-mediated vascular injury. Am J Transplant 2023; 23:202-213. [PMID: 36804130 DOI: 10.1016/j.ajt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-β (PI3Kβ) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kβ inhibitor-treated, or endothelial-selective PI3Kβ knockout (ECβKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kβ-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECβKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECβKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kβ inhibition or RNA interference. Selective PI3Kβ inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kβ as a therapeutic target to reduce vascular inflammation and injury.
Collapse
Affiliation(s)
- Andrew G Masoud
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Jiaxin Lin
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Lin F Zhu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kesheng Tao
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan W Ness
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lori West
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Colin C Anderson
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; UCL Cancer Institute, University College London, London, England, UK; Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada.
| |
Collapse
|
66
|
Phosphorylation of IGFBP-3 by Casein Kinase 2 Blocks Its Interaction with Hyaluronan, Enabling HA-CD44 Signaling Leading to Increased NSCLC Cell Survival and Cisplatin Resistance. Cells 2023; 12:cells12030405. [PMID: 36766747 PMCID: PMC9913475 DOI: 10.3390/cells12030405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a platinum agent used in the treatment of non-small cell lung cancer (NSCLC). Much remains unknown regarding the basic operative mechanisms underlying cisplatin resistance in NSCLC. In this study, we found that phosphorylation of IGFBP-3 by CK2 (P-IGFBP-3) decreased its binding to hyaluronan (HA) but not to IGF-1 and rendered the protein less effective at reducing cell viability or increasing apoptosis than the non-phosphorylated protein with or without cisplatin in the human NSCLC cell lines, A549 and H1299. Our data suggest that blocking CD44 signaling augmented the effects of cisplatin and that IGFBP-3 was more effective at inhibiting HA-CD44 signaling than P-IGFBP-3. Blocking CK2 activity and HA-CD44 signaling increased cisplatin sensitivity and more effectively blocked the PI3K and AKT activities and the phospho/total NFκB ratio and led to increased p53 activation in A549 cells. Increased cell sensitivity to cisplatin was observed upon co-treatment with inhibitors targeted against PI3K, AKT, and NFκB while blocking p53 activity decreased A549 cell sensitivity to cisplatin. Our findings shed light on a novel mechanism employed by CK2 in phosphorylating IGFBP-3 and increasing cisplatin resistance in NSCLC. Blocking phosphorylation of IGFBP-3 by CK2 may be an effective strategy to increase NSCLC sensitivity to cisplatin.
Collapse
|
67
|
FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Mol Neurodegener 2023; 18:5. [PMID: 36653804 PMCID: PMC9847053 DOI: 10.1186/s13024-022-00591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. METHODS In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. RESULTS We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/β-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. CONCLUSIONS Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.
Collapse
|
68
|
Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023; 13:biom13010093. [PMID: 36671478 PMCID: PMC9856042 DOI: 10.3390/biom13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yeqin Yuan
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Huizhi Long
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziwei Zhou
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuting Fu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Correspondence:
| |
Collapse
|
69
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
70
|
Wu SY, Chu SJ, Tang SE, Pao HP, Liao WI. Alda-1 ameliorates air embolism-induced acute lung injury. Int J Immunopathol Pharmacol 2023; 37:3946320231223005. [PMID: 38113877 PMCID: PMC10734354 DOI: 10.1177/03946320231223005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE Evidence suggests that aldehyde dehydrogenase 2 (ALDH2) offers protection against damage caused by oxidative stress in diverse rodent models. Nonetheless, the effect of Alda-1, a compound that activates ALDH2, on acute lung injury (ALI) induced by air embolism (AE) remains unclear. The objective of this study was to explore the protective effects of Alda-1 in ALI induced by AE. METHODS A rat model of in situ isolated perfused lung was established to investigate AE-induced ALI. Air was infused into the pulmonary artery at 0.25 mL/min for 1 minute. Before inducing AE, different doses (10, 20, or 30 mg/kg) of Alda-1 were given through intraperitoneal injection. Pathological changes in lung tissue were assessed using hematoxylin-eosin staining. We performed Western blot analysis to assess the protein levels of ALDH2,4-hydroxy-trans-2-nonenal (4-HNE), Bcl-2, caspase-3, phosphatidylinositol 3-kinase (PI3K), Akt, IκB-α, and nuclear NF-κB. RESULTS Notably, AE results were demonstrated as harmful to the lungs, which is evidenced by intensified lung edema and disruption of lung tissue structure. Furthermore, AE caused a decrease in ALDH2 expression, increased accumulation of 4-HNE and MDA, infiltration of neutrophils, increased production of inflammatory cytokines, apoptosis, and upregulation of the PI3K/Akt and NF-κB signaling pathways within the lungs. Administration of a 20 mg/kg dose of Alda-1 alleviated the detrimental effects induced by AE. CONCLUSION Alda-1 shows promise in mitigating AE-induced ALI, possibly through the upregulation of ALDH2 expression and suppression of the PI3K/Akt and NF-κB signaling pathways. Further research is warranted to validate these findings and to explore their translational potential in human subjects.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
71
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
72
|
