51
|
Oshima S, Sinha R, Ohno M, Nishi K, Eto K, Takaori-Kondo A, Nishi E, Yamamoto R. Nardilysin determines hematopoietic stem cell fitness by regulating protein synthesis. Biochem Biophys Res Commun 2024; 693:149355. [PMID: 38096617 DOI: 10.1016/j.bbrc.2023.149355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Collapse
Affiliation(s)
- Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, 94305, USA
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
52
|
Gruenbacher S, Jaritz M, Hill L, Schäfer M, Busslinger M. Essential role of the Pax5 C-terminal domain in controlling B cell commitment and development. J Exp Med 2023; 220:e20230260. [PMID: 37725138 PMCID: PMC10509461 DOI: 10.1084/jem.20230260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The B cell regulator Pax5 consists of multiple domains whose function we analyzed in vivo by deletion in Pax5. While B lymphopoiesis was minimally affected in mice with homozygous deletion of the octapeptide or partial homeodomain, both sequences were required for optimal B cell development. Deletion of the C-terminal regulatory domain 1 (CRD1) interfered with B cell development, while elimination of CRD2 modestly affected B-lymphopoiesis. Deletion of CRD1 and CRD2 arrested B cell development at an uncommitted pro-B cell stage. Most Pax5-regulated genes required CRD1 or both CRD1 and CRD2 for their activation or repression as these domains induced or eliminated open chromatin at Pax5-activated or Pax5-repressed genes, respectively. Co-immunoprecipitation experiments demonstrated that the activating function of CRD1 is mediated through interaction with the chromatin-remodeling BAF, H3K4-methylating Set1A-COMPASS, and H4K16-acetylating NSL complexes, while its repressing function depends on recruitment of the Sin3-HDAC and MiDAC complexes. These data provide novel molecular insight into how different Pax5 domains regulate gene expression to promote B cell commitment and development.
Collapse
Affiliation(s)
- Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Louisa Hill
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Markus Schäfer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
53
|
Hu Y, Salgado Figueroa D, Zhang Z, Veselits M, Bhattacharyya S, Kashiwagi M, Clark MR, Morgan BA, Ay F, Georgopoulos K. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 2023; 186:5269-5289.e22. [PMID: 37995656 PMCID: PMC10895928 DOI: 10.1016/j.cell.2023.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniela Salgado Figueroa
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Margaret Veselits
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sourya Bhattacharyya
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
54
|
Jani PK, Petkau G, Kawano Y, Klemm U, Guerra GM, Heinz GA, Heinrich F, Durek P, Mashreghi MF, Melchers F. The miR-221/222 cluster regulates hematopoietic stem cell quiescence and multipotency by suppressing both Fos/AP-1/IEG pathway activation and stress-like differentiation to granulocytes. PLoS Biol 2023; 21:e3002015. [PMID: 37983263 PMCID: PMC10695376 DOI: 10.1371/journal.pbio.3002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/04/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Throughout life, hematopoietic stem cells (HSCs), residing in bone marrow (BM), continuously regenerate erythroid/megakaryocytic, myeloid, and lymphoid cell lineages. This steady-state hematopoiesis from HSC and multipotent progenitors (MPPs) in BM can be perturbed by stress. The molecular controls of how stress can impact hematopoietic output remain poorly understood. MicroRNAs (miRNAs) as posttranscriptional regulators of gene expression have been found to control various functions in hematopoiesis. We find that the miR-221/222 cluster, which is expressed in HSC and in MPPs differentiating from them, perturbs steady-state hematopoiesis in ways comparable to stress. We compare pool sizes and single-cell transcriptomes of HSC and MPPs in unperturbed or stress-perturbed, miR-221/222-proficient or miR-221/222-deficient states. MiR-221/222 deficiency in hematopoietic cells was induced in C57BL/6J mice by conditional vav-cre-mediated deletion of the floxed miR-221/222 gene cluster. Social stress as well as miR-221/222 deficiency, alone or in combination, reduced HSC pools 3-fold and increased MPPs 1.5-fold. It also enhanced granulopoisis in the spleen. Furthermore, combined stress and miR-221/222 deficiency increased the erythroid/myeloid/granulocytic precursor pools in BM. Differential expression analyses of single-cell RNAseq transcriptomes of unperturbed and stressed, proficient HSC and MPPs detected more than 80 genes, selectively up-regulated in stressed cells, among them immediate early genes (IEGs). The same differential single-cell transcriptome analyses of unperturbed, miR-221/222-proficient with deficient HSC and MPPs identified Fos, Jun, JunB, Klf6, Nr4a1, Ier2, Zfp36-all IEGs-as well as CD74 and Ly6a as potential miRNA targets. Three of them, Klf6, Nr4a1, and Zfp36, have previously been found to influence myelogranulopoiesis. Together with increased levels of Jun, Fos forms increased amounts of the heterodimeric activator protein-1 (AP-1), which is known to control the expression of the selectively up-regulated expression of the IEGs. The comparisons of single-cell mRNA-deep sequencing analyses of socially stressed with miR-221/222-deficient HSC identify 5 of the 7 Fos/AP-1-controlled IEGs, Ier2, Jun, Junb, Klf6, and Zfp36, as common activators of HSC from quiescence. Combined with stress, miR-221/222 deficiency enhanced the Fos/AP-1/IEG pathway, extended it to MPPs, and increased the number of granulocyte precursors in BM, inducing selective up-regulation of genes encoding heat shock proteins Hspa5 and Hspa8, tubulin-cytoskeleton-organizing proteins Tuba1b, Tubb 4b and 5, and chromatin remodeling proteins H3f3b, H2afx, H2afz, and Hmgb2. Up-regulated in HSC, MPP1, and/or MPP2, they appear as potential regulators of stress-induced, miR-221/222-dependent increased granulocyte differentiation. Finally, stress by serial transplantations of miR-221/222-deficient HSC selectively exhausted their lymphoid differentiation capacities, while retaining their ability to home to BM and to differentiate to granulocytes. Thus, miR-221/222 maintains HSC quiescence and multipotency by suppressing Fos/AP-1/IEG-mediated activation and by suppressing enhanced stress-like differentiation to granulocytes. Since miR-221/222 is also expressed in human HSC, controlled induction of miR-221/222 in HSC should improve BM transplantations.
