51
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
52
|
Ribeiro IÍDA, Almeida RDS, da Silva AMGB, Barbosa ADA, Rossi AM, Miguel FB, Rosa FP. Biological evaluation of critical bone defect regeneration using hydroxyapatite/ alginate composite granules. Acta Cir Bras 2024; 39:e392824. [PMID: 39046039 PMCID: PMC11262755 DOI: 10.1590/acb392824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE to evaluate biocompatibility and osteogenic potential of hydroxyapatite/alginate composite after its implantation on rat calvarian critical bone defect. METHODS thirty adults male Wistar rats were randomly distributed into two groups: GHA - critical bone defect filled with hydroxyapatite/alginate composite granules (HA/Alg) and CG - critical bone defect without biomaterial; evaluated at biological points of 15, 45 and 120 days. RESULTS the histomorphometrically analyses for GHA showed osteoid matrix deposition (OM) among the granules and towards the center of the defect in centripetal direction throughout the study, with evident new bone formation at 120 days, resulting in filling 4/5 of the initial bone defect. For CG, this finding was restricted to the edges of the bone margins and formation of connective tissue on the residual area was found in all biological points. Inflammatory response on GHA was chronic granulomatous type, discrete and regressive for all biological points. Throughout the study, the CG presented mononuclear inflammatory infiltrate diffuse and regressive. Histomorphometry analyses showed that OM percentage was evident for GHA group when compared to CG group in all analyzed periods (p > 0.05). CONCLUSIONS the biomaterial evaluated at this study showed to be biocompatible, bioactive, osteoconductive and biodegradable synchronously with bone formation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Malta Rossi
- Centro Brasileiro de Pesquisas Físicas – Departamento de Física Aplicada – Rio de Janeiro (RJ), Brazil
| | - Fúlvio Borges Miguel
- Universidade Federal da Bahia – Instituto de Ciências da Saúde – Salvador (BA), Brazil
| | - Fabiana Paim Rosa
- Universidade Federal da Bahia – Instituto de Ciências da Saúde – Salvador (BA), Brazil
| |
Collapse
|
53
|
Stewart CL, Hook AL, Zelzer M, Marlow M, Piccinini AM. Cellular and microenvironmental cues that promote macrophage fusion and foreign body response. Front Immunol 2024; 15:1411872. [PMID: 39034997 PMCID: PMC11257916 DOI: 10.3389/fimmu.2024.1411872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports. Here, we identified molecular and cellular factors involved in driving FBGC formation in vitro. Macrophages demonstrated distinct fusion competencies dependent on monocyte differentiation. The transition from a proinflammatory to a reparative microenvironment, characterised by specific cytokine and growth factor programmes, accompanied FBGC formation. Toll-like receptor signalling licensed the formation of FBGCs containing more than 10 nuclei but was not essential for cell-cell fusion to occur. Moreover, the fibroblast-macrophage crosstalk influenced FBGC development, with the fibroblast secretome inducing macrophages to secrete more PDGF, which enhanced large FBGC formation. These findings advance our understanding as to how a specific and timely combination of cellular and microenvironmental factors is required for an effective FBR, with monocyte differentiation and fibroblasts being key players.
Collapse
Affiliation(s)
- Chloe L Stewart
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
54
|
Chen X, Yan D, Deng H, Yang H, Peng S, Zhang W, Cai S, Zhang Q, Ren H, Yan Y. CuSO 4/H 2O 2induced polydopamine/polysulfobetaine methacrylate co-deposition on poly(amino acid) membranes for improved anti-protein adsorption and antibacterial activity. Biomed Mater 2024; 19:055008. [PMID: 38917812 DOI: 10.1088/1748-605x/ad5ba6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Stopping postoperative soft tissue adhesions is one of the most challenging clinical problems that needs to be addressed urgently to avoid secondary injury and pain to patients. Currently, membrane materials with anti-protein adsorption and antibacterial activity are recognized as an effective and promising anti-adhesion barrier to prevent postoperative adhesion and the recurrent adhesion after adhesiolysis. Herein, poly(amino acid) (PAA), which is structurally similar to collagen, is selected as the membrane base material to successfully synthesize PAA-5 membranes with excellent mechanical and degradation properties by in-situ melt polymerization and hot-melt film-forming technology. Subsequently, the co-deposition of polydopamine/polysulfobetaine methacrylate (PDA/PSBMA) coatings induced by CuSO4/H2O2on PAA-5 membranes results in the formation of PDC-5S and PDC-10S, which exhibit excellent hemocompatibility, protein antifouling properties, and cytocompatibility. Additionally, PDC-5S and PDC-10S demonstrated significant antibacterial activity againstEscherichia coliandStaphylococcus aureus, with an inhibition rate of more than 90%. As a result, this study sheds light on newly discovered PAA membranes with anti-protein adsorption and antibacterial activity can sever as one of the promising candidates for the prevention of postoperative peritoneum adhesions.
Collapse
Affiliation(s)
- Xiaolu Chen
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Dawei Yan
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hao Deng
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hulin Yang
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Suping Peng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Wei Zhang
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Shijie Cai
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
55
|
Zhou X, Wang Y, Ji J, Zhang P. Materials Strategies to Overcome the Foreign Body Response. Adv Healthc Mater 2024; 13:e2304478. [PMID: 38666550 DOI: 10.1002/adhm.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| |
Collapse
|
56
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
57
|
Xiao L, Liu H, Huang H, Wu S, Xue L, Geng Z, Cai L, Yan F. 3D nanofiber scaffolds from 2D electrospun membranes boost cell penetration and positive host response for regenerative medicine. J Nanobiotechnology 2024; 22:322. [PMID: 38849858 PMCID: PMC11162076 DOI: 10.1186/s12951-024-02578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 μm). It was found that scaffolds with a mesh size of 500 μm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.
Collapse
Affiliation(s)
- Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shujuan Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
58
|
Nepon H, Allgayer R, Julien C, Petrecca S, Kalashnikov N, Safran T, Murphy A, Dionisopolous T, Davison P, Cerruti M, Vorstenbosch J. Altered Foreign Body Response at the Posterior Surface Compared to the Anterior Surface of Human Silicone Breast Implants. ACS Biomater Sci Eng 2024; 10:3006-3016. [PMID: 38640484 DOI: 10.1021/acsbiomaterials.3c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Soft implantable devices are crucial to optimizing form and function for many patients. However, periprosthetic capsule fibrosis is one of the major challenges limiting the use of implants. Currently, little is understood about how spatial and temporal factors influence capsule physiology and how the local capsule environment affects the implant structure. In this work, we analyzed breast implant capsule specimens with staining, immunohistochemistry, and real-time polymerase chain reaction to investigate spatiotemporal differences in inflammation and fibrosis. We demonstrated that in comparison to the anterior capsule against the convex surface of breast implants, the posterior capsule against the flat surface of the breast implant displays several features of a dysregulated foreign body reaction including increased capsule thickness, abnormal extracellular remodeling, and infiltration of macrophages. Furthermore, the expression of pro-inflammatory cytokines increased in the posterior capsule across the lifespan of the device, but not in the anterior capsule. We also analyzed the surface oxidation of breast explant samples with XPS analysis. No significant differences in surface oxidation were identified either spatially or temporally. Collectively, our results support spatiotemporal heterogeneity in inflammation and fibrosis within the breast implant capsule. These findings presented here provide a more detailed picture of the complexity of the foreign body reaction surrounding implants destined for human use and could lead to key research avenues and clinical applications to treat periprosthetic fibrosis and improve device longevity.