Xu W, Berning P, Erdmann T, Grau M, Bettazová N, Zapukhlyak M, Frontzek F, Kosnopfel C, Lenz P, Grondine M, Willis B, Lynch JT, Klener P, Hailfinger S, Barry ST, Lenz G. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023; 37:178-189. [PMID: 36352190 PMCID: PMC9883168 DOI: 10.1038/s41375-022-01749-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
Collapse
Affiliation(s)
- Wendan Xu
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Philipp Berning
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tabea Erdmann
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Nardjas Bettazová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Myroslav Zapukhlyak
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Fabian Frontzek
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine - Department of Hematology, University General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stephan Hailfinger
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
73
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
74
|
Nguyen TK, Phung HH, Choi WJ, Ahn HC. Network Pharmacology and Molecular Docking Study on the Multi-Target Mechanisms of Aloe vera for Non-Alcoholic Steatohepatitis Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:3585. [PMID: 36559697 PMCID: PMC9783676 DOI: 10.3390/plants11243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with limited treatment options. The widely distributed plant Aloe vera has shown protective effects against NASH in animals, yet the precise mechanism remains unknown. In this study, we investigated the potential mechanisms underlying the anti-NASH effects of Aloe vera using a network pharmacology and molecular docking approach. By searching online databases and analyzing the Gene Expression Omnibus dataset, we obtained 260 Aloe vera-NASH common targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the common targets were strongly associated with the key pathological processes implicated in NASH, including lipid and glucose metabolism, inflammation, apoptosis, oxidative stress, and liver fibrosis. Four core proteins, AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor alpha (TNFα), transcription factor c-Jun, and tumor suppressor protein p53, were identified from compound-target-pathway and protein-protein interaction networks. Molecular docking analysis verified that the active ingredients of Aloe vera were able to interact with the core proteins, especially AKT1 and TNFα. The results demonstrate the multi-compound, multi-target, and multi-pathway mechanisms of Aloe vera against NASH. Our study has shown the scientific basis for further experiments in terms of the mechanism to develop Aloe vera-based natural products as complementary treatments for NASH. Furthermore, it identifies novel drug candidates based on the structures of Aloe vera's active compounds.
Collapse
|
75
|
Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J, Mi Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 2022; 113:109379. [PMID: 36330913 DOI: 10.1016/j.intimp.2022.109379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Doxorubicin (DOX) is an effective and widely used anticancer drug but has limited clinical applicability because of its cardiotoxicity. Ferroptosis plays a key role in DOX-induced cardiac damage and cardiomyocyte cell death. The inhibition of ferroptosis reverses DOX-induced cardiotoxicity (DIC). LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, protects against DIC. However, the mechanism of action of LCZ696, especially its effect on ferroptosis, is incompletely understood. This study investigates the cardioprotective effects of LCZ696 on DIC in vivo and in vitro.Cardiotoxicity was induced in Wistar rats by tail intravenous injection of 2.5 mg/kg DOX once a week for six weeks. Rats and H9c2 cells were treated with or without LCZ696 to determine the cardioprotective role and underlying mechanisms of LCZ696 against DIC. To assess the role of SIRT3 and correlated pathways in ferroptosis, SIRT3 knockout was performed using lentiviral vectors, and AKT was inhibited with LY294002. LCZ696 significantly attenuated DIC by decreasing the concentrations of lipid reactive oxygen species and malondialdehyde and increasing the levels of glutathione peroxidase-4 and reduced glutathione in cells and heart tissues. Moreover, LCZ696 remodeled myocardial structures and improved heart ventricular function in DOX-treated rats. LCZ696 treatment increased SIRT3 expression and deacetylated its target gene SOD2, and these changes were mediated by AKT activation. SIRT3 knockdown and AKT inhibition induced lipid peroxidation and reduced the protective effect of LCZ696 in H9c2 cells. Collectively,LCZ696 prevents DIC by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Thus, LZC696 is a potential therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Bin Wang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
76
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
77
|
Protective effect of Tisochrysis lutea on dry eye syndrome via NF-κB inhibition. Sci Rep 2022; 12:19576. [PMID: 36380046 PMCID: PMC9666437 DOI: 10.1038/s41598-022-23545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Dry eye syndrome (DES) affects the cornea, causes pain and hypersensitivity to light. Although inflammation and endoplasmic reticulum stress are known to be involved, the detailed mechanisms remain unknown. DES is characterized by a decrease in corneal thickness, tear volume, and lacrimal gland size, and damage to corneal cells. Tisochrysis lutea is a microalga that has been shown to reduce immune factors. Therefore, we hypothesized that T. lutea could ameliorate DES. We investigated the role of T. lutea in scopolamine-induced DES in BALB/c mice. Oral administration of T. lutea increased corneal thickness, tear volume, and size of the corneal cells, and reduced damage to the corneal cells. Furthermore, treatment of ARPE-19 human retinal pigmented epithelial cells with T. lutea reduced expression of the inflammatory factor, NF-κB, MAPK, and AKT. T. lutea may be used therapeutically to reduce the symptoms of DES.