Collapse
Affiliation(s)
- Peter K. Jani
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Georg Petkau
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Yohei Kawano
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Uwe Klemm
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | - Pawel Durek
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | | | - Fritz Melchers
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
55
|
Gao Y, Zimmer JT, Vasic R, Liu C, Gbyli R, Zheng SJ, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao AZ, Slavoff S, Kibbey RG, Flavell RA, Simon MD, Tebaldi T, Li HB, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m 6A modification-mediated RNA stability control. Cell Rep 2023; 42:113163. [PMID: 37742191 PMCID: PMC10636609 DOI: 10.1016/j.celrep.2023.113163] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Radovan Vasic
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine, University of Toronto, Toronto, ON M5S3H2, Canada
| | - Chengyang Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shu-Jian Zheng
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaping Li
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sarah Slavoff
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
56
|
Xiao S, Zhang W, Li J, Manley NR. Lin28 regulates thymic growth and involution and correlates with MHCII expression in thymic epithelial cells. Front Immunol 2023; 14:1261081. [PMID: 37868985 PMCID: PMC10588642 DOI: 10.3389/fimmu.2023.1261081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Thymic epithelial cells (TECs) are essential for T cell development in the thymus, yet the mechanisms governing their differentiation are not well understood. Lin28, known for its roles in embryonic development, stem cell pluripotency, and regulating cell proliferation and differentiation, is expressed in endodermal epithelial cells during embryogenesis and persists in adult epithelia, implying postnatal functions. However, the detailed expression and function of Lin28 in TECs remain unknown. In this study, we examined the expression patterns of Lin28 and its target Let-7g in fetal and postnatal TECs and discovered opposing expression patterns during postnatal thymic growth, which correlated with FOXN1 and MHCII expression. Specifically, Lin28b showed high expression in MHCIIhi TECs, whereas Let-7g was expressed in MHCIIlo TECs. Deletion of Lin28a and Lin28b specifically in TECs resulted in reduced MHCII expression and overall TEC numbers. Conversely, overexpression of Lin28a increased total TEC and thymocyte numbers by promoting the proliferation of MHCIIlo TECs. Additionally, our data strongly suggest that Lin28 and Let-7g expression is reliant on FOXN1 to some extent. These findings suggest a critical role for Lin28 in regulating the development and differentiation of TECs by modulating MHCII expression and TEC proliferation throughout thymic ontogeny and involution. Our study provides insights into the mechanisms underlying TEC differentiation and highlights the significance of Lin28 in orchestrating these processes.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA, United States
| | | | | | | |
Collapse
|
57
|
Heyes E, Wilhelmson AS, Wenzel A, Manhart G, Eder T, Schuster MB, Rzepa E, Pundhir S, D'Altri T, Frank AK, Gentil C, Woessmann J, Schoof EM, Meggendorfer M, Schwaller J, Haferlach T, Grebien F, Porse BT. TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression. Nat Commun 2023; 14:6185. [PMID: 37794021 PMCID: PMC10550934 DOI: 10.1038/s41467-023-41927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Anna S Wilhelmson
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Mikkel B Schuster
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Rzepa
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Sachin Pundhir
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa D'Altri
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Woessmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Basel, Switzerland
| | | | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
58
|
Andreadou M, Ingelfinger F, De Feo D, Cramer TLM, Tuzlak S, Friebel E, Schreiner B, Eede P, Schneeberger S, Geesdorf M, Ridder F, Welsh CA, Power L, Kirschenbaum D, Tyagarajan SK, Greter M, Heppner FL, Mundt S, Becher B. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat Neurosci 2023; 26:1701-1712. [PMID: 37749256 PMCID: PMC10545539 DOI: 10.1038/s41593-023-01435-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Interleukin-12 (IL-12) is a potent driver of type 1 immunity. Paradoxically, in autoimmune conditions, including of the CNS, IL-12 reduces inflammation. The underlying mechanism behind these opposing properties and the involved cellular players remain elusive. Here we map IL-12 receptor (IL-12R) expression to NK and T cells as well as neurons and oligodendrocytes. Conditionally ablating the IL-12R across these cell types in adult mice and assessing their susceptibility to experimental autoimmune encephalomyelitis revealed that the neuroprotective role of IL-12 is mediated by neuroectoderm-derived cells, specifically neurons, and not immune cells. In human brain tissue from donors with multiple sclerosis, we observe an IL-12R distribution comparable to mice, suggesting similar mechanisms in mice and humans. Combining flow cytometry, bulk and single-nucleus RNA sequencing, we reveal an IL-12-induced neuroprotective tissue adaption preventing early neurodegeneration and sustaining trophic factor release during neuroinflammation, thereby maintaining CNS integrity in mice.
Collapse
Affiliation(s)
- Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Teresa L M Cramer
- Institute of Pharmacology and Toxicology, Neurodevelopmental Pharmacology, University of Zurich, Zurich, Switzerland
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Pascale Eede
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Maria Geesdorf
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike Ridder
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christina A Welsh
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, Neurodevelopmental Pharmacology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
59
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
60
|
Goldman N, Chandra A, Johnson I, Sullivan MA, Patil AR, Vanderbeck A, Jay A, Zhou Y, Ferrari EK, Mayne L, Aguilan J, Xue HH, Faryabi RB, John Wherry E, Sidoli S, Maillard I, Vahedi G. Intrinsically disordered domain of transcription factor TCF-1 is required for T cell developmental fidelity. Nat Immunol 2023; 24:1698-1710. [PMID: 37592014 PMCID: PMC10919931 DOI: 10.1038/s41590-023-01599-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.
Collapse
Affiliation(s)
- Naomi Goldman
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Isabelle Johnson
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Matthew A Sullivan
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Atishay Jay
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Jennifer Aguilan
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Robert B Faryabi
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Ivan Maillard
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
61
|
Luis TC, Barkas N, Carrelha J, Giustacchini A, Mazzi S, Norfo R, Wu B, Aliouat A, Guerrero JA, Rodriguez-Meira A, Bouriez-Jones T, Macaulay IC, Jasztal M, Zhu G, Ni H, Robson MJ, Blakely RD, Mead AJ, Nerlov C, Ghevaert C, Jacobsen SEW. Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner. Nat Commun 2023; 14:6062. [PMID: 37770432 PMCID: PMC10539537 DOI: 10.1038/s41467-023-41691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.
Collapse
Affiliation(s)
- Tiago C Luis
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, W12 0NN, London, UK.
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Stefania Mazzi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Affaf Aliouat
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Tiphaine Bouriez-Jones
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Iain C Macaulay
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Maria Jasztal
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- CCOA Therapeutics Inc, Toronto, ON, M5B 1T8, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- CCOA Therapeutics Inc, Toronto, ON, M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5B 1W8, Canada
| | - Matthew J Robson
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
62
|
Wu G, Yoshida N, Liu J, Zhang X, Xiong Y, Heavican-Foral TB, Mandato E, Liu H, Nelson GM, Yang L, Chen R, Donovan KA, Jones MK, Roshal M, Zhang Y, Xu R, Nirmal AJ, Jain S, Leahy C, Jones KL, Stevenson KE, Galasso N, Ganesan N, Chang T, Wu WC, Louissaint A, Debaize L, Yoon H, Cin PD, Chan WC, Sui SJH, Ng SY, Feldman AL, Horwitz SM, Adelman K, Fischer ES, Chen CW, Weinstock DM, Brown M. TP63 fusions drive multicomplex enhancer rewiring, lymphomagenesis, and EZH2 dependence. Sci Transl Med 2023; 15:eadi7244. [PMID: 37729434 PMCID: PMC11014717 DOI: 10.1126/scitranslmed.adi7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.
Collapse
Affiliation(s)
- Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noriaki Yoshida
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Oncological Sciences, Huntsman Cancer
Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tayla B. Heavican-Foral
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Renee Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus K. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ajit J. Nirmal
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Salvia Jain
- Massachusetts General Hospital Cancer Center, Boston, MA
02114, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen E. Stevenson
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natasha Galasso
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Nivetha Ganesan
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Tiffany Chang
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Wen-Chao Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Abner Louissaint
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Lydie Debaize
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s
Hospital, Boston, MA 02115, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope Medical Center,
Duarte, CA 91010, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Samuel Y. Ng
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopathology, Mayo Clinic College of
Medicine, Rochester, MN 55905, USA
| | - Andrew L. Feldman
- Current address: Department of Clinical Studies,
Radiation Effects Research Foundation, Hiroshima, 7320815, Japan
| | - Steven M. Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
63
|
Ingle H, Makimaa H, Aggarwal S, Deng H, Foster L, Li Y, Kennedy EA, Peterson ST, Wilen CB, Lee S, Suthar MS, Baldridge MT. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. SCIENCE ADVANCES 2023; 9:eadi2562. [PMID: 37703370 PMCID: PMC10499323 DOI: 10.1126/sciadv.adi2562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.
Collapse
Affiliation(s)
- Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongju Deng
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefan T. Peterson
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
64
|
Schneble D, El-Gazzar A, Kargarpour Z, Kramer M, Metekol S, Stoshikj S, Idzko M. Cell-type-specific role of P2Y2 receptor in HDM-driven model of allergic airway inflammation. Front Immunol 2023; 14:1209097. [PMID: 37790940 PMCID: PMC10543084 DOI: 10.3389/fimmu.2023.1209097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Allergic airway inflammation (AAI) is a chronic respiratory disease that is considered a severe restriction in daily life and is accompanied by a constant risk of acute aggravation. It is characterized by IgE-dependent activation of mast cells, infiltration of eosinophils, and activated T-helper cell type 2 (Th2) lymphocytes into airway mucosa. Purinergic receptor signaling is known to play a crucial role in inducing and maintaining allergic airway inflammation. Previous studies in an ovalbumin (OVA)-alum mouse model demonstrated a contribution of the P2Y2 purinergic receptor subtype (P2RY2) in allergic airway inflammation. However, conflicting data concerning the mechanism by which P2RY2 triggers AAI has been reported. Thus, we aimed at elucidating the cell-type-specific role of P2RY2 signaling in house dust mite (HDM)-driven model of allergic airway inflammation. Thereupon, HDM-driven AAI was induced in conditional knockout mice, deficient or intact for P2ry2 in either alveolar epithelial cells, hematopoietic cells, myeloid cells, helper T cells, or dendritic cells. To analyze the functional role of P2RY2 in these mice models, flow cytometry of bronchoalveolar lavage fluid (BALF), cytokine measurement of BALF, invasive lung function measurement, HDM re-stimulation of mediastinal lymph node (MLN) cells, and lung histology were performed. Mice that were subjected to an HDM-based model of allergic airway inflammation resulted in reduced signs of acute airway inflammation including eosinophilia in BALF, peribronchial inflammation, Th2 cytokine production, and bronchial hyperresponsiveness in mice deficient for P2ry2 in alveolar epithelial cells, hematopoietic cells, myeloid cells, or dendritic cells. Furthermore, the migration of bone-marrow-derived dendritic cells and bone-marrow-derived monocytes, both deficient in P2ry2, towards ATP was impaired. Additionally, we found reduced levels of MCP-1/CCL2 and IL-8 homologues in the BALF of mice deficient in P2ry2 in myeloid cells and lower concentrations of IL-33 in the lung tissue of mice deficient in P2ry2 in alveolar epithelial cells. In summary, our results show that P2RY2 contributes to HDM-induced airway inflammation by mediating proinflammatory cytokine production in airway epithelial cells, monocytes, and dendritic cells and drives the recruitment of lung dendritic cells and monocytes.