Collapse
Affiliation(s)
- Hillary Nepon
- Division of Surgical and Interventional Sciences, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Raphaela Allgayer
- Department of Materials Engineering, McGill University, Wong Building, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Cedric Julien
- Research Institute of the McGill University Health Centre, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Sarah Petrecca
- Faculty of Medicine and Health Sciences, McGill University, 3605 de la Montagne, Montreal, Quebec H3G 1M1, Canada
| | - Nikita Kalashnikov
- Division of Surgical and Interventional Sciences, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
- Faculty of Medicine and Health Sciences, McGill University, 3605 de la Montagne, Montreal, Quebec H3G 1M1, Canada
| | - Tyler Safran
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Amanda Murphy
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Tassos Dionisopolous
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Peter Davison
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| | - Marta Cerruti
- Department of Materials Engineering, McGill University, Wong Building, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Joshua Vorstenbosch
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room T5-204, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
59
|
Sündermann J, Bitsch A, Kellner R, Doll T. Is read-across for chemicals comparable to medical device equivalence and where to use it for conformity assessment? Regul Toxicol Pharmacol 2024; 149:105622. [PMID: 38588771 DOI: 10.1016/j.yrtph.2024.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Novel medical devices must conform to medical device regulation (MDR) for European market entry. Likewise, chemicals must comply with the Registration, Evaluation, Authorization and Restriction of Chemicals (REACh) regulation. Both pose regulatory challenges for manufacturers, but concordantly provide an approach for transferring data from an already registered device or compound to the one undergoing accreditation. This is called equivalence for medical devices and read-across for chemicals. Although read-across is not explicitly prohibited in the process of medical device accreditation, it is usually not performed due to a lack of guidance and acceptance criteria from the authorities. Nonetheless, a scientifically justified read-across of material-based endpoints, as well as toxicological assessment of chemical aspects, such as extractables and leachables, can prevent failure of MDR device equivalence if data is lacking. Further, read-across, if applied correctly can facilitate the standard MDR conformity assessment. The need for read-across within medical device registration should let authorities to reconsider device accreditation and the formulation of respective guidance documents. Acceptance criteria like in the European Chemicals Agency (ECHA) read-across assessment framework (RAAF) are needed. This can reduce the impact of the MDR and help with keeping high European innovation device rate, beneficial for medical device patients.
Collapse
Affiliation(s)
- Jan Sündermann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Theodor Doll
- Department of Otolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
60
|
Karimizade A, Hasanzadeh E, Abasi M, Enderami SE, Mirzaei E, Annabi N, Mellati A. Collagen short nanofiber-embedded chondroitin sulfate-hyaluronic acid nanocomposite: A cartilage-mimicking in situ-forming hydrogel with fine-tuned properties. Int J Biol Macromol 2024; 266:131051. [PMID: 38556223 DOI: 10.1016/j.ijbiomac.2024.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
In situ-forming hydrogels that possess the ability to be injected in a less invasive manner and mimic the biochemical composition and microarchitecture of the native cartilage extracellular matrix are desired for cartilage tissue engineering. Besides, gelation time and stiffness of the hydrogel are two interdependent factors that affect cells' distribution and fate and hence need to be optimized. This study presented a bioinspired in situ-forming hydrogel composite of hyaluronic acid (HA), chondroitin sulfate (CS), and collagen short nanofiber (CSNF). HA and CS were functionalized with aldehyde and amine groups to form a gel through a Schiff-base reaction. CSNF was fabricated via electrospinning, followed by fragmentation by ultrasonics. Gelation time (11-360 s) and compressive modulus (1.4-16.2 kPa) were obtained by varying the concentrations of CS, HA, CSNFs, and CSNFs length. The biodegradability and biocompatibility of the hydrogels with varying gelation and stiffness were also assessed in vitro and in vivo. At three weeks, the assessment of hydrogels' chondrogenic differentiation also yields varying levels of chondrogenic differentiation. The subcutaneous implantation of the hydrogels in a mouse model indicated no severe inflammation. Results demonstrated that the injectable CS/HA@CSNF hydrogel was a promising hydrogel for tissue engineering and cartilage regeneration.
Collapse
Affiliation(s)
- Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), CA 90095, USA
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
61
|
Liu C, Ma N, Sun C, Shen X, Li J, Wang C. The effect of magnesium ions synergistic with mineralized collagen on osteogenesis/angiogenesis properties by modulating macrophage polarization in vitroand in vivo. Biomed Mater 2024; 19:035028. [PMID: 38518370 DOI: 10.1088/1748-605x/ad3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
In bone tissue engineering, the bone immunomodulatory properties of biomaterials are critical for bone regeneration, which is a synergistic process involving physiological activities like immune response, osteogenesis, and angiogenesis. The effect of the macrophage immune microenvironment on the osteogenesis and angiogenesis of various material extracts was examined in this experiment using Mg2+and Nano-hydroxyapatite/collagen (nHAC) in both a single application and a combined form. This studyin vitrorevealed that the two compounds combined significantly inhibited the NF-κB signaling pathway and reduced the release of inflammatory factors from macrophages when compared with the extraction phase alone. Additionally, by contributing to the polarization of macrophages towards the M2 type, the combined effects of the two materials can significantly improve osteogenesis/angiogenesis. The results ofin vivoexperiments confirmed that Mg2+/nHAC significantly promoted bone regeneration and angiogenesis. This study offers a promising method for enhancing bone graft material osseointegration.
Collapse
Affiliation(s)
- Chang Liu
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Nan Ma
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Changan Sun
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Xuecheng Shen
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Jinwei Li
- School of Basic Medicine, Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Chengyue Wang
- Department of Prosthodontics, Second Affiliated Hospital (Stomatological Hospital Affiliated) of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| |
Collapse
|
62
|
Cho RJ, Kadowaki K, Seelig D, Glumac DE, Kent LA, Hunter RC, MacIver RH, Peterson GK, Pandey V, Tanahashi K. To Compare the Effects of a Standard Versus Hydrophilic Polymer Coated Airway Stent in a Porcine Model: A Randomized, Single-Blinded Study. J Bronchology Interv Pulmonol 2024; 31:132-138. [PMID: 37332107 DOI: 10.1097/lbr.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Stent encrustation with debris and mucostasis is a significant cause of airway injury and comorbidity, leading to ~25% of stent exchanges (1-3). Previous work from our group has shown that the experimental coating can reduce mucous adhesion in bench testing and demonstrated a signal for reducing airway injury and mucostasis in a feasibility study. OBJECTIVES The aim of this study is to continue our inquiry in a randomized, single-blinded multi-animal trial to investigate the degree of airway injury and mucostasis using silicone stents with and without this specialized coating. METHODS We modified commercially available silicone stents with a hydrophilic polymer from Toray Industries. We conducted an in vivo survival study in 6 mainstem airways (3 coated and 3 uncoated) of 3 pigs to compare the degree of airway injury and mucostasis between coated versus noncoated stented airways. Both stents were randomized to either left or right mainstem bronchus. The pathologist was blinded to the stent type. RESULTS We implanted a total of six 14×15 mm silicone stents (1 per mainstem bronchi) into 3 pigs. All animals survived to termination at 4 weeks. All stents were intact; however, 1 uncoated stent migrated out. On average, all the coated stents demonstrated reduced pathology and tissue injury scores (75 vs. 68.3, respectively). The average total dried mucous weight was slightly higher in the coated stents (0.07 g vs. 0.05 g; respectively). CONCLUSION Coated stents had lower airway injury compared with uncoated stents in this study. Of all the stents, 1 uncoated stent migrated out and was not included in the dried mucous weight totals. This could explain the slightly higher mucous weight in the coated stents. Nevertheless, this current study demonstrates promising results in lowering airway injury in stents incorporated with the hydrophilic coating, and future studies, including a larger number of subjects, would be needed to corroborate our findings.
