51
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
52
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
53
|
Miller A, Schafer J, Upchurch C, Spooner E, Huynh J, Hernandez S, McLaughlin B, Oden L, Fares H. Mucolipidosis type IV protein TRPML1-dependent lysosome formation. Traffic 2015; 16:284-97. [PMID: 25491304 DOI: 10.1111/tra.12249] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023]
Abstract
Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.
Collapse
Affiliation(s)
- Austin Miller
- Department of Molecular and Cellular Biology, Life Sciences South Room 531, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Cheng X, Zhang X, Gao Q, Samie MA, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y, Garrity AG, Wang X, Ferrer M, Dowling J, Xu L, Han R, Xu H. The intracellular Ca²⁺ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 2014; 20:1187-92. [PMID: 25216637 PMCID: PMC4192061 DOI: 10.1038/nm.3611] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
The integrity of the plasma membrane is maintained through an active repair process, especially in skeletal and cardiac muscle cells, in which contraction-induced mechanical damage frequently occurs in vivo. Muscular dystrophies (MDs) are a group of muscle diseases characterized by skeletal muscle wasting and weakness. An important cause of these group of diseases is defective repair of sarcolemmal injuries, which normally requires Ca(2+) sensor proteins and Ca(2+)-dependent delivery of intracellular vesicles to the sites of injury. MCOLN1 (also known as TRPML1, ML1) is an endosomal and lysosomal Ca(2+) channel whose human mutations cause mucolipidosis IV (ML4), a neurodegenerative disease with motor disabilities. Here we report that ML1-null mice develop a primary, early-onset MD independent of neural degeneration. Although the dystrophin-glycoprotein complex and the known membrane repair proteins are expressed normally, membrane resealing was defective in ML1-null muscle fibers and also upon acute and pharmacological inhibition of ML1 channel activity or vesicular Ca(2+) release. Injury facilitated the trafficking and exocytosis of vesicles by upmodulating ML1 channel activity. In the dystrophic mdx mouse model, overexpression of ML1 decreased muscle pathology. Collectively, our data have identified an intracellular Ca(2+) channel that regulates membrane repair in skeletal muscle via Ca(2+)-dependent vesicle exocytosis.
Collapse
Affiliation(s)
- Xiping Cheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Mohammad Ali Samie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Marlene Azar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Wai Lok Tsang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Libing Dong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Xinran Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Yue Zhuo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Abigail G. Garrity
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Marc Ferrer
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - James Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Li Xu
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Sciences Division, IL 60153, USA
| | - Renzhi Han
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Sciences Division, IL 60153, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Cuajungco MP, Basilio LC, Silva J, Hart T, Tringali J, Chen CC, Biel M, Grimm C. Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 2014; 15:1247-65. [PMID: 25130899 DOI: 10.1111/tra.12205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 02/05/2023]
Abstract
Mucolipidosis type IV (MLIV) is caused by loss of function mutations in the TRPML1 ion channel. We previously reported that tissue zinc levels in MLIV were abnormally elevated; however, the mechanism behind this pathologic accumulation remains unknown. Here, we identify transmembrane (TMEM)-163 protein, a putative zinc transporter, as a novel interacting partner for TRPML1. Evidence from yeast two-hybrid, tissue expression pattern, co-immunoprecipitation, mass spectrometry and confocal microscopy studies confirmed the physical association of TMEM163 with TRPML1. This interaction is disrupted when a part of TMEM163's N-terminus was deleted. Further studies to define the relevance of their interaction revealed that the plasma membrane (PM) levels of TMEM163 significantly decrease when TRPML1 is co-expressed in HEK-293 cells, while it mostly localizes within the PM when co-expressed with a mutant TRPML1 that distributes mostly in the PM. Meanwhile, co-expression of TMEM163 does not alter TRPML1 channel activity, but its expression levels in MLIV patient fibroblasts are reduced, which correlate with marked accumulation of zinc in lysosomes when these cells are acutely exposed to exogenous zinc (100 μM). When TMEM163 is knocked down or when TMEM163 and TRPML1 are co-knocked down in HEK-293 cells treated overnight with 100 nm zinc, the cells have significantly higher intracellular zinc levels than untreated control. Overall, these findings suggest that TMEM163 and TRPML1 proteins play a critical role in cellular zinc homeostasis, and thus possibly explain a novel mechanism for the pathological overload of zinc in MLIV disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science and Center for Applied Biotechnology Studies, California State University, Fullerton, CA, 92831, USA; Mental Health Research Institute, Melbourne Brain Centre, Parkville, VIC, 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Chaperone-mediated autophagy: dedicated saviour and unfortunate victim in the neurodegeneration arena. Biochem Soc Trans 2014; 41:1483-8. [PMID: 24256241 DOI: 10.1042/bst20130126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of cellular quality-control systems in the maintenance of neuronal homoeostasis and in the defence against neurodegeneration is well recognized. Chaperones and proteolytic systems, the main components of these cellular surveillance mechanisms, are key in the fight against the proteotoxicity that is often associated with severe neurodegenerative diseases. However, in recent years, a new theme has emerged which suggests that components of protein quality-control pathways are often targets of the toxic effects of pathogenic proteins and that their failure to function properly contributes to pathogenesis and disease progression. In the present mini-review, we describe this dual role as 'saviour' and 'victim' in the context of neurodegeneration for chaperone-mediated autophagy, a cellular pathway involved in the selective degradation of cytosolic proteins in lysosomes.