Collapse
Affiliation(s)
- Dominik Schneble
- Department of Pneumology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed El-Gazzar
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Zahra Kargarpour
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Markus Kramer
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Seda Metekol
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Slagjana Stoshikj
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Pneumology, Medical Center – University of Freiburg, Freiburg, Germany
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
65
|
Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O'Sullivan J, Wang G, Louka E, Kretzschmar WW, Paterson A, Brierley C, Martin JE, Demeule C, Bashton M, Sousos N, Moralli D, Subha Meem L, Carrelha J, Wu B, Hamblin A, Guermouche H, Pasquier F, Marzac C, Girodon F, Vainchenker W, Drummond M, Harrison C, Chapman JR, Plo I, Jacobsen SEW, Psaila B, Thongjuea S, Antony-Debré I, Mead AJ. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet 2023; 55:1531-1541. [PMID: 37666991 PMCID: PMC10484789 DOI: 10.1038/s41588-023-01480-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.
Collapse
Affiliation(s)
- Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Regenerative Medicine 'Stefano Ferrari', Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sean Wen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Agathe L Chédeville
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Haseeb Rahman
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleni Louka
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Warren W Kretzschmar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aimee Paterson
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Charlotte Brierley
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jean-Edouard Martin
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Angela Hamblin
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Helene Guermouche
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'hématologie biologique, Paris, France
| | - Florence Pasquier
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 1231, Centre de Recherche, Dijon, France
| | - William Vainchenker
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - J Ross Chapman
- Genome Integrity Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Isabelle Plo
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iléana Antony-Debré
- INSERM, UMR 1287, Villejuif, France.
- Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Gif-sur-Yvette, France.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
66
|
Awasthi D, Chopra S, Cho BA, Emmanuelli A, Sandoval TA, Hwang SM, Chae CS, Salvagno C, Tan C, Vasquez-Urbina L, Fernandez Rodriguez JJ, Santagostino SF, Iwawaki T, Romero-Sandoval EA, Crespo MS, Morales DK, Iliev ID, Hohl TM, Cubillos-Ruiz JR. Inflammatory ER stress responses dictate the immunopathogenic progression of systemic candidiasis. J Clin Invest 2023; 133:e167359. [PMID: 37432737 PMCID: PMC10471176 DOI: 10.1172/jci167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1β, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.
Collapse
Affiliation(s)
| | - Sahil Chopra
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Byuri A. Cho
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Chen Tan
- Department of Obstetrics and Gynecology, and
| | | | - Jose J. Fernandez Rodriguez
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | - Sara F. Santagostino
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medicine, New York, New York, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariano Sanchez Crespo
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | | | - Iliyan D. Iliev
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine and
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York, USA
| | - Tobias M. Hohl
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
67
|
Liu Z, Wang H, Li Z, Dress RJ, Zhu Y, Zhang S, De Feo D, Kong WT, Cai P, Shin A, Piot C, Yu J, Gu Y, Zhang M, Gao C, Chen L, Wang H, Vétillard M, Guermonprez P, Kwok I, Ng LG, Chakarov S, Schlitzer A, Becher B, Dutertre CA, Su B, Ginhoux F. Dendritic cell type 3 arises from Ly6C + monocyte-dendritic cell progenitors. Immunity 2023; 56:1761-1777.e6. [PMID: 37506694 DOI: 10.1016/j.immuni.2023.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Haiting Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziyi Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Regine J Dress
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Yiwen Zhu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyan Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Peiliang Cai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Amanda Shin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cécile Piot
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jiangyan Yu
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Yaqi Gu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingnan Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Caixia Gao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Honglin Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mathias Vétillard
- Université de Paris Cité, INSERM U1149, CNRS-ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, INSERM U1149, CNRS-ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Immanuel Kwok
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Charles-Antoine Dutertre
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
68
|
Choi S, Hatzihristidis T, Gaud G, Dutta A, Lee J, Arya A, Clubb LM, Stamos DB, Markovics A, Mikecz K, Love P. GRB2 promotes thymocyte positive selection by facilitating THEMIS-mediated inactivation of SHP1. J Exp Med 2023; 220:e20221649. [PMID: 37067793 PMCID: PMC10114920 DOI: 10.1084/jem.20221649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
The T-lineage restricted protein THEMIS has been shown to play a critical role in T cell development. THEMIS, via its distinctive CABIT domains, inhibits the catalytic activity of the tyrosine phosphatase SHP1 (PTPN6). SHP1 and THEMIS bind to the ubiquitous cytosolic adapter GRB2, and the purported formation of a tri-molecular THEMIS-GRB2-SHP1 complex facilitates inactivation of SHP1 by THEMIS. The importance of this function of GRB2 among its numerous documented activities is unclear as GRB2 binds to multiple proteins and participates in several signaling responses in thymocytes. Here, we show that similar to Themis-/- thymocytes, the primary molecular defect in GRB2-deficient thymocytes is increased catalytically active SHP1 and the developmental block in GRB2-deficient thymocytes is alleviated by deletion or inhibition of SHP1 and is exacerbated by SHP1 overexpression. Thus, the principal role of GRB2 during T cell development is to promote THEMIS-mediated inactivation of SHP1 thereby enhancing the sensitivity of TCR signaling in CD4+CD8+ thymocytes to low affinity positively selecting self-ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Awadhesh Arya
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
69
|
Németh T, Balogh L, Káposztás E, Szilveszter KP, Mócsai A. Neutrophil-Specific Syk Expression Is Crucial for Skin Disease in Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2023; 143:1147-1156. [PMID: 36641133 DOI: 10.1016/j.jid.2022.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Autoantibodies against the dermal-epidermal junction component type VII collagen (C7) trigger skin disease in the inflammatory form of epidermolysis bullosa acquisita. We have previously identified the Syk tyrosine kinase as a crucial participant in anti-C7 antibody-induced experimental epidermolysis bullosa acquisita. However, it is still unclear which cellular lineage needs to express Syk during the disease process. In this study, we show that the loss of Syk, specifically from neutrophils, results in complete protection from the anti-C7 antibody-initiated skin disease both macroscopically and microscopically. Mice with a neutrophil-specific Syk deletion had decreased neutrophil accumulation and abrogated CXCL2 and IL-1β levels in the skin upon anti-C7 treatment, whereas isolated Syk-deficient neutrophils had decreased superoxide release, cell spreading, and cytokine release on C7-anti-C7 immune complex surfaces. Entospletinib and lanraplenib, two second-generation Syk-specific inhibitors, effectively abrogated immune complex-induced responses of human neutrophils and decreased the anti-C7 antibody-initiated, neutrophil-mediated ex vivo dermal-epidermal separation in human skin samples. Taken together, these results point to a crucial role for Syk in neutrophils in the development and progression of epidermolysis bullosa acquisita and suggest Syk inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Lili Balogh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Eszter Káposztás
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
70
|
Carty F, Layzell S, Barbarulo A, Islam F, Webb LV, Seddon B. IKK promotes naïve T cell survival by repressing RIPK1-dependent apoptosis and activating NF-κB. Sci Signal 2023; 16:eabo4094. [PMID: 37368952 DOI: 10.1126/scisignal.abo4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The inhibitor of κB kinase (IKK) complex regulates the activation of the nuclear factor κB (NF-κB) family of transcription factors. In addition, IKK represses extrinsic cell death pathways dependent on receptor-interacting serine/threonine-protein kinase 1 (RIPK1) by directly phosphorylating this kinase. Here, we showed that peripheral naïve T cells in mice required the continued expression of IKK1 and IKK2 for their survival; however, the loss of these cells was only partially prevented when extrinsic cell death pathways were blocked by either deleting Casp8 (which encodes the apoptosis-inducing caspase 8) or inhibiting the kinase activity of RIPK1. Inducible deletion of Rela (which encodes the NF-κB p65 subunit) in mature CD4+ T cells also resulted in loss of naïve CD4+ T cells and in reduced abundance of the interleukin-7 receptor (IL-7R) encoded by the NF-κB target Il7r, revealing an additional reliance upon NF-κB for the long-term survival of mature T cells. Together, these data indicate that the IKK-dependent survival of naïve CD4+ T cells depends on both repression of extrinsic cell death pathways and activation of an NF-κB-dependent survival program.