Collapse
|
78
|
Yi YW, You KS, Han S, Ha IJ, Park JS, Lee SG, Seong YS. Inhibition of IκB Kinase Is a Potential Therapeutic Strategy to Circumvent Resistance to Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:5215. [PMID: 36358633 PMCID: PMC9654813 DOI: 10.3390/cancers14215215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 03/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains as an intractable malignancy with limited therapeutic targets. High expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis of TNBC; however, EGFR targeting has failed with unfavorable clinical outcomes. Here, we performed a combinatorial screening of fifty-five protein kinase inhibitors with the EGFR inhibitor gefitinib in the TNBC cell line MDA-MB-231 and identified the IκB kinase (IKK) inhibitor IKK16 as a sensitizer of gefitinib. Cell viability and clonogenic survival assays were performed to evaluate the antiproliferative effects of the gefitinib and IKK16 (Gefitinib + IKK16) combination in TNBC cell lines. Western blot analyses were also performed to reveal the potential mode of action of this combination. In addition, next-generation sequencing (NGS) analysis was performed in Gefitinib+IKK16-treated cells. The Gefitinib+IKK16 treatment synergistically reduced cell viability and colony formation of TNBC cell lines such as HS578T, MDA-MB-231, and MDA-MB-468. This combination downregulated p-STAT3, p-AKT, p-mTOR, p-GSK3β, and p-RPS6. In addition, p-NF-κB and the total NF-κB were also regulated by this combination. Furthermore, NGS analysis revealed that NF-κB/RELA targets including CCL2, CXCL8, EDN1, IL-1β, IL-6, and SERPINE1 were further reduced and several potential tumor suppressors, such as FABP3, FADS2, FDFT1, SEMA6A, and PCK2, were synergistically induced by the Gefitinib-+IKK16 treatment. Taken together, we identified the IKK/NF-κB pathway as a potential target in combination of EGFR inhibition for treating TNBC.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
79
|
Yokoyama K, Mitoma H, Kawano S, Yamauchi Y, Wang Q, Ayano M, Kimoto Y, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. CEACAM 1, 3, 5 and 6 -positive classical monocytes correlate with interstitial lung disease in early systemic sclerosis. Front Immunol 2022; 13:1016914. [PMID: 36341379 PMCID: PMC9632165 DOI: 10.3389/fimmu.2022.1016914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a multiple-organ disease characterized by vascular damage, autoimmunity, and tissue fibrosis. Organ injuries such as interstitial lung diseases (ILD), resulting from inflammatory and fibrosis processes, lead to poor prognosis. Although autoantibodies are detected in the serum of patients with SSc, the mechanisms by which immune cells are involved in tissue inflammation and fibrosis is not fully understood. Recent studies have revealed carcinoembryonic antigen related cell adhesion molecule (CEACAM)-positive monocytes are involved in murine bleomycin-induced lung fibrosis. We investigated CEACAM-positive monocytes in patients with SSc to clarify the role of monocytes in the pathogenesis of SSc. Methods The proportion of of CEACAM-positive classical monocytes in healthy controls (HCs) and patients with rheumatoid arthritis (RA) and SSc was evaluated using flow cytometry. The correlation between the proportion of CEACAM-positive monocytes and clinical parameters was analyzed in patients with SSc. Gene expression microarrays were performed in CEACAM-positive and negative monocytes in patients with SSc. Infiltration of CEACAM-positive monocytes into scleroderma skin was evaluated by immunohistochemical staining. Results The proportion of CEACAM-positive classical monocytes was increased in patients with early SSc within 2 years after diagnosis, which positively correlated with ESR, serum IgG, and serum KL-6 and negatively correlated with %forced vital capacity. The percentage of CEACAM-positive monocytes decreased after immunosuppressive therapy. CEACAM6-positive cells among classical monocytes were significantly increased in patients with SSc compared with HCs and patients with rheumatoid arthritis. SSc serum induced CEACAM6 expression on monocytes from HCs. Functionally, CEACAM-positive monocytes produced higher levels of TNF-α and IL-1β compared to CEACAM-negative cells and showed activation of the NF-κB pathway. Furthermore, CEACAM6-positive monocytes infiltrated the dermis of SSc. Conclusions CEACAM-positive monocytes showed inflammatory phenotypes and may be involved in the tissue inflammation and fibrosis in early SSc. CEACAM-positive monocytes may be one of biomarkers to detect patients with progressive ILD, requiring therapeutic intervention.
Collapse
Affiliation(s)
- Kana Yokoyama
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- *Correspondence: Hiroki Mitoma,
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yusuke Yamauchi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Qiaolei Wang
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
80
|
Wang Q, Yu P, Liu C, He X, Wang G. Mitochondrial fragmentation in liver cancer: Emerging player and promising therapeutic opportunities. Cancer Lett 2022; 549:215912. [PMID: 36103914 DOI: 10.1016/j.canlet.2022.215912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Enhanced mitochondrial fragmentation (MF) is associated with poor prognosis in HCC patients. However, its molecular mechanism in HCC remains elusive. Although enhanced MF activates effector T cells and dendritic cells, it induces immunoescape by decreasing the number and cytotoxicity of natural killer cells in the HCC immune microenvironment. Therefore, the influence of MF on the activity of different immune cells is a great challenge. Enhanced MF contributes to maintaining stemness by promoting the asymmetric division of liver cancer stem cells (LCSCs), suggesting that MF may become a potential target for HCC recurrence, metastasis, and chemotherapy resistance. Moreover, mechanistic studies suggest that MF may promote tumour progression through autophagy, oxidative stress, and metabolic reprogramming. Human-induced hepatocyte organoids are a recently developed system that can be genetically manipulated to mimic cancer initiation and identify potential preventive treatments. We can use it to screen MF-related candidate inhibitors of HCC progression and further explore the role of MF in hepatocarcinogenesis. We herein describe the mechanisms by which MF contributes to HCC development, discuss potential therapeutic approaches, and highlight the possibility that MF modulation has a synergistic effect with immunotherapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510318, China.