Collapse
Affiliation(s)
- Roy Joseph Cho
- Interventional Pulmonary, Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis MN
| | - Koji Kadowaki
- Advanced Materials Research Laboratories, Toray Industries, Inc, Tokyo, Japan
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, MN
| | | | - Leslie A Kent
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis MN
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis MN
| | - Robroy H MacIver
- Children's Heart Clinic, Children's Hospitals and Clinics of Minnesota
| | | | - Vidhu Pandey
- Department of Internal Medicine and Pediatrics, University of Minnesota, Minneapolis MN
| | - Kazuhiro Tanahashi
- Advanced Materials Research Laboratories, Toray Industries, Inc., Tokyo, Japan
| |
Collapse
|
63
|
Turner SM, Kukk K, Sidor IF, Mason MD, Bouchard DA. Biocompatibility of intraperitoneally implanted TEMPO-oxidized cellulose nanofiber hydrogels for antigen delivery in Atlantic salmon (Salmo salar L.) vaccines. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109464. [PMID: 38412902 DOI: 10.1016/j.fsi.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Disease outbreaks are a major impediment to aquaculture production, and vaccines are integral for disease management. Vaccines can be expensive, vary in effectiveness, and come with adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. Three-dimensional biopolymer hydrogels are an appealing new technology for vaccine delivery in aquaculture, with the potential for controlled release of multiple immunomodulators and antigens simultaneously, action as local depots, and tunable surface properties. This research examined the intraperitoneal implantation of a cross-linked TEMPO cellulose nanofiber (TOCNF) hydrogel formulated with a Vibrio anguillarum bacterin in Atlantic salmon with macroscopic and microscopic monitoring to 600-degree days post-implantation. Results demonstrated a modified passive integrated transponder tagging (PITT) device allowed for implantation of the hydrogel. However, the Atlantic salmon implanted with TOCNF hydrogels exhibited a significant foreign body response (FBR) compared to sham-injected negative controls. The FBR was characterized by gross and microscopic external and visceral proliferative lesions, granulomas, adhesions, and fibrosis surrounding the hydrogel using Speilberg scoring of the peritoneum and histopathology of the body wall and coelom. Acutely, gross monitoring displayed rapid coagulation of blood in response to the implantation wound with development of fibrinous adhesions surrounding the hydrogel by 72 h post-implantation consistent with early stage FBR. While these results were undesirable for aquaculture vaccines, this work informs on the innate immune response to an implanted biopolymer hydrogel in Atlantic salmon and directs future research using cellulose nanomaterial formulations in Atlantic salmon for a new generation of aquaculture vaccine technology.
Collapse
Affiliation(s)
- Sarah M Turner
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA.
| | - Kora Kukk
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Inga F Sidor
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael D Mason
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Deborah A Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
64
|
Mao Y, Wang Q, Zhang H, Li Y, Wang L. Zwitterion mediated anti-protein adsorption on polypropylene mesh to reduce inflammation for efficient hernia repair. BIOMATERIALS ADVANCES 2024; 158:213769. [PMID: 38266333 DOI: 10.1016/j.bioadv.2024.213769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
The effectiveness of polypropylene (PP) mesh is often compromised by severe inflammation. Engineering anti-inflammatory coatings has significant implications for PP mesh to repair unwanted hernias. Here, we presented a facile strategy to develop an anti-fouling coating consisting of zwitterionic poly(carboxybetaine methacrylate) (PCBMA), which could prohibit protein adsorption to endow PP mesh with anti-inflammatory efficacy. The incorporation of PCBMA coating had little impact on the raw features of PP mesh. While the modified mesh PCBMA-PP possessed noticeable hydrophilicity increase and surface charge reduction. The excellent lubricity and surface stability enabled PCBMA-PP to exhibit superior anti-fouling capacity, thus efficiently inhibiting the adsorption of proteins. In vivo experiments showed that incorporating the PCBMA layer could provide PP meshes with outstanding anti-inflammatory effects and tissue compatibility for repairing hernias.
Collapse
Affiliation(s)
- Ying Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China; National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Huiru Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| |
Collapse
|
65
|
Skedros AJ, Skedros JG, Richards BW, Cronin JT. Sea Urchin Spine Embedded in the Sole of the Foot: Eight-Year Radiographic Follow-Up Without Removal. Cureus 2024; 16:e56261. [PMID: 38623121 PMCID: PMC11017367 DOI: 10.7759/cureus.56261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
When sea urchin puncture injuries occur during coastal recreation or work activities, they often affect extremities, such as hands and feet. There is a plethora of information on treatments for these puncture injuries, with the most common among medical professionals being the removal of all partially embedded spines and the removal of as many fully embedded spines as possible. When the spines are deeply embedded and/or fragmented, they might not be removed, especially when they are not located in critical areas such as tendons or joints. This reflects the generally held notion that smaller spines and spine fragments will eventually dissolve or be absorbed. Here we report an unusual case where the tip of a sea urchin spine became embedded in the soft tissue of the sole of the foot of a 21-year-old male after he stepped on one after falling off a kayak off the coast of Oahu, Hawai'i. The deeply embedded spine was not removed. By three weeks after the injury, the patient did not have any symptoms, and eight years later, he was still symptom-free. Radiographs taken one year after the injury showed that the spine had fragmented into two pieces. The smaller piece was about 15% of the size of the original embedded spine, and it had apparently been absorbed (it was not seen on final radiographs eight years later). Analysis of radiographs eight years after the injury showed that the main or large spine fragment was still distinctly detectable in the soft tissue; there was no visible evidence that it had undergone significant absorption or migrated from the original location. The absence of any obvious radiographic rarefaction over eight years is contrary to the lore that sea urchin spines that remain in human soft tissue will exhibit significant, or complete, absorption or dissolution over months to a few years.
Collapse
Affiliation(s)
| | - John G Skedros
- Orthopaedic Surgery, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - Brett W Richards
- Orthopaedic Surgery, Utah Orthopaedic Specialists, Salt Lake City, USA
| | - John T Cronin
- Orthopaedic Surgery, Utah Orthopaedic Specialists, Salt Lake City, USA
| |
Collapse
|
66
|
Bahrampour S, Bordbar-Khiabani A, Hossein Siadati M, Gasik M, Mozafari M. Improving the inflammatory-associated corrosion behavior of magnesium alloys by Mn3O4 incorporated plasma electrolytic oxidation coatings. CHEMICAL ENGINEERING JOURNAL 2024; 483:149016. [DOI: 10.1016/j.cej.2024.149016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
67
|
Jarquín-Yáñez K, Herrera-Enríquez MÁ, Benítez-Barrera DI, Sánchez-Arévalo FM, Benítez-Martínez JA, Piñón-Zárate G, Hernández-Téllez B, Sandoval DMA, Castell-Rodríguez AE. Subcutaneous Application of a Gelatin/Hyaluronic Acid Hydrogel Induces the Production of Skin Extracellular Matrix. Polymers (Basel) 2024; 16:573. [PMID: 38475257 DOI: 10.3390/polym16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
The development of injectable hydrogels with natural biopolymers such as gelatin (Ge) and hyaluronic acid (Ha) is widely performed due to their biocompatibility and biodegradability. The combination of both polymers crosslinked with N-Ethyl-N'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) can be used as an innovative dermal filler that stimulates fibroblast activity and increases skin elasticity and tightness. Thus, crosslinked Ge/Ha hydrogels with different concentrations of EDC were administered subcutaneously to test their efficacy in young and old rats. At higher EDC concentrations, the viscosity decreases while the particle size of the hydrogels increases. At all concentrations of EDC, amino and carboxyl groups are present. The histological analysis shows an acute inflammatory response, which disappears seven days after application. At one and three months post-treatment, no remains of the hydrogels are found, and the number of fibroblasts increases in all groups in comparison with the control. In addition, the elastic modulus of the skin increases after three months of treatment. Because EDC-crosslinked Ge/Ha hydrogels are biocompatible and induce increased skin tension, fibroblast proliferation, and de novo extracellular matrix production, we propose their use as a treatment to attenuate wrinkles and expression lines.