Collapse
Affiliation(s)
- Fiona Carty
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Farjana Islam
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Louise V Webb
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London NW3 2PP, UK
| |
Collapse
|
71
|
Xiao Z, Wang S, Tian Y, Lv W, Sheng H, Zhan M, Huang Q, Zhang Z, Zhu L, Zhu C, Zhong H, Wen Q, Liu Z, Tan J, Xu Y, Yang M, Liu Y, Flavell RA, Yang Q, Cao G, Yin Z. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells. Cell Rep 2023; 42:112684. [PMID: 37355989 DOI: 10.1016/j.celrep.2023.112684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
γδ T cells make key contributions to tissue physiology and immunosurveillance through two main functionally distinct subsets, γδ T1 and γδ T17. m6A methylation plays critical roles in controlling numerous aspects of mRNA metabolism that govern mRNA turnover, gene expression, and cellular functional specialization; however, its role in γδ T cells remains less well understood. Here, we find that m6A methylation controls the functional specification of γδ T17 vs. γδ T1 cells. Mechanistically, m6A methylation prevents the formation of endogenous double-stranded RNAs and promotes the degradation of Stat1 transcripts, which converge to prevent over-activation of STAT1 signaling and ensuing inhibition of γδ T17. Deleting Mettl3, the key enzyme in the m6A methyltransferases complex, in γδ T cells reduces interleukin-17 (IL-17) production and ameliorates γδ T17-mediated psoriasis. In summary, our work shows that METTL3-mediated m6A methylation orchestrates mRNA stability and double-stranded RNA (dsRNA) contents to equilibrate γδ T1 and γδ T17 cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Shanshan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yixia Tian
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Wenkai Lv
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hao Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, China
| | - Mingjie Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiongxiao Huang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | - Zhanpeng Zhang
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Leqing Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Chuyun Zhu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hui Zhong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yumei Liu
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China.
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
72
|
Kaltenbach L, Martzloff P, Bambach SK, Aizarani N, Mihlan M, Gavrilov A, Glaser KM, Stecher M, Thünauer R, Thiriot A, Heger K, Kierdorf K, Wienert S, von Andrian UH, Schmidt-Supprian M, Nerlov C, Klauschen F, Roers A, Bajénoff M, Grün D, Lämmermann T. Slow integrin-dependent migration organizes networks of tissue-resident mast cells. Nat Immunol 2023; 24:915-924. [PMID: 37081147 PMCID: PMC10232366 DOI: 10.1038/s41590-023-01493-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction1. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces2,3. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments4-6. However, whether these generalized concepts apply to all immune cells is unclear. Here, we show that the movement of mast cells (immune cells with important roles during allergy and anaphylaxis) differs fundamentally from the widely applied paradigm of interstitial immune cell migration. We identify a crucial role for integrin-dependent adhesion in controlling mast cell movement and localization to anatomical niches rich in KIT ligand, the major mast cell growth and survival factor. Our findings show that substrate-dependent haptokinesis is an important mechanism for the tissue organization of resident immune cells.
Collapse
Affiliation(s)
- Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Paloma Martzloff
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sarah K Bambach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nadim Aizarani
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roland Thünauer
- Advanced Light and Fluorescence Microscopy Facility, Centre for Structural Systems Biology (CSSB) and University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Aude Thiriot
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Klaus Heger
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Wienert
- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Ulrich H von Andrian
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
- Berlin Institute for the Foundation of Learning and Data (BIFOLD) and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Roers
- Institute for Immunology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for infection Research (HZI), Würzburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
73
|
Choi S, Lee J, Hatzihristidis T, Gaud G, Dutta A, Arya A, Clubb LM, Stamos DB, Markovics A, Mikecz K, Love PE. THEMIS increases TCR signaling in CD4 +CD8 + thymocytes by inhibiting the activity of the tyrosine phosphatase SHP1. Sci Signal 2023; 16:eade1274. [PMID: 37159521 PMCID: PMC10410529 DOI: 10.1126/scisignal.ade1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The T cell lineage-restricted protein THEMIS plays a critical role in T cell development at the positive selection stage. In the SHP1 activation model, THEMIS is proposed to enhance the activity of the tyrosine phosphatase SHP1 (encoded by Ptpn6), thereby dampening T cell antigen receptor (TCR) signaling and preventing the inappropriate negative selection of CD4+CD8+ thymocytes by positively selecting ligands. In contrast, in the SHP1 inhibition model, THEMIS is proposed to suppress SHP1 activity, rendering CD4+CD8+ thymocytes more sensitive to TCR signaling initiated by low-affinity ligands to promote positive selection. We sought to resolve the controversy regarding the molecular function of THEMIS. We found that the defect in positive selection in Themis-/- thymocytes was ameliorated by pharmacologic inhibition of SHP1 or by deletion of Ptpn6 and was exacerbated by SHP1 overexpression. Moreover, overexpression of SHP1 phenocopied the Themis-/- developmental defect, whereas deletion of Ptpn6, Ptpn11 (encoding SHP2), or both did not result in a phenotype resembling that of Themis deficiency. Last, we found that thymocyte negative selection was not enhanced but was instead impaired in the absence of THEMIS. Together, these results provide evidence favoring the SHP1 inhibition model, supporting a mechanism whereby THEMIS functions to enhance the sensitivity of CD4+CD8+ thymocytes to TCR signaling, enabling positive selection by low-affinity, self-ligand-TCR interactions.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Awadhesh Arya
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Shock, Trauma & Anesthesiology Research (STAR) Center, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
74
|
Riaj Mahamud M, Geng X, Chen L, Ahmed Z, Ho Y, Sathish Srinivasan R. GATA2 regulates blood/lymph separation in a platelet-dependent and lymphovenous valve-independent manner. Microcirculation 2023; 30:e12787. [PMID: 36197446 PMCID: PMC10073350 DOI: 10.1111/micc.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Lymphatic vessels collect interstitial fluid, immune cells, and digested lipids and return these bodily fluids to blood through two pairs of lymphovenous valves (LVVs). Like other cardiovascular valves LVVs prevent the backflow of blood into the lymphatic vessels. In addition to LVVs, platelets are necessary to prevent the entry of blood into the lymphatic vessels. Platelet thrombi are observed at LVVs suggesting that LVVs and platelets function in synergy to regulate blood/lymphatic separation. OBJECTIVES The primary objective of this work is to determine whether platelets can regulate blood/lymph separation independently of LVVs. METHODS The transcription factor GATA2 is necessary for the development of both LVVs and hematopoietic stem cells. Using various endothelial- and hematopoietic cell expressed Cre-lines, we conditionally deleted Gata2. We hypothesized that this strategy would identify the tissue- and time-specific roles of GATA2 and reveal whether platelets and LVVs can independently regulate blood/lymph separation. RESULTS Lymphatic vasculature-specific deletion of Gata2 results in the absence of LVVs without compromising blood/lymph separation. In contrast, deletion of GATA2 from both lymphatic vasculature and hematopoietic cells results in the absence of LVVs, reduced number of platelets and blood-filled lymphatic vasculature. CONCLUSION GATA2 promotes blood/lymph separation through platelets. Furthermore, LVVs are the only known sites of interaction between blood and lymphatic vessels. The fact that blood is able to enter the lymphatic vessels of mice lacking LVVs and platelets indicates that under these circumstances the lymphatic and blood vessels are connected at yet to be identified sites.