| |
Collapse
|
81
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
82
|
Wistin Exerts an Anti-Inflammatory Effect via Nuclear Factor-κB and p38 Signaling Pathways in Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2022; 27:molecules27175719. [PMID: 36080491 PMCID: PMC9457767 DOI: 10.3390/molecules27175719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Inflammation is an immune response to cellular damage caused by various stimuli (internal or external) and is essential to human health. However, excessive inflammatory responses may be detrimental to the host. Considering that the existing drugs for the treatment of inflammatory diseases have various side effects, such as allergic reactions, stomach ulcers, and cardiovascular problems, there is a need for research on new anti-inflammatory agents with low toxicity and fewer side effects. As 4′,6-dimethoxyisoflavone-7-O-β-d-glucopyranoside (wistin) is a phytochemical that belongs to an isoflavonoid family, we investigated whether wistin could potentially serve as a novel anti-inflammatory agent. In this study, we found that wistin significantly reduced the production of nitric oxide and intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW 264.7 cells. Moreover, wistin reduced the mRNA levels of pro-inflammatory enzymes (inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2)) and cytokines (interleukin (IL)-1β and IL-6) and significantly reduced the protein expression of pro-inflammatory enzymes (iNOS and COX-2). Furthermore, wistin reduced the activation of the nuclear factor-κB and p38 signaling pathways. Together, these results suggest that wistin is a prospective candidate for the development of anti-inflammatory drugs.
Collapse
|
83
|
Huang L, Ma Y, Guo H, Tang N, Ouyang S, Nuro-Gyina P, Tao L, Liu Y, O'Brien MC, Langdon WY, Zhang J. Akt-2 Is a Potential Therapeutic Target for Disseminated Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:991-1000. [PMID: 36130126 PMCID: PMC11141526 DOI: 10.4049/jimmunol.2101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/30/2022] [Indexed: 05/22/2024]
Abstract
Akt-1 and Akt-2 are the major isoforms of the serine/threonine Akt family that play a key role in controlling immune responses. However, the involvement of Akt-1 and Akt-2 isoforms in antifungal innate immunity is completely unknown. In this study, we show that Akt2 -/-, but not Akt1 -/-, mice are protected from lethal Candida albicans infection. Loss of Akt-2 facilitates the recruitment of neutrophils and macrophages to the spleen and increases reactive oxygen species expression in these cells. Treating C57BL/6 mice with a specific inhibitor for Akt-2, but not Akt-1, provides protection from lethal C. albicans infection. Our data demonstrate that Akt-2 inhibits antifungal innate immunity by hampering neutrophil and macrophage recruitment to spleens and suppressing oxidative burst, myeloperoxidase activity, and NETosis. We thus describe a novel role for Akt-2 in the regulation of antifungal innate immunity and unveil Akt-2 as a potential target for the treatment of fungal sepsis.
Collapse
Affiliation(s)
- Ling Huang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yilei Ma
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Hui Guo
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Na Tang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Neurology, The First Hospital of Changsha City, South China University, Changsha, Hunan, People's Republic of China
| | - Patrick Nuro-Gyina
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; and
| | - Matthew C O'Brien
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
84
|
Zhang XL, Li B, Zhang X, Zhu J, Xie Y, Shen T, Tang W, Zhang J. 18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113858. [PMID: 35809393 DOI: 10.1016/j.ecoenv.2022.113858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) have become far and wide used in a number of technical and merchant applications as a result of substantial advances in nanotechnology, therein single-walled carbon nanotubes (SWCNT) are one of the most promising nanoparticles. Inhaling CNTs has been linked to a variety of health problems, including lung fibrosis. Glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG), a natural sweetener, has anti-inflammatory and antioxidant capacities. The purpose of this study was to evaluate the potential for GAMG to alleviate SWCNT-induced lung inflammation and fibrosis. During days 3-28 after SWCNT intratracheal administration, we observed a remarkable increase of IL-1β, IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) on day 3 and collagen deposition on day 28. GAMG treatment remarkably ameliorated SWCNT-induced pulmonary fibrosis and attenuated SWCNT-induced inflammation and collagen deposition, and suppressed the activation of PI3K/AKT/NF-κB signaling pathway in the lungs. Therefore, GAMG has a therapeutic potential for the treatment of SWCNT-induced pulmonary fibrosis. Targeting PI3K/AKT/NF-κB signaling pathway may be a potential therapeutic approach to treat pulmonary fibrosis in mice with SWCNT.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Bo Li
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Jiaojiao Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Yunfeng Xie
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| |
Collapse
|
85
|
Gulhane P, Singh S. MicroRNA-520c-3p impacts sphingolipid metabolism mediating PI3K/AKT signaling in NSCLC: Systems perspective. J Cell Biochem 2022; 123:1827-1840. [PMID: 35977046 DOI: 10.1002/jcb.30319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Increasing research suggests that sphingolipid metabolism is essential for the progression and metastasis of cancer. The underlying mechanistic insight into the dysregulation of sphingolipid metabolism affecting pathways is poorly investigated. As a result, the goal of the current study was to glean knowledge from the systems biology approach to investigate how the sphingolipid metabolism affects the signal transduction network in non-small cell lung cancer (NSCLC), the most common type of cancer in terms of occurrence and death globally. Our paper includes system-level models representing the diseased and healthy states elucidating that sphingolipids and its enzymes mediate PI3K/AKT pathway. Notably, its activation of downstream signaling mediators has led to cancer growth. Considering the critical role of sphingolipids in NSCLC, our study advocates the target CERS6 which can be potentially inhibited using hsa-miR-520c-3p to combat NSCLC for future precision medicine.