Collapse
|
57
|
Segatori L. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 2014; 66:472-7. [PMID: 25044960 DOI: 10.1002/iub.1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
58
|
Abstract
The first member of the mammalian mucolipin TRP channel subfamily (TRPML1) is a cation-permeable channel that is predominantly localized on the membranes of late endosomes and lysosomes (LELs) in all mammalian cell types. In response to the regulatory changes of LEL-specific phosphoinositides or other cellular cues, TRPML1 may mediate the release of Ca(2+) and heavy metal Fe(2+)/Zn(2+)ions into the cytosol from the LEL lumen, which in turn may regulate membrane trafficking events (fission and fusion), signal transduction, and ionic homeostasis in LELs. Human mutations in TRPML1 result in type IV mucolipidosis (ML-IV), a childhood neurodegenerative lysosome storage disease. At the cellular level, loss-of-function mutations of mammalian TRPML1 or its C. elegans or Drosophila homolog gene results in lysosomal trafficking defects and lysosome storage. In this chapter, we summarize recent advances in our understandings of the cell biological and channel functions of TRPML1. Studies on TRPML1's channel properties and its regulation by cellular activities may provide clues for developing new therapeutic strategies to delay neurodegeneration in ML-IV and other lysosome-related pediatric diseases.
Collapse
|
59
|
The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy. Biochem Biophys Res Commun 2014; 443:56-61. [DOI: 10.1016/j.bbrc.2013.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
|
60
|
Abstract
The TRPML2 protein, encoded by the Mcoln2 gene, is one of the three mucolipins (TRPML1-3), a subset of the TRP superfamily of ion channels. Although there are no thorough studies on the cellular distribution of TRPML2, its mRNA appears to be largely restricted to lymphocytes and other immune cells. This contrasts with the ubiquitous expression of TRPML1 and the limited but diverse expression of TRPML3 and clearly suggests a specialized role for TRPML2 in immunity. Localization studies indicate that TRPML2 is present in lysosomes (including the specialized lysosome-related organelle that B-lymphocytes use for processing of the antigen-bound B-cell receptor), late endosomes, recycling endosomes, and, at a much lower level, the plasma membrane. Heterologously expressed TRPML2, like TRPML1 and/or TRPML3, forms ion channels that can be activated by a gain-of-function mutation (alanine to proline in the fifth transmembrane domain, close to the pore) that favors the open state, by a transient reduction of extracellular sodium followed by sodium replenishment, by small chemicals related to sulfonamides, and by PI(3,5)P2, a rare phosphoinositide that naturally accumulates in the membranes of endosomes and lysosomes and thus could act as a physiologically relevant agonist. TRPML2 channels are inwardly rectifying and permeable to Ca(2+), Na(+), and Fe(2+). When heterologously co-expressed, TRPML2 can form heteromultimers with TRPML1 and TRPML3. In B-lymphocytes, TRPML2 and TRPML1 may play redundant roles in the function of their specialized lysosome. Although the specific subcellular function of TRPML2 is unknown, distribution and channel properties suggest roles in calcium release from endolysosomes, perhaps to regulate vesicle fusion and/or subsequent scission or to release calcium from intracellular acidic stores for signaling in the cytosol. Alternatively, TRPML2 could function in the plasma membrane, and its abundance in vesicles of the endocytic pathway could simply be due to regulation by endocytosis and exocytosis. The Mcoln2 gene is closely downstream from and in the same orientation as Mcoln3 in the genomes of most jawed vertebrates (from humans to sharks) with the exception of pigs, Xenopus tropicalis, and ray-finned fishes. The close homology of TRPML2 and 3 (closer to each other than to TRPML1) suggests that Mcoln2 and Mcoln3 arose from unequal crossing over that duplicated a common ancestor and placed both gene copies in tandem. These genes would have come apart subsequently in pigs, Xenopus, and the ancestor to ray-finned fishes. All jawed vertebrates for which we have thorough genomic knowledge have distinct Mcoln1, 2, and 3 genes (except ray-finned fishes which, probably due to the whole-genome duplication in their common ancestor, have two Mcoln1-like