Collapse
Affiliation(s)
- Md. Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
| | - Zoheb Ahmed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
| | - Yenchun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
75
|
Phan KP, Pelargos P, Tsytsykova AV, Tsitsikov EN, Wiley G, Li C, Bebak M, Dunn IF. COMMD10 Is Essential for Neural Plate Development during Embryogenesis. J Dev Biol 2023; 11:13. [PMID: 36976102 PMCID: PMC10051640 DOI: 10.3390/jdb11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The COMMD (copper metabolism MURR1 domain containing) family includes ten structurally conserved proteins (COMMD1 to COMMD10) in eukaryotic multicellular organisms that are involved in a diverse array of cellular and physiological processes, including endosomal trafficking, copper homeostasis, and cholesterol metabolism, among others. To understand the role of COMMD10 in embryonic development, we used Commd10Tg(Vav1-icre)A2Kio/J mice, where the Vav1-cre transgene is integrated into an intron of the Commd10 gene, creating a functional knockout of Commd10 in homozygous mice. Breeding heterozygous mice produced no COMMD10-deficient (Commd10Null) offspring, suggesting that COMMD10 is required for embryogenesis. Analysis of Commd10Null embryos demonstrated that they displayed stalled development by embryonic day 8.5 (E8.5). Transcriptome analysis revealed that numerous neural crest-specific gene markers had lower expression in mutant versus wild-type (WT) embryos. Specifically, Commd10Null embryos displayed significantly lower expression levels of a number of transcription factors, including a major regulator of the neural crest, Sox10. Moreover, several cytokines/growth factors involved in early embryonic neurogenesis were also lower in mutant embryos. On the other hand, Commd10Null embryos demonstrated higher expression of genes involved in tissue remodeling and regression processes. Taken together, our findings show that Commd10Null embryos die by day E8.5 due to COMMD10-dependent neural crest failure, revealing a new and critical role for COMMD10 in neural development.
Collapse
Affiliation(s)
- Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Panayiotis Pelargos
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Chuang Li
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.L.); (M.B.)
| | - Melissa Bebak
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.L.); (M.B.)
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| |
Collapse
|
76
|
Wang C, Nistala R, Cao M, Pan Y, Behrens M, Doll D, Hammer RD, Nistala P, Chang HM, Yeh ETH, Kang X. Dipeptidylpeptidase 4 promotes survival and stemness of acute myeloid leukemia stem cells. Cell Rep 2023; 42:112105. [PMID: 36807138 PMCID: PMC10432577 DOI: 10.1016/j.celrep.2023.112105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023] Open
Abstract
Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ravi Nistala
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Madelaine Behrens
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Donald Doll
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Puja Nistala
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology and Toxicology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
77
|
Menéndez-Gutiérrez MP, Porcuna J, Nayak R, Paredes A, Niu H, Núñez V, Paranjpe A, Gómez MJ, Bhattacharjee A, Schnell DJ, Sánchez-Cabo F, Welch JS, Salomonis N, Cancelas JA, Ricote M. Retinoid X receptor promotes hematopoietic stem cell fitness and quiescence and preserves hematopoietic homeostasis. Blood 2023; 141:592-608. [PMID: 36347014 PMCID: PMC10082360 DOI: 10.1182/blood.2022016832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
Abstract
Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain hematopoietic fitness throughout life. In steady-state conditions, HSC exhaustion is prevented by the maintenance of most HSCs in a quiescent state, with cells entering the cell cycle only occasionally. HSC quiescence is regulated by retinoid and fatty-acid ligands of transcriptional factors of the nuclear retinoid X receptor (RXR) family. Herein, we show that dual deficiency for hematopoietic RXRα and RXRβ induces HSC exhaustion, myeloid cell/megakaryocyte differentiation, and myeloproliferative-like disease. RXRα and RXRβ maintain HSC quiescence, survival, and chromatin compaction; moreover, transcriptome changes in RXRα;RXRβ-deficient HSCs include premature acquisition of an aging-like HSC signature, MYC pathway upregulation, and RNA intron retention. Fitness loss and associated RNA transcriptome and splicing alterations in RXRα;RXRβ-deficient HSCs are prevented by Myc haploinsufficiency. Our study reveals the critical importance of RXRs for the maintenance of HSC fitness and their protection from premature aging.
Collapse
Affiliation(s)
| | - Jesús Porcuna
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ramesh Nayak
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ana Paredes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Haixia Niu
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Vanessa Núñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Manuel J. Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Daniel J. Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - John S. Welch
- Department of Internal Medicine, Washington University, St Louis, MO
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Internal Medicine, Washington University, St Louis, MO
| | - Jose A. Cancelas
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mercedes Ricote
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
78
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
79
|
Maier AM, Huth K, Alessandrini F, Schnautz B, Arifovic A, Riols F, Haid M, Koegler A, Sameith K, Schmidt-Weber CB, Esser-von-Bieren J, Ohnmacht C. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages. Front Immunol 2023; 14:1157373. [PMID: 37081886 PMCID: PMC10110899 DOI: 10.3389/fimmu.2023.1157373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Collapse
Affiliation(s)
- Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Huth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Koegler
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
80
|
Bosselut R. Genetic Strategies to Study T Cell Development. Methods Mol Biol 2023; 2580:117-130. [PMID: 36374453 PMCID: PMC10803070 DOI: 10.1007/978-1-0716-2740-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetics approaches have been instrumental to deciphering T cell development in the thymus, including gene disruption by homologous recombination and more recently Crispr-based gene editing and transgenic gene expression, especially of specific T cell antigen receptors (TCR). This brief chapter describes commonly used tools and strategies to modify the genome of thymocytes, including mouse strains with lineage- and stage-specific expression of the Cre recombinase used for conditional allele inactivation or expressing unique antigen receptor specificities.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
81
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
82
|
Dietlein N, Wang X, Metz J, Disson O, Shang F, Beyersdörffer C, Rodríguez Correa E, Lipka DB, Begus-Nahrmann Y, Kosinsky RL, Johnsen SA, Lecuit M, Höfer T, Rodewald HR. Usp22 is an intracellular regulator of systemic emergency hematopoiesis. Sci Immunol 2022; 7:eabq2061. [PMID: 36490327 DOI: 10.1126/sciimmunol.abq2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emergency hematopoiesis is a concerted response aimed toward enhanced protection from infection, involving multiple cell types and developmental stages across the immune system. Despite its importance, the underlying molecular regulation remains poorly understood. The deubiquitinase USP22 regulates the levels of monoubiquitinated histone H2B (H2Bub1), which is associated with activation of interferon responses upon viral infection. Here, we show that in the absence of infection or inflammation, mice lacking Usp22 in all hematopoietic cells display profound systemic emergency hematopoiesis, evident by increased hematopoietic stem cell proliferation, myeloid bias, and extramedullary hematopoiesis. Functionally, loss of Usp22 results in elevated phagocytosis by neutrophilic granulocytes and enhanced innate protection against Listeria monocytogenes infection. At the molecular level, we found this state of emergency hematopoiesis associated with transcriptional signatures of myeloid priming, enhanced mitochondrial respiration, and innate and adaptive immunity and inflammation. Augmented expression of many inflammatory genes was linked to elevated locus-specific H2Bub1 levels. Collectively, these results demonstrate the existence of a tunable epigenetic state that promotes systemic emergency hematopoiesis in a cell-autonomous manner to enhance innate protection, identifying potential paths toward immune enhancement.