Collapse
Affiliation(s)
- Pooja Gulhane
- Department of Pathogenesis and Cellular Response, Computational and Systems Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- Department of Pathogenesis and Cellular Response, Computational and Systems Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
86
|
Manni S, Pesavento M, Spinello Z, Saggin L, Arjomand A, Fregnani A, Quotti Tubi L, Scapinello G, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK2 represents a new target to boost Ibrutinib and Venetoclax induced cytotoxicity in mantle cell lymphoma. Front Cell Dev Biol 2022; 10:935023. [PMID: 36035991 PMCID: PMC9403710 DOI: 10.3389/fcell.2022.935023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B cell non-Hodgkin lymphoma, characterized by frequent relapses. In the last decade, the pro-survival pathways related to BCR signaling and Bcl-2 have been considered rational therapeutic targets in B cell derived lymphomas. The BTK inhibitor Ibrutinib and the Bcl-2 inhibitor Venetoclax are emerging as effective drugs for MCL. However, primary and acquired resistance also to these agents may occur. Protein Kinase CK2 is a S/T kinase overexpressed in many solid and blood-derived tumours. CK2 promotes cancer cell growth and clonal expansion, sustaining pivotal survival signaling cascades, such as the ones dependent on AKT, NF-κB, STAT3 and others, counteracting apoptosis through a “non-oncogene” addiction mechanism. We previously showed that CK2 is overexpressed in MCL and regulates the levels of activating phosphorylation on S529 of the NF-κB family member p65/RelA. In the present study, we investigated the effects of CK2 inactivation on MCL cell proliferation, survival and apoptosis and this kinase’s involvement in the BCR and Bcl-2 related signaling. By employing CK2 loss of function MCL cell models, we demonstrated that CK2 sustains BCR signaling (such as BTK, NF-κB and AKT) and the Bcl-2-related Mcl-1 expression. CK2 inactivation enhanced Ibrutinib and Venetoclax-induced cytotoxicity. The demonstration of a CK2-dependent upregulation of pathways that may antagonize the effect of these drugs may offer a novel strategy to overcome primary and secondary resistance.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| | - Maria Pesavento
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Lara Saggin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Arash Arjomand
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| |
Collapse
|
87
|
Lindeman GJ, Fernando TM, Bowen R, Jerzak KJ, Song X, Decker T, Boyle F, McCune S, Armstrong A, Shannon C, Bertelli G, Chang CW, Desai R, Gupta K, Wilson TR, Flechais A, Bardia A. VERONICA: Randomized Phase II Study of Fulvestrant and Venetoclax in ER-Positive Metastatic Breast Cancer Post-CDK4/6 Inhibitors - Efficacy, Safety, and Biomarker Results. Clin Cancer Res 2022; 28:3256-3267. [PMID: 35583555 PMCID: PMC9662928 DOI: 10.1158/1078-0432.ccr-21-3811] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite promising activity in hematopoietic malignancies, efficacy of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax in solid tumors is unknown. We report the prespecified VERONICA primary results, a randomized phase II clinical trial evaluating venetoclax and fulvestrant in estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer, post-cyclin-dependent kinase (CDK) 4/6 inhibitor progression. PATIENTS AND METHODS Pre-/postmenopausal females ≥18 years were randomized 1:1 to venetoclax (800 mg orally daily) plus fulvestrant (500 mg intramuscular; cycle 1: days 1 and 15; subsequent 28-day cycles: day 1) or fulvestrant alone. The primary endpoint was clinical benefit rate (CBR); secondary endpoints were progression-free survival (PFS), overall survival, and safety. Exploratory biomarker analyses included BCL2 and BCL extra-large (BCLXL) tumor expression, and PIK3CA circulating tumor DNA mutational status. RESULTS At primary analysis (cutoff: August 5, 2020; n = 103), venetoclax did not significantly improve CBR [venetoclax plus fulvestrant: 11.8% (n = 6/51; 95% confidence interval (CI), 4.44-23.87); fulvestrant: 13.7% (7/51; 5.70-26.26); risk difference -1.96% (95% CI, -16.86 to 12.94)]. Median PFS was 2.69 months (95% CI, 1.94-3.71) with venetoclax plus fulvestrant versus 1.94 months (1.84-3.55) with fulvestrant (stratified HR, 0.94; 95% CI, 0.61-1.45; P = 0.7853). Overall survival data were not mature. A nonsignificant improvement of CBR and PFS was observed in patients whose tumors had strong BCL2 expression (IHC 3+), a BCL2/BCLXL Histoscore ratio ≥1, or PIK3CA-wild-type status. CONCLUSIONS Our findings do not indicate clinical utility for venetoclax plus fulvestrant in endocrine therapy-resistant, CDK4/6 inhibitor-refractory metastatic breast tumors, but suggest possible increased dependence on BCLXL in this setting.