genes and two Mcoln3-like genes, although only one Mcoln2 gene). However, the available genomes of invertebrate deuterostomes (a sea urchin, lancelet, and two tunicates) contain a single mucolipin gene that is equally distant from the three vertebrate mucolipins. Hence, vertebrate mucolipins arose through two rounds of gene duplication (the first one likely producing Mcoln1 and the ancestor to Mcoln2 and 3) at some time between the onset of craniates and that of jawed vertebrates. This is also the evolutionary period during which adaptive immunity appeared. Given the restricted expression of TRPML2 in immune cells, this evolutionary history suggests a functional role in the adaptive immunity characteristic of vertebrates.
Collapse
|
61
|
Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV? Biochem J 2013; 457:361-8. [DOI: 10.1042/bj20130647] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRPML1 is a lysosomal ion channel permeable to cations, including Fe2+. Our data suggest that TRPML1 redistributes Fe2+ between the lysosomes and the cytoplasm. Loss of TRPML1 leads to production of reactive oxygen species, and to mitochondrial deterioration.
Collapse
|
62
|
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal proteolytic pathway in which cytosolic substrate proteins contain specific chaperone recognition sequences required for degradation and are translocated directly across the lysosomal membrane for destruction. CMA proteolytic activity has a reciprocal relationship with macroautophagy: CMA is most active in cells in which macroautophagy is least active. Normal renal proximal tubular cells have low levels of macroautophagy, but high basal levels of CMA activity. CMA activity is regulated by starvation, growth factors, oxidative stress, lipids, aging, and retinoic acid signaling. The physiological consequences of changes in CMA activity depend on the substrate proteins present in a given cell type. In the proximal tubule, increased CMA results from protein or calorie starvation and from oxidative stress. Overactivity of CMA can be associated with tubular lysosomal pathology and certain cancers. Reduced CMA activity contributes to protein accumulation in renal tubular hypertrophy, but may contribute to oxidative tissue damage in diabetes and aging. Although there are more questions than answers about the role of high basal CMA activity, this remarkable feature of tubular protein metabolism appears to influence a variety of chronic diseases.
Collapse
Affiliation(s)
- Harold A Franch
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, GA; and Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
63
|
Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 2013; 4:272. [PMID: 24106480 PMCID: PMC3788328 DOI: 10.3389/fphys.2013.00272] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/11/2013] [Indexed: 11/13/2022] Open
Abstract
Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Laboratory of Excellence, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Ion Channels Science and Therapeutics, INSERM, U-1003, Université Lille 1 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
64
|
Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol 2013; 9:374-82. [PMID: 23584676 PMCID: PMC3661710 DOI: 10.1038/nchembio.1230] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/11/2013] [Indexed: 01/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) contributes to cellular quality control and the cellular response to stress through the selective degradation of cytosolic proteins in lysosomes. Decrease in CMA activity occurs in aging and in age-related disorders (for example, neurodegenerative diseases and diabetes). Although prevention of this age-dependent decline through genetic manipulation in mouse has proven beneficial, chemical modulation of CMA is not currently possible, due in part to the lack of information on the signaling mechanisms that modulate this pathway. In this work, we report that signaling through the retinoic acid receptor alpha (RARα) inhibits CMA and apply structure-based chemical design to develop synthetic derivatives of all-trans-retinoic acid (ATRA) to specifically neutralize this inhibitory effect. We demonstrate that chemical enhancement of CMA protects cells from oxidative stress and from proteotoxicity, supporting a potential therapeutic opportunity when reduced CMA contributes to cellular dysfunction and disease.