Collapse
Affiliation(s)
- Katia Jarquín-Yáñez
- Facultad de Medicina, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | | | | - Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
68
|
Choukroun E, Parnot M, Surmenian J, Gruber R, Cohen N, Davido N, Simonpieri A, Savoldelli C, Afota F, El Mjabber H, Choukroun J. Bone Formation and Maintenance in Oral Surgery: The Decisive Role of the Immune System-A Narrative Review of Mechanisms and Solutions. Bioengineering (Basel) 2024; 11:191. [PMID: 38391677 PMCID: PMC10886049 DOI: 10.3390/bioengineering11020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Based on the evidence of a significant communication and connection pathway between the bone and immune systems, a new science has emerged: osteoimmunology. Indeed, the immune system has a considerable impact on bone health and diseases, as well as on bone formation during grafts and its stability over time. Chronic inflammation induces the excessive production of oxidants. An imbalance between the levels of oxidants and antioxidants is called oxidative stress. This physio-pathological state causes both molecular and cellular damage, which leads to DNA alterations, genetic mutations and cell apoptosis, and thus, impaired immunity followed by delayed or compromised wound healing. Oxidative stress levels experienced by the body affect bone regeneration and maintenance around teeth and dental implants. As the immune system and bone remodeling are interconnected, bone loss is a consequence of immune dysregulation. Therefore, oral tissue deficiencies such as periodontitis and peri-implantitis should be regarded as immune diseases. Bone management strategies should include both biological and surgical solutions. These protocols tend to improve immunity through antioxidant production to enhance bone formation and prevent bone loss. This narrative review aims to highlight the relationship between inflammation, oxidation, immunity and bone health in the oral cavity. It intends to help clinicians to detect high-risk situations in oral surgery and to propose biological and clinical solutions that will enhance patients' immune responses and surgical treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Franck Afota
- Private Practice, 06000 Nice, France
- Head and Neck Institute, CHU, 06000 Nice, France
| | | | | |
Collapse
|
69
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
70
|
Guan H, Lu X, Zhang D, Tang J, Dong J, Zhang G, Lian J, Lu S. Omental coating attenuates implant-induced foreign body reaction in rats. J Biomater Appl 2024; 38:858-865. [PMID: 38165217 DOI: 10.1177/08853282231226040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The objective of this study is to clarify whether the omental coating can effectively attenuate foreign body reaction (FBR) induced by implanted materials. Male Sprague-Dawley rats were injected with polydextran particle slurry intraperitoneally to activate the omentum. 7 days later, polyether polyurethane sponge discs were implanted subcutaneously on each side of the rat's back as the foreign implants to induce FBR. The next day, omental transposition were performed. The disc on the left side of each rat's back was wrapped with omental flap (omental group); the disc on the right side was untreated (control group). All discs were removed 21 days after implantation and assessed by determining the components of the fibrovascular tissue (angiogenesis, inflammation, foreign body giant cells (FBGCs) aggregation and fibrogenesis). In implants in omental group, micro vessel density (MVD), Hemoglobin (Hb) content and VEGF levels (pro-angiogenic cytokine) were increased when compared with implants from control group. Inflammatory parameters (IL-1β; macrophage accumulation-NAG activity; neutrophil accumulation- MPO levels) were decreased in implants after omental coating. Also, collagen deposition, fibrous capsule thickness, and FBGCs decreased in implants from omental group. However, intra-implant levels of TNF-α and TGF-β1 were not different after omental coating. Our findings showed for the first time that the omental coating around the implants attenuate the adverse FBR, it may be critical in developing new strategies to control FBR and improve the function and performance of the implanted materials.
Collapse
Affiliation(s)
- Haonan Guan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyi Lu
- Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuliang Lu
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
71
|
De Castilho T, Rosa GDS, Stievani FC, Apolônio EVP, Pfeifer JPH, Altheman VG, Palialogo V, Santos NJ, Fonseca-Alves CE, Alves ALG. Biocompatibility of hydrogel derived from equine tendon extracellular matrix in horses subcutaneous tissue. Front Bioeng Biotechnol 2024; 11:1296743. [PMID: 38260745 PMCID: PMC10801062 DOI: 10.3389/fbioe.2023.1296743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Tendinopathies account for a substantial proportion of musculoskeletal injuries. To improve treatment outcomes for partial and total tendon ruptures, new therapies are under investigation. These include the application of mesenchymal stem cells (MSCs) and biocompatible scaffolds derived from the Extracellular Matrix (ECM). Synthetic polymer hydrogels have not demonstrated results as promising as those achieved with ECM hydrogels sourced from the original tissue. This study aimed to evaluate the biocompatibility of a hydrogel formulated from equine tendon ECM. Six horses were administered three subcutaneous doses of the hydrogel, with a saline solution serving as a control. Biopsies were conducted on days 7, 14, and 56 post-application to gauge the hydrogel's impact. Throughout the experiment, the horse's physical condition remained stable. Thermographic analyses revealed a temperature increase in the treated groups compared to the control group within the initial 12 h. The von Frey test, used to measure the mechanical nociceptive threshold, also showed significant differences between the treated group and the control group at 6 h, 21 days, and 28 days. Histopathological analyses identified an inflammatory response on day 7, which was absent on days 14 and 56. Transmission electron microscopy indicated a decrease in inflammatory cellularity, while immunohistochemistry staining suggested an increased presence of inflammatory factors on day 14. In summary, the hydrogel is easily injectable, triggers a temporary local inflammatory response, and integrates into the adjacent tissue from day 14 onwards.
Collapse
Affiliation(s)
- Thiago De Castilho
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo dos Santos Rosa
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Fernanda de Castro Stievani
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Emanuel Vítor Pereira Apolônio
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - João Pedro Hübbe Pfeifer
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vittoria Guerra Altheman
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Valéria Palialogo
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Nilton José Dos Santos
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
72
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Insuasty D, Rodríguez Macias JD, Ordoñez A, Valencia Zapata ME, Mina Hernández JH, Grande-Tovar CD. Evaluation of the Antibacterial, Anti-Cervical Cancer Capacity, and Biocompatibility of Different Graphene Oxides. Molecules 2024; 29:281. [PMID: 38257194 PMCID: PMC10821421 DOI: 10.3390/molecules29020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.
Collapse
Affiliation(s)
- Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Juan David Rodríguez Macias
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Alejandra Ordoñez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
73
|
Bakhrushina EO, Mikhel IB, Buraya LM, Moiseev ED, Zubareva IM, Belyatskaya AV, Evzikov GY, Bondarenko AP, Krasnyuk II, Krasnyuk II. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024; 10:44. [PMID: 38247767 PMCID: PMC10815592 DOI: 10.3390/gels10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants-systems formed in the tumor due to a phase transition (sol-gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents.
Collapse
Affiliation(s)
- Elena O. Bakhrushina
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Iosif B. Mikhel
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Liliya M. Buraya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Egor D. Moiseev
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Irina M. Zubareva
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Anastasia V. Belyatskaya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Grigory Y. Evzikov
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | | | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Ivan I. Krasnyuk
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| |
Collapse
|
74
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
75
|
Thakur A, Sharma A. Chronic Nonhealing Wound Due To Iatrogenic Foreign Body- A Case Report. J Indian Assoc Pediatr Surg 2024; 29:78-80. [PMID: 38405253 PMCID: PMC10883178 DOI: 10.4103/jiaps.jiaps_89_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 02/27/2024] Open
Abstract
A 5-year-old male child presented with nonhealing wound on the left scapular region. He had a history of multiple abscesses 8 months back. Incision and drainage were done for all abscesses in the same sitting at another hospital. All wounds healed except one of the scapular regions. The wound was explored and there was large cotton gauze inside the wound. The common causes of nonhealing of wound are tuberculosis, malignancy, and immunodeficiency. However, iatrogenic foreign body is also an important cause and should be considered in differential diagnosis. Careful history, wound examination, and radiological investigations are an important tool for diagnosis of retained foreign bodies. The scientific term for the retained foreign body is gossypiboma or textiloma.