Collapse
Affiliation(s)
- Geoffrey J. Lindeman
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Tharu M. Fernando
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Rebecca Bowen
- Medical Oncology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Katarzyna J. Jerzak
- Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Xinni Song
- Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Thomas Decker
- Hematology and Oncology, Onkologie Ravensburg, Ravensburg, Germany
| | - Frances Boyle
- Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steve McCune
- Medical Oncology, Wellstar Health System, Marietta, Georgia
| | - Anne Armstrong
- Medical Oncology, The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | | | | | - Ching-Wei Chang
- PHC and Early Development Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | - Rupal Desai
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Kushagra Gupta
- Biostatistics, IQVIA RDS (India) Private Ltd, Bangalore, India
| | - Timothy R. Wilson
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Aulde Flechais
- Global PD Senior Clinical Scientist-Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Aditya Bardia
- Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
88
|
Caliceti C, Punzo A, Silla A, Simoni P, Roda G, Hrelia S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022; 14:nu14142964. [PMID: 35889921 PMCID: PMC9317521 DOI: 10.3390/nu14142964] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
- Correspondence:
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician” Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Giulia Roda
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| |
Collapse
|
89
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
90
|
MAEL Augments Cancer Stemness Properties and Resistance to Sorafenib in Hepatocellular Carcinoma through the PTGS2/AKT/STAT3 Axis. Cancers (Basel) 2022; 14:cancers14122880. [PMID: 35740546 PMCID: PMC9221398 DOI: 10.3390/cancers14122880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular cancer (HCC) is the most common and lethal subtype of liver cancer without effective therapeutics. Understanding and targeting cancer stem cells (CSCs), a stem-cell-like subpopulation, which are emerging as effective ways to decipher tumor biology and develop therapies, may help to revolutionize cancer management. Cancer/testis antigen Maelstrom (MAEL) has been implicated in the regulation of CSC phenotypes, while the role of CSCs remains unclear. We demonstrated that MAEL positively regulates cancer stem-cell-like properties in HCC, and MAEL silencing provokes tumor cells’ sensitivity to sorafenib. We further discovered that the MAEL-dependent stemness was operated via PGST2/IL8/AKT/STAT3 signaling. Collectively, our study suggests the MAEL/PGST2 axis as a potential therapeutic target against CSC and sorafenib resistance in HCC. Abstract Cancer stem cells (CSCs) are responsible for tumorigenesis, therapeutic resistance, and metastasis in hepatocellular cancer (HCC). Cancer/testis antigen Maelstrom (MAEL) is implicated in the formation of CSC phenotypes, while the exact role and underlying mechanism remain unclear. Here, we found the upregulation of MAEL in HCC, with its expression negatively correlated with survival outcome. Functionally, MAEL promoted tumor cell aggressiveness, tumor stem-like potentials, and resistance to sorafenib in HCC cell lines. Transcriptional profiling indicated the dysregulation of stemness in MAEL knockout cells and identified PTGS2 as a critical downstream target transactivated by MAEL. The suppression effect of MAEL knockout in tumor aggressiveness was rescued in PTGS2 overexpression HCC cells. A molecular mechanism study revealed that the upregulation of PTGS2 by MAEL subsequently resulted in IL-8 secretion and the activation of AKT/NF-κB/STAT3 signaling. Collectively, our work identifies MAEL as an important stemness regulation gene in HCC. Targeting MAEL or its downstream molecules may provide a novel possibility for the elimination of CSC to enhance therapeutic efficacy for HCC patients in the future.
Collapse
|
91
|
Walter LO, Maioral MF, Silva LO, Speer DB, Campbell SC, Gallimore W, Falkenberg MB, Santos-Silva MC. Involvement of the NF-κB and PI3K/Akt/mTOR pathways in cell death triggered by stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale. ENVIRONMENTAL TOXICOLOGY 2022; 37:1297-1309. [PMID: 35128807 DOI: 10.1002/tox.23484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that remains incurable to date. Thus, the aims of this study were to evaluate the involvement of the NF-κB and PI3K/Akt/mTOR pathways in the cytotoxicity of stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale, in MM cells (MM1.S). The cytotoxic effect was evaluated in MM1.S cells and peripheral blood mononuclear cells (PBMCs) by MTT assay. The stypoldione reduced the cell viability of MM1.S cells in a concentration and time-dependent manner (IC50 in MM.1S from 2.55 to 5.38 μM). However, it was also cytotoxic to PBMCs, but at a lower range. Additionally, no significant hemolysis was observed even at concentration up to 10 times the IC50 . Apoptotic cell death was confirmed by cell morphology and Annexin V-FITC assay. Stypoldione induced intrinsic and extrinsic apoptosis by increasing FasR expression and reactive oxygen species (ROS) production, inverting the Bax/Bcl-2 ratio, and inducing ΔΨm loss, which resulted in AIF release and caspase-3 activation. It also increased Ki-67 and survivin expression and inhibited the NF-κB and PI3K/Akt/mTOR pathways. These results suggest that stypoldione is a good candidate for the development of new drugs for MM treatment.