Collapse
Affiliation(s)
- Jaime Anguiano
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
65
|
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. ACTA ACUST UNITED AC 2013. [PMID: 23185029 PMCID: PMC3514785 DOI: 10.1083/jcb.201208152] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | |
Collapse
|
66
|
Spooner E, McLaughlin BM, Lepow T, Durns TA, Randall J, Upchurch C, Miller K, Campbell EM, Fares H. Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1. PLoS One 2013; 8:e56780. [PMID: 23418601 PMCID: PMC3572064 DOI: 10.1371/journal.pone.0056780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.
Collapse
Affiliation(s)
- Ellen Spooner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Brooke M. McLaughlin
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Talya Lepow
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Tyler A. Durns
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Randall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Upchurch
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Katherine Miller
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin M. Campbell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
67
|
Abstract
The mucopolysaccharidoses (MPS) and mucolipidoses (ML) are progressive storage disorders that share many clinical features varying from facial dysmorphism, bone dysplasia, hepatosplenomegaly, neurological abnormalities, developmental regression, and a reduced life expectancy at the severe end of the clinical spectrum to an almost normal clinical phenotype and life span in patients with more attenuated disease. MPS and ML are transmitted in an autosomal recessive manner, except for the X-linked MPS II (Hunter syndrome). Diagnosis is initially by detecting partially degraded GAG or oligosaccharide in urine and confirmed by specific enzyme assays in serum, leukocytes, or skin fibroblasts. For the majority of disorders treatment is palliative, but there have been important advances in the use of specific enzyme replacement therapy strategies for some MPS disorders and this is an area of very rapid development. In addition, hematopoietic stem cell transplantation (HSCT) can improve outcome in carefully selected patients with MPS (especially MPS IH, Hurler syndrome), but this procedure is associated with significant risk. Gene augmentation/transfer using a variety of vectors has been successful in animal models but has not yet been successfully performed in a human patient with one of these disorders. It is important to remember that prenatal diagnosis is possible for all of these disorders.
Collapse
|
68
|
Saha T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 2012; 8:1643-56. [PMID: 22874552 PMCID: PMC3494593 DOI: 10.4161/auto.21654] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway. LAMP2A helps in lysosomal uptake of modified and oxidatively damaged proteins directly into the lumen of lysosomes for degradation and protein turnover. Elevated expression of LAMP2A was observed in breast tumor tissues of all patients under investigation, suggesting a survival mechanism via CMA and LAMP2A. Reduced expression of the CMA substrates, GAPDH and PKM, was observed in most of the breast tumor tissues when compared with the normal adjacent tissues. Reactive oxygen species (ROS) mediated oxidative stress damages regulatory cellular components such as DNA, proteins and/or lipids. Protein carbonyl content (PCC) is widely used as a measure of total protein oxidation in cells. Ectopic expression of LAMP2A reduces PCC and thereby promotes cell survival during oxidative stress. Furthermore, inhibition of LAMP2A stimulates accumulation of GAPDH, AKT1 phosphorylation, generation of ROS, and induction of cellular apoptosis in breast cancer cells. Doxorubicin, which is a chemotherapeutic drug, often becomes ineffective against tumor cells with time due to chemotherapeutic resistance. Breast cancer cells deficient of LAMP2A demonstrate increased sensitivity to the drug. Thus, inhibiting CMA activity in breast tumor cells can be exploited as a potential therapeutic application in the treatment of breast cancer.