Collapse
Affiliation(s)
- Ashokanand Thakur
- Department of Pediatric Surgery, Patna Medical College and Hospital, Patna, Bihar, India
| | - Ankita Sharma
- Department of Pediatric Surgery, Patna Medical College and Hospital, Patna, Bihar, India
| |
Collapse
|
76
|
Hinestrosa CA, Fuchs J, Denecke T, Storch C, Dreyer A, Kuthning A, Reinhardt M, Rio Bartulos C, Wiggermann P, Busse H, Moche M. In vivo revascularization and tissue effects of uterine artery embolization with starch microspheres in sheep. Clin Hemorheol Microcirc 2024; 88:S69-S84. [PMID: 39331098 PMCID: PMC11612943 DOI: 10.3233/ch-248106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
OBJECTIVE In uterine artery embolization (UAE) for the treatment of fibroids, nondegradable particles permanently occlude the uterine artery (UA). These particles remain in the vessels and can cause secondary undesirable effects, such as severe pain after embolization and fertility issues. In this prospective experimental study, we aimed to evaluate the angiographic recanalization, local and systemic reactions, and uterine damage occurring after performing UAE with newly developed degradable starch microspheres (DSMs) in sheep. MATERIALS AND METHODS Under general anesthesia, eight nonpregnant sheep underwent bilateral UAE using DSMs to achieve stasis. Angiographic evaluation was performed on days 1, 3 and 7 after embolization to assess in vivo recanalization. In addition, the angiographic series were scored via a modified embolization score. A postmortem tissue examination was performed to determine whether DSMs and foreign body inflammatory reactions were present and to assess uterine necrosis. RESULTS Complete bilateral embolization of the UA and cervicovaginal branches was achieved in all treated animals. Recanalization of the occluded arteries was evident in 25 of 27 arteries during the angiographic evaluation. In all sheep, there were multifocal areas of uterine necrosis, and some uterine vessels contained intraluminal material consistent with DSMs. The average weight of both uterine horns was significantly correlated with both the number of microspheres needed for complete embolization (r = 0.69, ρ<0.01) and the average percentage of necrosis in both uterine horns (r = 0.64, ρ<0.05). CONCLUSIONS Our findings demonstrated the efficacy of vascular embolization with DSM by inducing ischemic changes in the uterus and subsequent recanalization of previously occluded arteries.
Collapse
Affiliation(s)
- Camila A. Hinestrosa
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | | | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Christiane Storch
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Antje Dreyer
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Martin Reinhardt
- Zentrum für Radiologie und Nuklearmedizin am Johannisplatz, Leipzig, Germany
| | - Carolina Rio Bartulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Harald Busse
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
77
|
Tessmann V, Klepetko J, Brochhausen C, Gleißner S, Prantl L, Kempa S. Biocompatibility of polyurethane-coated breast implants: A histological comparison of implant capsules. Clin Hemorheol Microcirc 2024; 86:195-203. [PMID: 37718793 DOI: 10.3233/ch-238113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Biocompatibility describes the influence of materials on their biological environment. Implant material in the human body can cause a foreign body reaction and the formation of a capsule around the foreign material. Since capsular formation is the most frequent issue after breast-implant insertion, knowledge and awareness of biocompatibility is crucial, especially since worldwide, breast augmentation continues to be the most popular plastic surgery, with over 1.6 million procedures performed in 2020, according to surveys by the International Society of Aesthetic Plastic Surgery (ISAPS). MATERIAL AND METHODS This study includes 80 capsular samples of female patients who underwent revision surgery after breast-implant insertion at the University Hospital Regensburg. Capsules of breast implants with different surface structures (smooth, textured and polyurethane-coated) and shapes (round-shaped, anatomically-shaped) were analyzed histologically after hematoxylin-eosin-staining in respect to capsular thickness and layer formation. RESULTS Capsular thickness and layering showed a statistically significant difference between polyurethane-coated and smooth as well as polyurethane-coated and textured implants. Capsules around polyurethane-coated implants presented greater thickness. However, the difference between smooth and textured implants was not statistically significant. Furthermore, the shape of the implants also indicated a statistically significant difference in capsular thickness. Implants of anatomical shape resulted in a thinner capsule than round-shaped breast-implants. CONCLUSION In conclusion, this study demonstrated a thicker capsule around polyurethane-coated breast implants and no difference in capsular thickness between smooth and textured breast implants. Anatomically shaped breast-implants presented a thinner capsule than round shaped breast-implants.
Collapse
Affiliation(s)
- V Tessmann
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - J Klepetko
- Faculty of Medicine, Medical University of Vienna, Vienna, Austria
| | - C Brochhausen
- Institute for Pathology, University Hospital Regensburg, Regensburg, Germany
| | - S Gleißner
- Faculty of Medicine, University of Regensburg, Regensburg, Germany
| | - L Prantl
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - S Kempa
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
78
|
Kokkinidou D, Kaliviotis E, Shammas C, Anayiotos A, Kapnisis K. An in vivo investigation on the effects of stent implantation on hematological and hemorheological parameters. Clin Hemorheol Microcirc 2024; 87:39-53. [PMID: 38143339 DOI: 10.3233/ch-231921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Even though cardiovascular stenting is widely used for the treatment of coronary artery disease, information on how it can affect the hematological and hemorheological profile is scarce in the literature. Most of the work on this issue is based on theoretical or computational fluid dynamics models, lacking in-depth in vitro and in vivo experimental verification. OBJECTIVE This work investigates, in an in vivo setting, the effects of stenting and the implantation time-course on hematological and hemorheological parameters that could potentially compromise the device's functionality and longevity. METHODS Custom-made self-expanding nitinol stents were implanted in the common carotid artery of male CD1 mice. Whole blood samples were collected from control (non-stented) and stented animals at 5 and 10 weeks post-implantation. Hematological measurements and blood viscosity, red blood cell aggregation, and deformability were performed using standard techniques. RESULTS Implant-induced changes were observed in some of the hematological and hemorheological indices. Blood viscosity seems to have been negatively affected by an increased hematocrit and reduced RBC deformability, at 10 weeks post-implantation, despite a slight decrease in RBC aggregation. CONCLUSIONS Although the alterations observed may be the result of the peri-implant inflammatory response, the physiological consequences due to hemorheological changes need to be further investigated.
Collapse
Affiliation(s)
- D Kokkinidou
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - C Shammas
- BIOANALYSIS Clinical Laboratory, Limassol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
79
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
80
|
Silva CF, Felzemburgh VA, Vasconcelos LQ, Nunes VLC, Barbosa Júnior AA, Giglioti AF, Araújo RPC, Miguel FB, Meneses JVL, Rosa FP. Histomorphological evaluation of acellularized bovine pericardium in breast implant coverage. BRAZ J BIOL 2023; 83:e276220. [PMID: 38126640 DOI: 10.1590/1519-6984.276220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine pericardium (BP) has been used as a biomaterial for several decades in many medical applications particularly due to its mechanical properties and the high collagen content. In the acellular form it favors faster tissue repair, providing a three-dimensional support for cellular and vascular events observed during tissue repair and due, to a low elastin content, may favor its use as a breast implant cover, resulting in a low possibility of contracture of the biomaterial, preventing the appearance of irregularities during the reconstruction process. Thus, the aim of this study was to evaluate, histomorphologically, the behavior of acellularized bovine pericardium (ABP) as a mammary implant cover in rats. For this purpose, 16 animals were divided into two groups, with eight animals at each biological point: 7 and 15 days after surgery. Of the 16 animals, 32 specimens were obtained: 16 in the experimental group (EG) and 16 in the control group (CG). Throughout this study, none of the studied groups had postoperative complications. Results: The histomorphological results showed, in the two biological points, both in the EG and in the CG, chronic inflammatory infiltrate, leukocyte fibrin exudate, formation of granulation tissue and deposition of collagen fibers, more evident in the EG, regressive along the biological points. At 15 days, the implanted ABP showed initial biointegration with the fibrous capsule and surrounding tissues of the recipient bed. Conclusion: These results indicate that the due to the observed favorable tissue response ABP may be of potential use as a breast implant cover.