Collapse
Affiliation(s)
- Laura O Walter
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana F Maioral
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lisandra O Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Douglas B Speer
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sanjay C Campbell
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Winklet Gallimore
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Miriam B Falkenberg
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
92
|
Whole transcriptome analysis of long noncoding RNA in beryllium sulfate-treated 16HBE cells. Toxicol Appl Pharmacol 2022; 449:116097. [DOI: 10.1016/j.taap.2022.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
|
93
|
Saha K, Sarkar D, Khan U, Karmakar BC, Paul S, Mukhopadhyay AK, Dutta S, Bhattacharya S. Capsaicin Inhibits Inflammation and Gastric Damage during H pylori Infection by Targeting NF-kB–miRNA Axis. Pathogens 2022; 11:pathogens11060641. [PMID: 35745495 PMCID: PMC9227394 DOI: 10.3390/pathogens11060641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered as one of the strongest risk factors for gastric disorders. Infection triggers several host pathways to elicit inflammation, which further proceeds towards gastric complications. The NF-kB pathway plays a central role in the upregulation of the pro-inflammatory cytokines during infection. It also regulates the transcriptional network of several inflammatory cytokine genes. Hence, targeting NF-kB could be an important strategy to reduce pathogenesis. Moreover, treatment of H. pylori needs attention as current therapeutics lack efficacy due to antibiotic resistance, highlighting the need for alternative therapeutic approaches. In this study, we investigated the effects of capsaicin, a known NF-kB inhibitor in reducing inflammation and gastric complications during H. pylori infection. We observed that capsaicin reduced NF-kB activation and upregulation of cytokine genes in an in vivo mice model. Moreover, it affected NF-kB–miRNA interplay to repress inflammation and gastric damages. Capsaicin reduced the expression level of mir21 and mir223 along with the pro-inflammatory cytokines. The repression of miRNA further affected downstream targets such as e-cadherin and Akt. Our data represent the first evidence that treatment with capsaicin inhibits inflammation and induces antimicrobial activity during H. pylori infection. This alternative approach might open a new avenue in treating H. pylori infection, thus reducing gastric problems.
Collapse
Affiliation(s)
- Kalyani Saha
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Deotima Sarkar
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Uzma Khan
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Bipul Chandra Karmakar
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Sangita Paul
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Asish K. Mukhopadhyay
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Shanta Dutta
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India;
| | - Sushmita Bhattacharya
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
- Correspondence: ; Tel.: +91-97179-96740
| |
Collapse
|
94
|
Moody L, Xu GB, Pan YX, Chen H. Genome-wide cross-cancer analysis illustrates the critical role of bimodal miRNA in patient survival and drug responses to PI3K inhibitors. PLoS Comput Biol 2022; 18:e1010109. [PMID: 35639779 PMCID: PMC9187341 DOI: 10.1371/journal.pcbi.1010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Heterogeneity of cancer means many tumorigenic genes are only aberrantly expressed in a subset of patients and thus follow a bimodal distribution, having two modes of expression within a single population. Traditional statistical techniques that compare sample means between cancer patients and healthy controls fail to detect bimodally expressed genes. We utilize a mixture modeling approach to identify bimodal microRNA (miRNA) across cancers, find consistent sources of heterogeneity, and identify potential oncogenic miRNA that may be used to guide personalized therapies. Pathway analysis was conducted using target genes of the bimodal miRNA to identify potential functional implications in cancer. In vivo overexpression experiments were conducted to elucidate the clinical importance of bimodal miRNA in chemotherapy treatments. In nine types of cancer, tumors consistently displayed greater bimodality than normal tissue. Specifically, in liver and lung cancers, high expression of miR-105 and miR-767 was indicative of poor prognosis. Functional pathway analysis identified target genes of miR-105 and miR-767 enriched in the phosphoinositide-3-kinase (PI3K) pathway, and analysis of over 200 cancer drugs in vitro showed that drugs targeting the same pathway had greater efficacy in cell lines with high miR-105 and miR-767 levels. Overexpression of the two miRNA facilitated response to PI3K inhibitor treatment. We demonstrate that while cancer is marked by considerable genetic heterogeneity, there is between-cancer concordance regarding the particular miRNA that are more variable. Bimodal miRNA are ideal biomarkers that can be used to stratify patients for prognosis and drug response in certain types of cancer. Bimodal genes can be defined as those having two modes of expression within the same population. A variety of statistical methodologies have been employed to assess bimodal gene expression, but current methods and their applications have been limited. Given the advances in next-generation sequencing as well as the extensive regulatory role of miRNA, assessing bimodality in miRNA-seq data can greatly broaden our understanding of factors underlying tumor progression. The goal of the current study was to utilize a novel mixture modeling approach to identify bimodal miRNA and then demonstrate their importance in cancer by evaluating their ability to predict overall survival and drug response. Our results showed that high levels of bimodal miRNA expression was characteristic of cancer. Additionally, several bimodal miRNA were common to multiple cancer types, suggesting that certain miRNA consistently account for tumor heterogeneity and may be involved in general oncogenic processes. Our study points to the potential of bimodal miRNA to facilitate precise prognostic evaluation and effective treatment strategies.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
95
|
Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, Efentakis P, Kampoukos S, Kostomitsopoulos N, Vilskersts R, Ikonomidis I, Lambadiari V, Zuurbier CJ, Latosinska A, Vlahou A, Dimitriadis G, Iliodromitis EK, Andreadou I. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol 2022; 117:27. [PMID: 35581445 DOI: 10.1007/s00395-022-00934-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023]
Abstract
Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Manousos Makridakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Aikaterini Iliou
- Faculty of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Stavros Kampoukos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
96
|
Wei J, Zhang J, Wang D, Cen B, Lang JD, DuBois RN. The COX-2-PGE2 Pathway Promotes Tumor Evasion in Colorectal Adenomas. Cancer Prev Res (Phila) 2022; 15:285-296. [PMID: 35121582 PMCID: PMC9064954 DOI: 10.1158/1940-6207.capr-21-0572] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the regulation of a checkpoint receptor, PD-1, in tumor-infiltrating immune cells during the development of colorectal cancer are not fully understood. Here we demonstrate that COX-2-derived PGE2, an inflammatory mediator and tumor promoter, induces PD-1 expression by enhancing NFκB's binding to the PD-1 promoter via an EP4-PI3K-Akt signaling pathway in both CD8+ T cells and macrophages. Moreover, PGE2 suppresses CD8+ T-cell proliferation and cytotoxicity against tumor cells and impairs macrophage phagocytosis of cancer cells via an EP4-PI3K-Akt-NFκB-PD-1 signaling pathway. In contrast, inhibiting the COX-2-PGE2-EP4 pathway increases intestinal CD8+ T-cell activation and proliferation and enhances intestinal macrophage phagocytosis of carcinoma cells accompanied by reduction of PD-1 expression in intestinal CD8+ T cells and macrophages in ApcMin/+ mice. PD-1 expression correlates well with COX-2 levels in human colorectal cancer specimens. Both elevated PD-1 and COX-2 are associated with poorer overall survival in patients with colorectal cancer. Our results uncover a novel role of PGE2 in tumor immune evasion. They may provide the rationale for developing new therapeutic approaches to subvert this process by targeting immune checkpoint pathways using EP4 antagonists. In addition, our findings reveal a novel mechanism explaining how NSAIDs reduce colorectal cancer risk by suppressing tumor immune evasion. PREVENTION RELEVANCE These findings provide a potential explanation underlying the chemopreventive effect of NSAIDs on reducing colorectal cancer incidence during premalignancy and provide a rationale for developing EP4 antagonists for colorectal cancer prevention and treatment. Simply targeting PGE2 signaling alone may be efficacious in colorectal cancer prevention and treatment, avoiding side effects associated with NSAIDs.
Collapse
Affiliation(s)
- Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
97
|
BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer 2022; 127:488-499. [PMID: 35501389 PMCID: PMC9345958 DOI: 10.1038/s41416-022-01823-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background We tested the hypothesis that inhibitor of apoptosis family (IAP) proteins may be altered in BRCA1-mutated ovarian cancers and that could affect the sensitivity to IAP inhibitors. Methods The levels of IAP proteins were evaluated in human cancers and cell lines. Cell lines were used to determine the effects of IAP inhibitors. The in vivo effects of treatments were evaluated in PDX mouse models. Results Expression of X-linked inhibitor of apoptosis (XIAP) is increased in BRCA1-mutated cancers and high levels are associated with improved patient outcomes after platinum chemotherapy. XIAP overexpression is mediated by NF-kB activation and is associated with an optimisation of PARP. BRCA1-mutated cell lines are particularly sensitive to IAP inhibitors due to an inhibitory effect on PARP. Both a BRCA1-mutated cell line with acquired resistance to PARP inhibitors and one with restored BRCA1 remain sensitive to IAP inhibitors. Treatment with IAP inhibitors restores the efficacy of PARP inhibition in these cell lines. The IAP inhibitor LCL161 alone and in combination with a PARP inhibitor, exhibited antitumour effects in PDX mouse models of resistant BRCA2 and 1-mutated ovarian cancer, respectively. Conclusion A clinical trial may be justified to further investigate the utility of IAP inhibitors.
Collapse
|
98
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
99
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
100
|
A Pro-Inflammatory Signature Constitutively Activated in Monogenic Autoinflammatory Diseases. Int J Mol Sci 2022; 23:ijms23031828. [PMID: 35163749 PMCID: PMC8836675 DOI: 10.3390/ijms23031828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
Autoinflammatory diseases (AIDs) are disorders characterised by recurrent inflammatory episodes in charge of different organs with no apparent involvement of autoantibodies or antigen-specific T lymphocytes. Few common clinical features have been identified among all monogenic AIDs (mAIDs), while the search for a common molecular pattern is still ongoing. The aim of this study was to increase knowledge on the inflammatory pathways in the development of mAIDs in order to identify possible predictive or diagnostic biomarkers for each disease and to develop future preventive and therapeutic strategies. Using protein array-based systems, we evaluated two signalling pathways known to be involved in inflammation and a wide range of inflammatory mediators (pro-inflammatory cytokines and chemokines) in a cohort of 23 patients affected by different mAIDs, as FMF, TRAPS, MKD, Blau syndrome (BS), and NLRP12D. Overall, we observed upregulation of multiple signalling pathway intermediates at protein levels in mAIDs patients’ PBMCs, compared with healthy controls, with significant differences also between patients. FMF, TRAPS, and BS presented also peculiar activations of inflammatory pathways that can distinguish them. MAPK pathway activation, however, seems to be a common feature. The serum level of cytokines and chemokines produced clear differences between patients with distinct diseases, which can help distinguish each autoinflammatory disease. The FMF cytokine production profile appears broader than that of TRAPS, which, in turn, has higher cytokine levels than BS. Our findings suggest an ongoing subclinical inflammation related to the abnormal and constitutive signalling pathways and define an elevated inflammatory cytokine signature. Moreover, the upregulation of Th17-related cytokines emphasises the important role for Th17 and/or Th17-like cells also in monogenic AIDs.
Collapse
|