Collapse
Affiliation(s)
- Tapas Saha
- Department of Oncology; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington D.C. USA
| |
Collapse
|
69
|
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22:407-17. [PMID: 22748206 DOI: 10.1016/j.tcb.2012.05.006] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
All cellular proteins undergo continuous synthesis and degradation. This permanent renewal is necessary to maintain a functional proteome and to allow rapid changes in levels of specific proteins with regulatory purposes. Although for a long time lysosomes were considered unable to contribute to the selective degradation of individual proteins, the discovery of chaperone-mediated autophagy (CMA) changed this notion. Here, we review the characteristics that set CMA apart from other types of lysosomal degradation and the subset of molecules that confer cells the capability to identify individual cytosolic proteins and direct them across the lysosomal membrane for degradation.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building 504, Bronx, NY 10461, USA
| | | |
Collapse
|
70
|
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8:719-30. [PMID: 22647656 PMCID: PMC3378416 DOI: 10.4161/auto.19469] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lysosomes are ubiquitous intracellular organelles that have an acidic internal pH, and play crucial roles in cellular clearance. Numerous functions depend on normal lysosomes, including the turnover of cellular constituents, cholesterol homeostasis, downregulation of surface receptors, inactivation of pathogenic organisms, repair of the plasma membrane and bone remodeling. Lysosomal storage disorders (LSDs) are characterized by progressive accumulation of undigested macromolecules within the cell due to lysosomal dysfunction. As a consequence, many tissues and organ systems are affected, including brain, viscera, bone and cartilage. The progressive nature of phenotype development is one of the hallmarks of LSDs. In recent years biochemical and cell biology studies of LSDs have revealed an ample spectrum of abnormalities in a variety of cellular functions. These include defects in signaling pathways, calcium homeostasis, lipid biosynthesis and degradation and intracellular trafficking. Lysosomes also play a fundamental role in the autophagic pathway by fusing with autophagosomes and digesting their content. Considering the highly integrated function of lysosomes and autophagosomes it was reasonable to expect that lysosomal storage in LSDs would have an impact upon autophagy. The goal of this review is to provide readers with an overview of recent findings that have been obtained through analysis of the autophagic pathway in several types of LSDs, supporting the idea that LSDs could be seen primarily as "autophagy disorders."
Collapse
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI USA
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|
72
|
Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab 2011; 104:206-13. [PMID: 21763169 PMCID: PMC3205274 DOI: 10.1016/j.ymgme.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
Mucolipidosis type IV (MLIV) is a neurodevelopmental as well as neurodegenerative disorder with severe psychomotor developmental delay, progressive visual impairment, and achlorydria. It is characterized by the presence of lysosomal inclusions in many cell types in patients. MLIV is an autosomal recessive disease caused by mutations in MCOLN1, which encodes for mucolipin-1, a member of the transient receptor potential (TRP) cation channel family. Although approximately 70-80% of patients identified are Ashkenazi Jewish, MLIV is a pan-ethnic disorder. Importantly, while MLIV is thought to be a rare disease, its frequency may be greater than currently appreciated, for its common presentation as a cerebral palsy-like encephalopathy can lead to misdiagnosis. Moreover, patients with milder variants are often not recognized as having MLIV. This review provides an update on the ethnic distribution, clinical manifestations, laboratory findings, methods of diagnosis, molecular genetics, differential diagnosis, and treatment of patients with MLIV. An enhanced awareness of the manifestations of this disorder may help to elucidate the true frequency and range of symptoms associated with MLIV, providing insight into the pathogenesis of this multi-system disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| | - Ehud Goldin
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| |
Collapse
|
73
|
Cuervo AM. Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity. Nat Rev Mol Cell Biol 2011; 12:535-41. [PMID: 21750569 DOI: 10.1038/nrm3150] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A little over 1 year ago, we lost a bright scientist and a dear colleague who, in his younger years, proposed the 'heretical' idea that lysosomes could selectively degrade cytosolic proteins. That scientist was J. Fred Dice, and his lifetime's discovery was the degradative pathway that we now know as chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
74
|
Koga H, Cuervo AM. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis 2011; 43:29-37. [PMID: 20643207 PMCID: PMC2998583 DOI: 10.1016/j.nbd.2010.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) contributes to selective degradation of individual soluble proteins in lysosomes. Unique to this type of autophagy is the fact that proteins reach the lysosomal lumen for degradation by directly crossing the lysosomal membrane, in contrast with the vesicle-mediated delivery characteristic of the other types of autophagy. These two characteristics--selective targeting and direct translocation of substrates--determine the contribution of CMA to different physiological functions and the type of pathological conditions associated with CMA dysfunction. In this review, we briefly revise recent findings on the molecular mechanisms behind CMA function, and describe the physiological relevance of the selective lysosomal degradation through this pathway. We also comment on the cellular consequences of CMA malfunction and on the connections already established between CMA dysfunction and different human disorders, with special emphasis on neurodegenerative diseases. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| | | |
Collapse
|
75
|
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 2011; 124:495-9. [PMID: 21282471 DOI: 10.1242/jcs.073874] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Susmita Kaushik
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 2011; 10:205-15. [PMID: 20152936 DOI: 10.1016/j.arr.2010.02.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/12/2023]
Abstract
All cells count on precise mechanisms that regulate protein homeostasis to maintain a stable and functional proteome. A progressive deterioration in the ability of cells to preserve the stability of their proteome occurs with age and contributes to the functional loss characteristic of old organisms. Molecular chaperones and the proteolytic systems are responsible for this cellular quality control by assuring continuous renewal of intracellular proteins. When protein damage occurs, such as during cellular stress, the coordinated action of these cellular surveillance systems allows detection and repair of the damaged structures or, in many instances, leads to the complete elimination of the altered proteins from inside cells. Dysfunction of the quality control mechanisms and intracellular accumulation of abnormal proteins in the form of protein inclusions and aggregates occur in almost all tissues of an aged organism. Preservation or enhancement of the activity of these surveillance systems until late in life improves their resistance to stress and is sufficient to slow down aging. In this work, we review recent advances on our understanding of the contribution of chaperones and proteolytic systems to the maintenance of cellular homeostasis, the cellular response to stress and ultimately to longevity.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
77
|
Li W, Yang Q, Mao Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 2011; 68:749-63. [PMID: 20976518 PMCID: PMC11114861 DOI: 10.1007/s00018-010-0565-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing "old" proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.