Collapse
Affiliation(s)
- C Frutuoso Silva
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V A Felzemburgh
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - L Q Vasconcelos
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - V L C Nunes
- Universidade Federal da Bahia - UFBA, Faculdade de Medicina da Bahia - FMB, Salvador, BA, Brasil
| | | | - A F Giglioti
- Braile Biomédica, São José do Rio Preto, SP, Brasil
| | - R P C Araújo
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - F B Miguel
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| | - J V L Meneses
- Sociedade Brasileira de Cirurgia Plástica - SBCP, São Paulo, SP, Brasil
| | - F P Rosa
- Universidade Federal da Bahia - UFBA, Instituto de Ciências da Saúde - ICS, Laboratório de Bioengenharia Tecidual e Biomateriais - LBTB, Salvador, BA, Brasil
| |
Collapse
|
81
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
82
|
Jiao Y, Li X, Liu X, Li C, Yang X, Sun X, Wang F, Wang L. Cobweb-Inspired Micro/Nanostructured Scaffolds for Soft Tissue Regeneration with Inhibition Effect of Fibrosis under Dynamic Environment. Adv Healthc Mater 2023; 12:e2300997. [PMID: 37713107 DOI: 10.1002/adhm.202300997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Indexed: 09/16/2023]
Abstract
In soft tissue repair, fibrosis can lead to repair failure and long-term chronic pain in patients. Excessive mechanical stimulation of fibroblasts is one of the causes of fibrosis during abdominal wall regeneration. Inspired by the cobweb, a polycaprolactone beaded fiber is prepared by electrospinning. The cobweb-inspired structure attenuates the mechanical stimulation of cells under a dynamic environment. Nano-protrusions are introduced into the scaffold for further inhibition of fibrosis by self-induced crystallization. A machine is built for in vitro dynamic culture and rat abdominal subcutaneous embedding experiments are performed to verify the inhibiting effect of fibrosis in a dynamic environment in vivo. Results show that the expression of integrin β1 and α-smooth muscle actin is inhibited by the cobweb-inspired structure under dynamic culture. The results of hematoxylin and eosin and Masson's trichrome indicate that the cobweb-inspired structure has a good inhibitory effect on fibrosis in a dynamic environment in vivo. In general, the cobweb-inspired scaffold with nano-protrusions has a good ability to inhibit fibrosis under both static and dynamic environments. It is believed that the scaffold has promising applications in the field of inhibiting fibrosis caused by mechanical stimulation.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Xiao Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xuwei Sun
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
83
|
Shi X, Wang Z, Guo M, Wang Y, Bi Z, Li D, Zhang P, Liu J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front Bioeng Biotechnol 2023; 11:1283526. [PMID: 38026857 PMCID: PMC10655129 DOI: 10.3389/fbioe.2023.1283526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.
Collapse
Affiliation(s)
- Xiaotong Shi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiguo Bi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Dongsong Li
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianguo Liu
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| |
Collapse
|
84
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
85
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
86
|
Ivanova E, Fayzullin A, Minaev N, Dolganova I, Serejnikova N, Gafarova E, Tokarev M, Minaeva E, Aleksandrova P, Reshetov I, Timashev P, Shekhter A. Surface Topography of PLA Implants Defines the Outcome of Foreign Body Reaction: An In Vivo Study. Polymers (Basel) 2023; 15:4119. [PMID: 37896364 PMCID: PMC10610271 DOI: 10.3390/polym15204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The formation of a dense fibrous capsule around the foreign body and its contracture is the most common complication of biomaterial implantation. The aim of our research is to find out how the surface of the implant influences the inflammatory and fibrotic reactions in the surrounding tissues. We made three types of implants with a remote surface topography formed of polylactide granules with different diameters: large (100-200 µm), medium (56-100 µm) and small (1-56 µm). We placed these implants in skin pockets in the ears of six chinchilla rabbits. We explanted the implants on the 7th, 14th, 30th and 60th days and performed optical coherence tomography, and histological, immunohistochemical and morphometric studies. We examined 72 samples and compared the composition of immune cell infiltration, vascularization, the thickness of the peri-implant tissues, the severity of fibrotic processes and α-SMA expression in myofibroblasts. We analyzed the scattering coefficient of tissue layers on OCT scans. We found that implants made from large granules induced a milder inflammatory process and slower formation of a connective tissue capsule around the foreign body. Our results prove the importance of assessing the surface texture in order to avoid the formation of capsular contracture after implantation.
Collapse
Affiliation(s)
- Elena Ivanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
- B.V. Petrovsky Russian Research Center of Surgery, 2 Abrikosovskiy Lane, Moscow 119991, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Nikita Minaev
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow 108840, Russia; (N.M.); (E.M.)
| | - Irina Dolganova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, 2 Osipyan St., Chernogolovka 142432, Russia;
| | - Natalia Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Mark Tokarev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| | - Ekaterina Minaeva
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow 108840, Russia; (N.M.); (E.M.)
| | - Polina Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., Moscow 119991, Russia;
| | - Igor Reshetov
- L.L. Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (E.I.); (A.F.); (N.S.); (E.G.); (M.T.); (P.T.)
| |
Collapse
|
87
|
Uto S, Hikita A, Mori D, Sakamoto T, Yano F, Ohba S, Saito T, Takato T, Hoshi K. Subcutaneously Transplanted Fresh Cartilage in Allogeneic and Xenogeneic Immunocompetent Mouse. Tissue Eng Part A 2023; 29:541-556. [PMID: 37548556 DOI: 10.1089/ten.tea.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Cartilage is considered to be immune privileged in general. Clinically, live cells are removed from subcutaneously transplanted allogeneic cartilage mainly for preservation and for infection control. However, because maintaining cartilage feature requires live chondrocyte, it would be beneficial to subcutaneously transplant cartilage with live chondrocyte even if it was allogeneic. We harvested femoral head from 3-week-old male C57BL/6 mice, subcutaneously transplanted to 6-week-old male mice, BALB/c, BALB/c nu/nu, or C57BL/6-Tg (enhanced green fluorescent protein [EGFP] under the control of the CMV-IE enhancer, chicken beta-actin promoter, rabbit beta-globin genomic DNA [CAG promoter]), as allogeneic, allogeneic immunodeficient control, or syngeneic transplantation. We also transplanted cartilaginous particles from human induced pluripotent stem cells derived from human leukocyte antigen homozygous donor to 6-week-old male mice either BALB/c and BALB/c nu/nu as xenogeneic or xenogeneic immunodeficient control. The transplantation periods were 1, 2, 3, 4, 8, 12, and 24 weeks. As the result, we did not observe exposure of the transplant or apparent macroscopic inflammatory in all samples. Histological analysis suggested that the femoral head showed focal ossification and thinning in syngeneic transplantation. In allogeneic transplantation, slight invasion of CD3 (+) T cell and the denaturation of the cartilage were observed, suggesting immune reaction against allogeneic cartilage. In xenogeneic transplantation, slight invasion of CD3 (+) cell and CD4 (+) cell and the structure of the perichondrium-like tissue got unclear, suggesting slight immune reaction against xenogeneic cartilage. Our findings suggest that we should carefully investigate for appropriate procedure to control immune reaction against allogeneic cartilage with live chondrocyte and to maintain its cartilage feature for long time.