Collapse
Affiliation(s)
- Nikolaus Dietlein
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Xi Wang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jonas Metz
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Fuwei Shang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Celine Beyersdörffer
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Esther Rodríguez Correa
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Steven A Johnsen
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.,Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France.,Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France.,Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, 75006 Paris, France
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
83
|
van Gijsel-Bonnello M, Darling NJ, Tanaka T, Di Carmine S, Marchesi F, Thomson S, Clark K, Kurowska-Stolarska M, McSorley HJ, Cohen P, Arthur JSC. Salt-inducible kinase 2 regulates fibrosis during bleomycin-induced lung injury. J Biol Chem 2022; 298:102644. [PMID: 36309093 PMCID: PMC9706632 DOI: 10.1016/j.jbc.2022.102644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Manuel van Gijsel-Bonnello
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takashi Tanaka
- Research Centre of Specialty, Ono Pharmaceutical Co Ltd, Osaka, Japan
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, United Kingdom
| | - Kristopher Clark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
84
|
Blanchett S, Dondelinger Y, Barbarulo A, Bertrand MJM, Seddon B. Phosphorylation of RIPK1 serine 25 mediates IKK dependent control of extrinsic cell death in T cells. Front Immunol 2022; 13:1067164. [PMID: 36532075 PMCID: PMC9756376 DOI: 10.3389/fimmu.2022.1067164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
The Inhibitor of Kappa B Kinase (IKK) complex is a critical regulator of NF-κB activation. More recently, IKK has also been shown to repress RIPK1 dependent extrinsic cell death pathways by directly phosphorylating RIPK1 at serine 25. In T cells, IKK expression is essential for normal development in the thymus, by promoting survival of thymocytes independently of NF-κB activation. RIPK1 undergoes extensive phosphorylation following TNF stimulation in T cells, though which targets are required to repress RIPK1 has not been defined. Here, we show that TNF induced phosphorylation of RIPK1 at S25 is IKK dependent. We test the relevance of this phosphorylation event in T cells using mice with a RIPK1S25D phosphomimetic point mutation to endogenous RIPK1. We find that this mutation protects T cells from TNF induced cell death when IKK activity is inhibited in vitro, and can rescues development of IKK deficient thymocytes in vivo to a degree comparable with kinase dead RIPK1D138N. Together, these data show that phosphorylation of RIPK1S25 by IKK represents a key regulatory event promoting survival of T cells by IKK.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom
| | - Yves Dondelinger
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom
| | - Mathieu J. M. Bertrand
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Benedict Seddon
- Institute of Immunity and Transplantation, The Pears Building, University College London, London, United Kingdom,*Correspondence: Benedict Seddon,
| |
Collapse
|
85
|
Matheson LS, Petkau G, Sáenz-Narciso B, D'Angeli V, McHugh J, Newman R, Munford H, West J, Chakraborty K, Roberts J, Łukasiak S, Díaz-Muñoz MD, Bell SE, Dimeloe S, Turner M. Multiomics analysis couples mRNA turnover and translational control of glutamine metabolism to the differentiation of the activated CD4 + T cell. Sci Rep 2022; 12:19657. [PMID: 36385275 PMCID: PMC9669047 DOI: 10.1038/s41598-022-24132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
The ZFP36 family of RNA-binding proteins acts post-transcriptionally to repress translation and promote RNA decay. Studies of genes and pathways regulated by the ZFP36 family in CD4+ T cells have focussed largely on cytokines, but their impact on metabolic reprogramming and differentiation is unclear. Using CD4+ T cells lacking Zfp36 and Zfp36l1, we combined the quantification of mRNA transcription, stability, abundance and translation with crosslinking immunoprecipitation and metabolic profiling to determine how they regulate T cell metabolism and differentiation. Our results suggest that ZFP36 and ZFP36L1 act directly to limit the expression of genes driving anabolic processes by two distinct routes: by targeting transcription factors and by targeting transcripts encoding rate-limiting enzymes. These enzymes span numerous metabolic pathways including glycolysis, one-carbon metabolism and glutaminolysis. Direct binding and repression of transcripts encoding glutamine transporter SLC38A2 correlated with increased cellular glutamine content in ZFP36/ZFP36L1-deficient T cells. Increased conversion of glutamine to α-ketoglutarate in these cells was consistent with direct binding of ZFP36/ZFP36L1 to Gls (encoding glutaminase) and Glud1 (encoding glutamate dehydrogenase). We propose that ZFP36 and ZFP36L1 as well as glutamine and α-ketoglutarate are limiting factors for the acquisition of the cytotoxic CD4+ T cell fate. Our data implicate ZFP36 and ZFP36L1 in limiting glutamine anaplerosis and differentiation of activated CD4+ T cells, likely mediated by direct binding to transcripts of critical genes that drive these processes.
Collapse
Affiliation(s)
- Louise S Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Georg Petkau
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Beatriz Sáenz-Narciso
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Vanessa D'Angeli
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Present Address: IONTAS, The Works, Unity Campus, Cambridge, CB22 3EF, UK
| | - Jessica McHugh
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Present Address: Nature Reviews Rheumatology, The Campus, 4 Crinan Street, London, N1 9XW, UK
| | - Rebecca Newman
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Present Address: Immunology Research Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, Herts, UK
| | - Haydn Munford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, IBR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Krishnendu Chakraborty
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Present Address: Bioanalysis, Immunogenicity and Biomarkers (BIB), IVIVT, GSK, Stevenage, SG1 2NY, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Sebastian Łukasiak
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Present Address: Discovery Biology, Discovery Science, R&D, AstraZeneca, Cambridge, UK
| | - Manuel D Díaz-Muñoz
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.,Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, BP3028, 31024, Toulouse, France
| | - Sarah E Bell
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, IBR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
86
|
Glaser KM, Tarrant TK, Lämmermann T. Combinatorial depletions of G-protein coupled receptor kinases in immune cells identify pleiotropic and cell type-specific functions. Front Immunol 2022; 13:1039803. [DOI: 10.3389/fimmu.2022.1039803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
G-protein coupled receptor kinases (GRKs) participate in the regulation of chemokine receptors by mediating receptor desensitization. They can be recruited to agonist-activated G-protein coupled receptors (GPCRs) and phosphorylate their intracellular parts, which eventually blocks signal propagation and often induces receptor internalization. However, there is growing evidence that GRKs can also control cellular functions beyond GPCR regulation. Immune cells commonly express two to four members of the GRK family (GRK2, GRK3, GRK5, GRK6) simultaneously, but we have very limited knowledge about their interplay in primary immune cells. In particular, we are missing comprehensive studies comparing the role of this GRK interplay for (a) multiple GPCRs within one leukocyte type, and (b) one specific GPCR between several immune cell subsets. To address this issue, we generated mouse models of single, combinatorial and complete GRK knockouts in four primary immune cell types (neutrophils, T cells, B cells and dendritic cells) and systematically addressed the functional consequences on GPCR-controlled cell migration and tissue localization. Our study shows that combinatorial depletions of GRKs have pleiotropic and cell-type specific effects in leukocytes, many of which could not be predicted. Neutrophils lacking all four GRK family members show increased chemotactic migration responses to a wide range of GPCR ligands, whereas combinatorial GRK depletions in other immune cell types lead to pro- and anti-migratory responses. Combined depletion of GRK2 and GRK6 in T cells and B cells shows distinct functional outcomes for (a) one GPCR type in different cell types, and (b) different GPCRs in one cell type. These GPCR-type and cell-type specific effects reflect in altered lymphocyte chemotaxis in vitro and localization in vivo. Lastly, we provide evidence that complete GRK deficiency impairs dendritic cell homeostasis, which unexpectedly results from defective dendritic cell differentiation and maturation in vitro and in vivo. Together, our findings demonstrate the complexity of GRK functions in immune cells, which go beyond GPCR desensitization in specific leukocyte types. Furthermore, they highlight the need for studying GRK functions in primary immune cells to address their specific roles in each leukocyte subset.
Collapse
|
87
|
Kashiwagi M, Figueroa DS, Ay F, Morgan BA, Georgopoulos K. A double-negative thymocyte-specific enhancer augments Notch1 signaling to direct early T cell progenitor expansion, lineage restriction and β-selection. Nat Immunol 2022; 23:1628-1643. [PMID: 36316479 PMCID: PMC10187983 DOI: 10.1038/s41590-022-01322-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
T cell differentiation requires Notch1 signaling. In the present study, we show that an enhancer upstream of Notch1 active in double-negative (DN) mouse thymocytes is responsible for raising Notch1 signaling intrathymically. This enhancer is required to expand multipotent progenitors intrathymically while delaying early differentiation until lineage restrictions have been established. Early thymic progenitors lacking the enhancer show accelerated differentiation through the DN stages and increased frequency of B, innate lymphoid (IL) and natural killer (NK) cell differentiation. Transcription regulators for T cell lineage restriction and commitment are expressed normally, but IL and NK cell gene expression persists after T cell lineage commitment and T cell receptor β VDJ recombination, Cd3 expression and β-selection have been impaired. This Notch1 enhancer is inactive in double-positive (DP) thymocytes. Its aberrant reactivation at this stage in Ikaros mutants is required for leukemogenesis. Thus, the DN-specific Notch1 enhancer harnesses the regulatory architecture of DN and DP thymocytes to achieve carefully orchestrated changes in Notch1 signaling required for early lineage restrictions and normal T cell differentiation.