Collapse
Affiliation(s)
- Wenming Li
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Qian Yang
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
78
|
|
79
|
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010; 62:381-404. [PMID: 20716668 DOI: 10.1124/pr.110.002725] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca(2+) and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels.
Collapse
Affiliation(s)
- Long-Jun Wu
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
80
|
Abstract
MLIV (mucolipidosis type IV) is a neurodegenerative lysosomal storage disorder caused by mutations in MCOLN1, a gene that encodes TRPML1 (mucolipin-1), a member of the TRPML (transient receptor potential mucolipin) cation channels. Two additional homologues are TRPML2 and TRPML3 comprising the TRPML subgroup in the TRP superfamily. The three proteins play apparently key roles along the endocytosis process, and thus their cellular localization varies among the different group members. Thus TRPML1 is localized exclusively to late endosomes and lysosomes, TRPML2 is primarily located in the recycling clathrin-independent GPI (glycosylphosphatidylinositol)-anchored proteins and early endosomes, and TRPML3 is primarily located in early endosomes. Apparently, all three proteins' main physiological function underlies Ca2+ channelling, regulating the endocytosis process. Recent findings also indicate that the three TRPML proteins form heteromeric complexes at least in some of their cellular content. The physiological role of these complexes in lysosomal function remains to be elucidated, as well as their effect on the pathophysiology of MLIV. Another open question is whether any one of the TRPMLs bears additional function in channel activity
Collapse
|
81
|
Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B, Browning MF, Dobrenis K, Cotman SL, Walkley SU, Slaugenhaupt SA. Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis 2010; 40:370-7. [PMID: 20600908 PMCID: PMC4392647 DOI: 10.1016/j.nbd.2010.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/17/2022] Open
Abstract
Mucolipidosis type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1(-/-) embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1(-/-) allows the study of mucolipin-1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1(-/-) P7 pups and E17 embryos. The Mcoln1(-/-) neuronal cultures show an increase in size of LysoTracker and Lamp1 positive vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1-deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1(-/-) neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1(-/-) neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1-deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease.