Collapse
Affiliation(s)
- Sakura Uto
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Tissue Engineering, Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Mori
- Department of Bone and Cartilage Regenerative Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoaki Sakamoto
- Division of Tissue Engineering, Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Fumiko Yano
- Department of Bone and Cartilage Regenerative Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinsuke Ohba
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- JR Tokyo General Hospital, Shibuya-ku, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Tissue Engineering, Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
88
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
89
|
de Rijk SR, Boys AJ, Roberts IV, Jiang C, Garcia C, Owens RM, Bance M. Tissue-Engineered Cochlear Fibrosis Model Links Complex Impedance to Fibrosis Formation for Cochlear Implant Patients. Adv Healthc Mater 2023; 12:e2300732. [PMID: 37310792 PMCID: PMC11468547 DOI: 10.1002/adhm.202300732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Cochlear implants are a life-changing technology for those with severe sensorineural hearing loss, partially restoring hearing through direct electrical stimulation of the auditory nerve. However, they are known to elicit an immune response resulting in fibrotic tissue formation in the cochlea that is linked to residual hearing loss and suboptimal outcomes. Intracochlear fibrosis is difficult to track without postmortem histology, and no specific electrical marker for fibrosis exists. In this study, a tissue-engineered model of cochlear fibrosis is developed following implant placement to examine the electrical characteristics associated with fibrotic tissue formation around electrodes. The model is characterized using electrochemical impedance spectroscopy and an increase in the resistance and a decrease in capacitance of the tissue using a representative circuit are found. This result informs a new marker of fibrosis progression over time that is extractable from voltage waveform responses, which can be directly measured in cochlear implant patients. This marker is tested in a small sample size of recently implanted cochlear implant patients, showing a significant increase over two postoperative timepoints. Using this system, complex impedance is demonstrated as a marker of fibrosis progression that is directly measurable from cochlear implants to enable real-time tracking of fibrosis formation in patients, creating opportunities for earlier treatment intervention to improve cochlear implant efficacy.
Collapse
Affiliation(s)
- Simone R. de Rijk
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 3 EBUK
| | - Alexander J. Boys
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Iwan V. Roberts
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 3 EBUK
| | - Chen Jiang
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 3 EBUK
- Department of Electronic EngineeringTsinghua UniversityBeijing100190P. R. China
| | - Charlotte Garcia
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeCB2 7EFUK
| | - Róisín M. Owens
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Manohar Bance
- Cambridge Hearing GroupCambridgeCB2 8AFUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 3 EBUK
| |
Collapse
|
90
|
Scheuermann K, Viana CTR, Dos Reis DC, de Lazari MGT, Orellano LAA, Machado CT, Dos Santos LCC, Ulrich H, Capettini LSA, Andrade SP, Campos PP. Amitriptyline efficacy in decreasing implant-induced foreign body reaction. IUBMB Life 2023; 75:732-742. [PMID: 37086464 DOI: 10.1002/iub.2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 03/15/2023] [Indexed: 04/24/2023]
Abstract
Beyond its actions on the nervous system, amitriptyline (AM) has been shown to lower inflammatory, angiogenic, and fibrogenic markers in a few pathological conditions in human and in experimental animal models. However, its effects on foreign body reaction (FBR), a complex adverse healing process, after biomedical material implantation are not known. We have evaluated the effects of AM on the angiogenic and fibrogenic components on a model of implant-induced FBR. Sponge disks were implanted subcutaneously in C57BL/6 mice, that were treated daily with oral administration of AM (5 mg/kg) for seven consecutive days in two protocols: treatment was started on the day of surgery and the implants were removed on the seventh day after implantation and treatment started 7 days after implantation and the implants removed 14 after implantation. None of the angiogenic (vessels, Vascular endothelial growth factor (VEGF), and interleukin-1β (IL-1β) or fibrogenic parameters (collagen, TGF-β, and fibrous capsule) and giant cell numbers analyzed were attenuated by AM in 7-day-old implants. However, AM was able to downregulate angiogenesis and FBR in 14-day-old implants. The effects of AM described here expands its range of actions as a potential agent capable of attenuating fibroproliferative processes that may impair functionality of implantable devices.
Collapse
Affiliation(s)
- Karina Scheuermann
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diego Carlos Dos Reis
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Clara Tolentino Machado
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
91
|
Cagli B, Carotti S, Segreto F, Francesconi M, Marangi GF, Tenna S, Diomedi M, Perrone G, Morini S, Persichetti P. Histologic and Immunohistochemical Evaluation of Human Breast Capsules Formed around Five Different Expander Surfaces. Plast Reconstr Surg 2023; 152:388e-397e. [PMID: 36827480 DOI: 10.1097/prs.0000000000010317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND Polyurethane (PU) coating and implant texturization were designed to reduce the incidence of capsular contracture (CC), even if the link between surface type and CC remains unclear. To date, the etiopathogenetic aspects have not been fully clarified. The aim of this study was to evaluate capsules formed around five different breast expanders. METHODS Thirty patients were divided into randomized groups implanted with five different expanders: smooth, coated with PU foam (poly), with a low-microtextured, high-microtextured, and macrotextured surface (L-micro, H-micro, macro). Specimens of the capsules were removed at implant reconstruction and evaluated for morphology and immunohistochemistry expression of α-smooth muscle actin (α-SMA), collagen type I and III, CD68, CD34, and CD3. Remodeling Combined Index was also evaluated. RESULTS Expression of α-SMA was significantly increased in smooth capsules versus poly, low-microtextured, and high-microtextured groups ( P = 0.007; P = 0.010; P = 0.028), whereas the prevalence of collagen type I in smooth capsules and collagen type III in poly capsules identified a stable versus an unstable tissue. Remodeling Combined Index and α-SMA showed an inverted correlation. CD68 and CD34 cellular expression increased significantly in poly capsules with respect to smooth ( P < 0.001; P < 0.001) and macrotextured groups ( P < 0.001; P < 0.001). CD3 showed no significant difference among the groups. CONCLUSION In this human study, the authors observed that increased tissue remodeling and reduced myofibroblast activation, along with the inflammatory infiltration and neoangiogenesis, especially in the poly and low-microtextured groups, might promote the formation of an unstable and less fibrotic capsule, lowering the risk of CC. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
Affiliation(s)
| | - Simone Carotti
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | | - Maria Francesconi
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | | | | | | - Giuseppe Perrone
- Research Unit of Pathology, Campus Bio-Medico University of Rome
| | - Sergio Morini
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | |
Collapse
|
92
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
93
|
Main EN, Cruz TM, Bowlin GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater 2023; 10:rbad070. [PMID: 37663015 PMCID: PMC10468651 DOI: 10.1093/rb/rbad070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significant obstacle to the restoration of tissue function or integration with any biomaterial. Therefore, it is of paramount importance in tissue engineering and regenerative medicine to emphasize regeneration, the successful recovery of native tissue function, as opposed to repair, the replacement of the native tissue (often with scar tissue). A technique dubbed 'mitochondrial transplantation' is a burgeoning field of research that shows promise in in vitro, in vivo and various clinical applications in preventing cell death, reducing inflammation, restoring cell metabolism and proper oxidative balance, among other reported benefits. However, there is currently a lack of research regarding the potential for mitochondrial therapies within tissue engineering and regenerative biomaterials. Thus, this review explores these promising findings and outlines the potential for mitochondrial transplantation-based therapies as a new frontier of scientific research with respect to driving regeneration in wound healing and host-biomaterial interactions, the current successes of mitochondrial transplantation that warrant this potential and the critical questions and remaining obstacles that remain in the field.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Thaiz M Cruz
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|
94
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
95
|
Crago M, Winlaw DS, Farajikhah S, Dehghani F, Naficy S. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med 2023; 8:e10501. [PMID: 37476058 PMCID: PMC10354783 DOI: 10.1002/btm2.10501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023] Open
Abstract
Congenital heart diseases (CHDs) frequently impact the right ventricular outflow tract, resulting in a significant incidence of pulmonary valve replacement in the pediatric population. While contemporary pediatric pulmonary valve replacements (PPVRs) allow satisfactory patient survival, their biocompatibility and durability remain suboptimal and repeat operations are commonplace, especially for very young patients. This places enormous physical, financial, and psychological burdens on patients and their parents, highlighting an urgent clinical need for better PPVRs. An important reason for the clinical failure of PPVRs is biofouling, which instigates various adverse biological responses such as thrombosis and infection, promoting research into various antifouling chemistries that may find utility in PPVR materials. Another significant contributor is the inevitability of somatic growth in pediatric patients, causing structural discrepancies between the patient and PPVR, stimulating the development of various growth-accommodating heart valve prototypes. This review offers an interdisciplinary perspective on these challenges by exploring clinical experiences, physiological understandings, and bioengineering technologies that may contribute to device development. It thus aims to provide an insight into the design requirements of next-generation PPVRs to advance clinical outcomes and promote patient quality of life.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - David S. Winlaw
- Department of Cardiothoracic SurgeryHeart Institute, Cincinnati Children's HospitalCincinnatiOHUSA
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| |
Collapse
|
96
|
Cheng C, Li H, Liu J, Wu L, Fang Z, Xu G. MCP-1-Loaded Poly(l-lactide- co-caprolactone) Fibrous Films Modulate Macrophage Polarization toward an Anti-inflammatory Phenotype and Improve Angiogenesis. ACS Biomater Sci Eng 2023. [PMID: 37367696 DOI: 10.1021/acsbiomaterials.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering approaches such as the electrospinning technique can fabricate nanofibrous scaffolds which are widely used for small-diameter vascular grafting. However, foreign body reaction (FBR) and lack of endothelial coverage are still the main cause of graft failure after the implantation of nanofibrous scaffolds. Macrophage-targeting therapeutic strategies have the potential to address these issues. Here, we fabricate a monocyte chemotactic protein-1 (MCP-1)-loaded coaxial fibrous film with poly(l-lactide-co-ε-caprolactone) (PLCL/MCP-1). The PLCL/MCP-1 fibrous film can polarize macrophages toward anti-inflammatory M2 macrophages through the sustained release of MCP-1. Meanwhile, these specific functional polarization macrophages can mitigate FBR and promote angiogenesis during the remodeling of implanted fibrous films. These studies indicate that MCP-1-loaded PLCL fibers have a higher potential to modulate macrophage polarity, which provides a new strategy for small-diameter vascular graft designing.