Collapse
|
88
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
89
|
Yin N, Jin G, Ma Y, Zhao H, Zhang G, Li MO, Peng M. SZT2 maintains hematopoietic stem cell homeostasis via nutrient-mediated mTORC1 regulation. J Clin Invest 2022; 132:146272. [PMID: 36250465 PMCID: PMC9566891 DOI: 10.1172/jci146272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The mTORC1 pathway coordinates nutrient and growth factor signals to maintain organismal homeostasis. Whether nutrient signaling to mTORC1 regulates stem cell function remains unknown. Here, we show that SZT2 — a protein required for mTORC1 downregulation upon nutrient deprivation — is critical for hematopoietic stem cell (HSC) homeostasis. Ablation of SZT2 in HSCs decreased the reserve and impaired the repopulating capacity of HSCs. Furthermore, ablation of both SZT2 and TSC1 — 2 repressors of mTORC1 on the nutrient and growth factor arms, respectively — led to rapid HSC depletion, pancytopenia, and premature death of the mice. Mechanistically, loss of either SZT2 or TSC1 in HSCs led to only mild elevation of mTORC1 activity and reactive oxygen species (ROS) production. Loss of both SZT2 and TSC1, on the other hand, simultaneously produced a dramatic synergistic effect, with an approximately 10-fold increase of mTORC1 activity and approximately 100-fold increase of ROS production, which rapidly depleted HSCs. These data demonstrate a critical role of nutrient mTORC1 signaling in HSC homeostasis and uncover a strong synergistic effect between nutrient- and growth factor–mediated mTORC1 regulation in stem cells.
Collapse
Affiliation(s)
- Na Yin
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Gang Jin
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Yuying Ma
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Hanfei Zhao
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Guangyue Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ming O. Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Min Peng
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
90
|
Wittorf KJ, Weber KK, Swenson SA, Buckley SM. Ubiquitin E3 ligase FBXO21 regulates cytokine-mediated signaling pathways, but is dispensable for steady-state hematopoiesis. Exp Hematol 2022; 114:33-42.e3. [PMID: 35987460 DOI: 10.1016/j.exphem.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Hematopoietic cell fate decisions such as self-renewal and differentiation are highly regulated through multiple molecular pathways. One pathway, the ubiquitin proteasome system (UPS), controls protein levels by tagging them with polyubiquitin chains and promoting their degradation through the proteasome. Ubiquitin E3 ligases serve as the substrate-recognition component of the UPS. By investigating the FBOX family of E3 ligases, we discovered that Fbxo21 was highly expressed in the hematopoietic stem and progenitor cell (HSPC) population, and exhibited low to no expression in mature myeloid populations. To determine the role of FBXO21 on HSPC maintenance, self-renewal, and differentiation, we generated shRNAs against FBXO21 and a hematopoiesis-specific Fbxo21 conditional knockout (cKO) mouse model. We found that silencing FBXO21 in HSPCs led to a loss in colony formation and an increase in cell differentiation in vitro. Additionally, stressing the HSPC populations in our Fbxo21 cKO mouse with 5-fluorouracil injections resulted in a decrease in survival, despite these populations exhibiting minimal alterations during steady-state hematopoiesis. Although FBXO21 has previously been proposed to regulate cytokine signaling via ASK and p38, our results indicate that depletion of FBXO21 led to altered ERK signaling in vitro. Together, these findings suggest ubiquitin E3 ligase FBXO21 regulates HSPCs through cytokine-mediated pathways.
Collapse
Affiliation(s)
- Karli J Wittorf
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kasidy K Weber
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samantha A Swenson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Shannon M Buckley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
91
|
Deng ZH, Zhong J, Jiang HL, Jeong HW, Chen JW, Shu YH, Tan M, Adams RH, Xie KP, Chen Q, Liu Y. Antipsychotic drugs induce vascular defects in hematopoietic organs. FASEB J 2022; 36:e22538. [PMID: 36065631 DOI: 10.1096/fj.202200862r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.
Collapse
Affiliation(s)
- Zhao-Hua Deng
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jing Zhong
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Lin Jiang
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| | - Jian-Wei Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ya-Hai Shu
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ming Tan
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| | - Ke-Ping Xie
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre
- NHC Key Laboratory of biotechnology drugs
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yang Liu
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
92
|
Moritsch S, Mödl B, Scharf I, Janker L, Zwolanek D, Timelthaler G, Casanova E, Sibilia M, Mohr T, Kenner L, Herndler-Brandstetter D, Gerner C, Müller M, Strobl B, Eferl R. Tyk2 is a tumor suppressor in colorectal cancer. Oncoimmunology 2022; 11:2127271. [PMID: 36185806 PMCID: PMC9519006 DOI: 10.1080/2162402x.2022.2127271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Janus kinase Tyk2 is implicated in cancer immune surveillance, but its role in solid tumors is not well defined. We used Tyk2 knockout mice (Tyk2Δ/Δ) and mice with conditional deletion of Tyk2 in hematopoietic (Tyk2ΔHem) or intestinal epithelial cells (Tyk2ΔIEC) to assess their cell type-specific functions in chemically induced colorectal cancer. All Tyk2-deficient mouse models showed a higher tumor burden after AOM-DSS treatment compared to their corresponding wild-type controls (Tyk2+/+ and Tyk2fl/fl), demonstrating tumor-suppressive functions of Tyk2 in immune cells and epithelial cancer cells. However, specific deletion of Tyk2 in hematopoietic cells or in intestinal epithelial cells was insufficient to accelerate tumor progression, while deletion in both compartments promoted carcinoma formation. RNA-seq and proteomics revealed that tumors of Tyk2Δ/Δ and Tyk2ΔIEC mice were immunoedited in different ways with downregulated and upregulated IFNγ signatures, respectively. Accordingly, the IFNγ-regulated immune checkpoint Ido1 was downregulated in Tyk2Δ/Δ and upregulated in Tyk2ΔIEC tumors, although both showed reduced CD8+ T cell infiltration. These data suggest that Tyk2Δ/Δ tumors are Ido1-independent and poorly immunoedited while Tyk2ΔIEC tumors require Ido1 for immune evasion. Our study shows that Tyk2 prevents Ido1 expression in CRC cells and promotes CRC immune surveillance in the tumor stroma. Both of these Tyk2-dependent mechanisms must work together to prevent CRC progression.
Collapse
Affiliation(s)
- Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Irene Scharf
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolomics Facility, University and Medical University of Vienna, Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Lukas Kenner
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolomics Facility, University and Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| |
Collapse
|
93
|
Fernandes de Oliveira Costa A, Olops Marani L, Mantello Bianco T, Queiroz Arantes A, Aparecida Lopes I, Antonio Pereira-Martins D, Carvalho Palma L, Santos Scheucher P, Lilian dos Santos Schiavinato J, Sarri Binelli L, Araújo Silva C, Kobayashi SS, Agostinho Machado-Neto J, Magalhães Rego E, Samuel Welner R, Lobo de Figueiredo-Pontes L. Altered distribution and function of NK-cell subsets lead to impaired tumor surveillance in JAK2V617F myeloproliferative neoplasms. Front Immunol 2022; 13:768592. [PMID: 36211444 PMCID: PMC9539129 DOI: 10.3389/fimmu.2022.768592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/30/2022] [Indexed: 01/15/2023] Open
Abstract
In cancer, tumor cells and their neoplastic microenvironment can sculpt the immunogenic phenotype of a developing tumor. In this context, natural killer (NK) cells are subtypes of lymphocytes of the innate immune system recognized for their potential to eliminate neoplastic cells, not only through direct cytolytic activity but also by favoring the development of an adaptive antitumor immune response. Even though the protective effect against leukemia due to NK-cell alloreactivity mediated by the absence of the KIR-ligand has already been shown, and some data on the role of NK cells in myeloproliferative neoplasms (MPN) has been explored, their mechanisms of immune escape have not been fully investigated. It is still unclear whether NK cells can affect the biology of BCR-ABL1-negative MPN and which mechanisms are involved in the control of leukemic stem cell expansion. Aiming to investigate the potential contribution of NK cells to the pathogenesis of MPN, we characterized the frequency, receptor expression, maturation profile, and function of NK cells from a conditional Jak2V617F murine transgenic model, which faithfully resembles the main clinical and laboratory characteristics of human polycythemia vera, and MPN patients. Immunophenotypic analysis was performed to characterize NK frequency, their subtypes, and receptor expression in both mutated and wild-type samples. We observed a higher frequency of total NK cells in JAK2V617F mutated MPN and a maturation arrest that resulted in low-numbered mature CD11b+ NK cells and increased immature secretory CD27+ cells in both human and murine mutated samples. In agreement, inhibitory receptors were more expressed in MPN. NK cells from Jak2V617F mice presented a lower potential for proliferation and activation than wild-type NK cells. Colonies generated by murine hematopoietic stem cells (HSC) after mutated or wild-type NK co-culture exposure demonstrated that NK cells from Jak2V617F mice were deficient in regulating differentiation and clonogenic capacity. In conclusion, our findings suggest that NK cells have an immature profile with deficient cytotoxicity that may lead to impaired tumor surveillance in MPN. These data provide a new perspective on the behavior of NK cells in the context of myeloid malignancies and can contribute to the development of new therapeutic strategies, targeting onco-inflammatory pathways that can potentially control transformed HSCs.