Collapse
Affiliation(s)
- Can Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P. R. China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Liang Wu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Zhengdong Fang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Geliang Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| |
Collapse
|
97
|
Miron A, Giurcaneanu C, Mihai MM, Beiu C, Voiculescu VM, Popescu MN, Soare E, Popa LG. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics 2023; 15:1606. [PMID: 37376055 DOI: 10.3390/pharmaceutics15061606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds encompass a myriad of lesions, including venous and arterial leg ulcers, diabetic foot ulcers (DFUs), pressure ulcers, non-healing surgical wounds and others. Despite the etiological differences, chronic wounds share several features at a molecular level. The wound bed is a convenient environment for microbial adherence, colonization and infection, with the initiation of a complex host-microbiome interplay. Chronic wound infections with mono- or poly-microbial biofilms are frequent and their management is challenging due to tolerance and resistance to antimicrobial therapy (systemic antibiotic or antifungal therapy or antiseptic topicals) and to the host's immune defense mechanisms. The ideal dressing should maintain moisture, allow water and gas permeability, absorb wound exudates, protect against bacteria and other infectious agents, be biocompatible, be non-allergenic, be non-toxic and biodegradable, be easy to use and remove and, last but not least, it should be cost-efficient. Although many wound dressings possess intrinsic antimicrobial properties acting as a barrier to pathogen invasion, adding anti-infectious targeted agents to the wound dressing may increase their efficiency. Antimicrobial biomaterials may represent a potential substitute for systemic treatment of chronic wound infections. In this review, we aim to describe the available types of antimicrobial biomaterials for chronic wound care and discuss the host response and the spectrum of pathophysiologic changes resulting from the contact between biomaterials and host tissues.
Collapse
Affiliation(s)
- Adrian Miron
- Department of General Surgery, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of General Surgery, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Mara Madalina Mihai
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Vlad Mihai Voiculescu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Marius Nicolae Popescu
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Physical and Rehabilitation Medicine, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Elena Soare
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| |
Collapse
|
98
|
Zhao J, Li J, Xu A, Xu Y, He F, Mao Y. IRAK4 inhibition: an effective strategy for immunomodulating peri-implant osseointegration via reciprocally-shifted polarization in the monocyte-macrophage lineage cells. BMC Oral Health 2023; 23:265. [PMID: 37158847 PMCID: PMC10169473 DOI: 10.1186/s12903-023-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The biomaterial integration depends on its interaction with the host immune system. Monocyte-macrophage lineage cells are immediately recruited to the implant site, polarized into different phenotypes, and fused into multinucleated cells, thus playing roles in tissue regeneration. IL-1R-associated kinase 4 (IRAK4) inhibition was reported to antagonize inflammatory osteolysis and regulate osteoclasts and foreign body giant cells (FBGCs), which may be a potential target in implant osseointegration. METHODS In in-vitro experiments, we established simulated physiological and inflammatory circumstances in which bone-marrow-derived macrophages were cultured on sand-blasted and acid-etched (SLA) titanium surfaces to evaluate the induced macrophage polarization, multinucleated cells formation, and biological behaviors in the presence or absence of IRAK4i. Then, bone marrow stromal stem cells (BMSCs) were cultured in the conditioned media collected from the aforementioned induced osteoclasts or FBGCs cultures to clarify the indirect coupling effect of multinucleated cells on BMSCs. We further established a rat implantation model, which integrates IRAK4i treatment with implant placement, to verify the positive effect of IRAK4 inhibition on the macrophage polarization, osteoclast differentiation, and ultimately the early peri-implant osseointegration in vivo. RESULTS Under inflammatory conditions, by transforming the monocyte-macrophage lineage cells from M1 to M2, IRAK4i treatment could down-regulate the formation and activity of osteoclast and relieve the inhibition of FBGC generation, thus promoting osteogenic differentiation in BMSCs and improve the osseointegration. CONCLUSION This study may improve our understanding of the function of multinucleated cells and offer IRAK4i as a therapeutic strategy to improve early implant osseointegration and help to eliminate the initial implant failure.
Collapse
Affiliation(s)
- Juan Zhao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Jia Li
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Antian Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Yangbo Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Fuming He
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| | - Yingjie Mao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| |
Collapse
|
99
|
Schreib CC, Jarvis MI, Terlier T, Goell J, Mukherjee S, Doerfert MD, Wilson TA, Beauregard M, Martins KN, Lee J, Solis LS, Vazquez E, Oberli MA, Hanak BW, Diehl M, Hilton I, Veiseh O. Lipid Deposition Profiles Influence Foreign Body Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205709. [PMID: 36871193 PMCID: PMC10309593 DOI: 10.1002/adma.202205709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.
Collapse
Affiliation(s)
- Christian C. Schreib
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Maria I. Jarvis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: Lonza Inc. 14905 Kirby Drive, Houston, TX 77047
| | - Tanguy Terlier
- SIMS laboratory, Shared Equipment Authority, Rice University, 6500 Main Street, Houston, TX 77030
| | - Jacob Goell
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: School of Biomedial Engineering, ITT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Michael D. Doerfert
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Taylor Anne Wilson
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Beauregard
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Kevin N. Martins
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Jared Lee
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005
| | - Leo Sanchez Solis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Esperanza Vazquez
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204
| | - Matthias A. Oberli
- Sigilon Therapeutics, 200 Dexter Avenue, Watertown, MA 02472
- Present address: Xibus systems Inc. 200 Dexter Avenue, Watertown, MA 02472
| | - Brian W. Hanak
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Diehl
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Isaac Hilton
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| | - Omid Veiseh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| |
Collapse
|
100
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|