Collapse
Affiliation(s)
- Amanda Fernandes de Oliveira Costa
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Olops Marani
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mantello Bianco
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Queiroz Arantes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Izabela Aparecida Lopes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Antonio Pereira-Martins
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Leonardo Carvalho Palma
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscila Santos Scheucher
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Cleide Araújo Silva
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States,Division of Translational Genomics, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | - Eduardo Magalhães Rego
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil,Division of Hematology, University of São Paulo Medical School, São Paulo, Brazil
| | - Robert Samuel Welner
- Division Hematology/Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lorena Lobo de Figueiredo-Pontes
- Division of Hematology, Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil,*Correspondence: Lorena Lobo de Figueiredo-Pontes,
| |
Collapse
|
94
|
Yokomizo T, Ideue T, Morino-Koga S, Tham CY, Sato T, Takeda N, Kubota Y, Kurokawa M, Komatsu N, Ogawa M, Araki K, Osato M, Suda T. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 2022; 609:779-784. [DOI: 10.1038/s41586-022-05203-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|
95
|
Kaiser FMP, Gruenbacher S, Oyaga MR, Nio E, Jaritz M, Sun Q, van der Zwaag W, Kreidl E, Zopf LM, Dalm VASH, Pel J, Gaiser C, van der Vliet R, Wahl L, Rietman A, Hill L, Leca I, Driessen G, Laffeber C, Brooks A, Katsikis PD, Lebbink JHG, Tachibana K, van der Burg M, De Zeeuw CI, Badura A, Busslinger M. Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder. J Exp Med 2022; 219:213392. [PMID: 35947077 PMCID: PMC9372349 DOI: 10.1084/jem.20220498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Fabian M P Kaiser
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Enzo Nio
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lydia M Zopf
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Johan Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Carolin Gaiser
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | - Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - André Rietman
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Louisa Hill
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gertjan Driessen
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | | | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, Netherlands
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
96
|
TAK1 protein kinase activity is required for TLR signalling and cytokine production in myeloid cells. Biochem J 2022; 479:1891-1907. [PMID: 36062803 PMCID: PMC9555797 DOI: 10.1042/bcj20220314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
A conditional knock-in mouse was generated in which the TAK1 catalytic subunit was largely replaced by the kinase-inactive TAK1[D175A] mutant in immune cells. The activation of p38α MAP kinase, c-Jun N-terminal kinases 1 and 2 (JNK1/2) and the canonical IKK complex induced by stimulation with several TLR-activating ligands was reduced in bone marrow-derived macrophages (BMDM) from TAK1[D175A] mice. TLR signalling in TAK1[D175A] BMDM was catalysed by the residual wild-type TAK1 in these cells because it was abolished by either of two structurally unrelated TAK1 inhibitors (NG25 and 5Z-7-oxozeaenol) whose off-target effects do not overlap. The secretion of inflammatory mediators and production of the mRNAs encoding these cytokines induced by TLR ligation was greatly reduced in peritoneal neutrophils or BMDM from TAK1[D175A] mice. The Pam3CSK4- or LPS-stimulated activation of MAP kinases and the canonical IKK complex, as well as cytokine secretion, was also abolished in TAK1 knock-out human THP1 monocytes or macrophages. The results establish that TAK1 protein kinase activity is required for TLR-dependent signalling and cytokine secretion in myeloid cells from mice. We discuss possible reasons why other investigators, studying myeloid mice with a conditional knock-out of TAK1 or a different conditional kinase-inactive knock-in of TAK1, reported TAK1 to be a negative regulator of LPS-signalling and cytokine production in mouse macrophages and neutrophils.
Collapse
|
97
|
Cao Z, Zhao M, Sun H, Hu L, Chen Y, Fan Z. Roles of mitochondria in neutrophils. Front Immunol 2022; 13:934444. [PMID: 36081497 PMCID: PMC9447286 DOI: 10.3389/fimmu.2022.934444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in human blood. They are critical for fighting infections and are involved in inflammatory diseases. Mitochondria are indispensable for eukaryotic cells, as they control the biochemical processes of respiration and energy production. Mitochondria in neutrophils have been underestimated since glycolysis is a major metabolic pathway for fuel production in neutrophils. However, several studies have shown that mitochondria are greatly involved in multiple neutrophil functions as well as neutrophil-related diseases. In this review, we focus on how mitochondrial components, metabolism, and related genes regulate neutrophil functions and relevant diseases.
Collapse
Affiliation(s)
- Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| | - Meng Zhao
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States,Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology and Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States,*Correspondence: Zhichao Fan,
| |
Collapse
|
98
|
Class I PI3K regulatory subunits control differentiation of dendritic cell subsets and regulate Flt3L mediated signal transduction. Sci Rep 2022; 12:12311. [PMID: 35853935 PMCID: PMC9296662 DOI: 10.1038/s41598-022-16548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in initiating and shaping both innate and adaptive immune responses. The spatiotemporal expression of transcription factor networks and activation of specific signal transduction pathways determine the specification, distribution and differentiation of DC subsets. Even though pioneering studies have established indispensable roles for specific catalytic subunits (p110δ and p110γ) in immune cells, functions of the regulatory subunits, particularly of Class I PI3K, within the hematopoietic system remain incompletely understood. In the study presented here, we deleted the key regulatory subunits—p85α and p85β of the Class IA PI3K in hematopoietic cells and studied its impact on DC differentiation. Our studies identify that a deficiency of p85 causes increased differentiation of conventional DC (cDC) 2 and plasmacytoid DC (pDC) subsets in the spleen. On the other hand, DC numbers in the bone marrow (BM), thymus and lymph nodes were decreased in p85 mutant mice. Analysis of DC-specific progenitors and precursors indicated increased numbers in the BM and spleen of p85 deficient mice. In-vitro differentiation studies demonstrated augmented DC-differentiation capacities of p85 deficient BM cells in the presence of GM-CSF and Flt3L. BM chimera studies established that p85 deficiency affects DC development through cell intrinsic mechanisms. Molecular studies revealed increased proliferation of DCs and common DC progenitors (CDPs) in the absence of p85 and altered signal transduction pathways in p85 mutant DC subsets in response to Flt3L. In essence, data presented here, for the first time, unequivocally establish that the P85α subunit of class IA PI3Ks has an indispensable role in the development and maintenance of DCs.
Collapse
|
99
|
Epigenetic modifier SMCHD1 maintains a normal pool of long-term hematopoietic stem cells. iScience 2022; 25:104684. [PMID: 35856023 PMCID: PMC9287190 DOI: 10.1016/j.isci.2022.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females. SMCHD1 is not required to maintain steady-state hematopoiesis Smchd1-deletion leads to loss of adult hematopoietic stem cells Smchd1-deleted female mice are more severely affected than males SMCHD1 maintains cellular quiescence in female hematopoietic stem cells
Collapse
|
100
|
Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. SCIENCE ADVANCES 2022; 8:eabq0084. [PMID: 35857476 PMCID: PMC9269885 DOI: 10.1126/sciadv.abq0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs. We further show that LYN activity is controlled by the upstream kinase C-terminal Src kinase (CSK), whose activity, in turn, is controlled by the adaptor protein SPOP, which serves as molecular bridge to recruit CSK into the TLR signaling complex and to activate CSK catalytic activity. Consistently, deletion of SPOP or CSK results in increased LYN activity, LYN-directed IRF degradation, and inhibition of IRF transcriptional activity. Together, the data reveal a key regulatory mechanism for IRF family members controlling TLR biology.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vanessa Redecke
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeeba Kuriakose
- Children’s GMP, LLC., St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jill J. Bouchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian K. Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hans Häcker
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|