Collapse
Affiliation(s)
- Cyntia Curcio-Morelli
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Florie A. Charles
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Matthew C. Micsenyi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York
| | - Yi Cao
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Bhuvarahamurthy Venugopal
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Marsha F. Browning
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York
| | - Susan L. Cotman
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York
| | - Susan A. Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital/Harvard Medical School, Richard B. Simches Research Center, CPZN-5254, 185 Cambridge Street, Boston, MA 02114
| |
Collapse
|
82
|
Eichelsdoerfer JL, Evans JA, Slaugenhaupt SA, Cuajungco MP. Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem 2010; 285:34304-8. [PMID: 20864526 DOI: 10.1074/jbc.c110.165480] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chelatable zinc is important in brain function, and its homeostasis is maintained to prevent cytotoxic overload. However, certain pathologic events result in intracellular zinc accumulation in lysosomes and mitochondria. Abnormal lysosomes and mitochondria are common features of the human lysosomal storage disorder known as mucolipidosis IV (MLIV). MLIV is caused by the loss of TRPML1 ion channel function. MLIV cells develop large hyperacidic lysosomes, membranous vacuoles, mitochondrial fragmentation, and autophagic dysfunction. Here, we observed that RNA interference of mucolipin-1 gene (TRPML1) in HEK-293 cells mimics the MLIV cell phenotype consisting of large lysosomes and membranous vacuoles that accumulate chelatable zinc. To show that abnormal chelatable zinc levels are indeed correlated with MLIV pathology, we quantified its concentration in cultured MLIV patient fibroblast and control cells with a spectrofluorometer using N-(6-methoxy-8-quinolyl)-p-toluene sulfonamide fluorochrome. We found a significant increase of chelatable zinc levels in MLIV cells but not in control cells. Furthermore, we quantified various metal isotopes in whole brain tissue of TRPML1(-/-) null mice and wild-type littermates using inductively coupled plasma mass spectrometry and observed that the zinc-66 isotope is markedly elevated in the brain of TRPML1(-/-) mice when compared with controls. In conclusion, we show for the first time that the loss of TRPML1 function results in intracellular chelatable zinc dyshomeostasis. We propose that chelatable zinc accumulation in large lysosomes and membranous vacuoles may contribute to the pathogenesis of the disease and progressive cell degeneration in MLIV patients.
Collapse
Affiliation(s)
- Jonathan L Eichelsdoerfer
- Department of Biological Science and Center for Applied Biotechnology Studies, California State University, Fullerton, California 92831, USA
| | | | | | | |
Collapse
|
83
|
Zeevi DA, Lev S, Frumkin A, Minke B, Bach G. Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 2010; 123:3112-24. [PMID: 20736310 PMCID: PMC2931605 DOI: 10.1242/jcs.067330] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2010] [Indexed: 11/20/2022] Open
Abstract
The mucolipin (TRPML) subfamily of transient receptor potential (TRP) cation channels consists of three members that play various roles in the regulation of membrane and protein sorting along endo-lysosomal pathways. Loss-of-function mutations in TRPML1 cause the neurodegenerative lysosomal storage disorder, mucolipidosis type IV (MLIV), whereas a gain-of-function mutation in TRPML3 is principally implicated in the hearing-impaired and abnormally pigmented varitint-waddler mouse. Currently, TRPML2 is not implicated in any pathological disorder, but we have recently shown that it is a functional cation channel that physically interacts with TRPML1 and TRPML3 to potentially regulate lysosomal integrity. Here, we show that mutant TRPMLs heteromultimerize with other mutant and wild-type TRPMLs to regulate cell viability and starvation-induced autophagy, a process that mediates macromolecular and organellar turnover under cell starvation conditions. Heteromultimerization of dominant-negative TRPMLs with constitutively active TRPMLs rescues cells from the cytotoxic effects of TRPML constitutive activity. Moreover, dominant-negative TRPML1 channels, including a mutant channel directly implicated in MLIV pathology, also inhibit starvation-induced autophagy by interacting with and affecting native TRPML channel function. Collectively, our results indicate that heteromultimerization of TRPML channels plays a role in various TRPML-regulated mechanisms.
Collapse
Affiliation(s)
- David A. Zeevi
- Monique and Jacques Roboh Department of Genetic Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
- The Kühne Minerva Center for Studies of Visual Transduction, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Ayala Frumkin
- Monique and Jacques Roboh Department of Genetic Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Baruch Minke
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
- The Kühne Minerva Center for Studies of Visual Transduction, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Gideon Bach
- Monique and Jacques Roboh Department of Genetic Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine of the Hebrew University and Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| |
Collapse
|
84
|
Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010; 21:719-26. [PMID: 20176123 PMCID: PMC2914824 DOI: 10.1016/j.semcdb.2010.02.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/07/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a selective lysosomal pathway for the degradation of cytosolic proteins. We review in this work some of the recent findings on this pathway regarding the molecular mechanisms that contribute to substrate targeting, binding and translocation across the lysosomal membrane. We have placed particular emphasis on the critical role that changes in the lipid composition of the lysosomal membrane play in the regulation of CMA, as well as the modulatory effect of other novel CMA components. In the second part of this review, we describe the physiological relevance of CMA and its role as one of the cellular mechanisms involved in the response to stress. Changes with age in CMA activity and the contribution of failure of CMA to the phenotype of aging and to the pathogenesis of several age-related pathologies are also described.
Collapse
Affiliation(s)
- Samantha J. Orenstein
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA, 10461
| |
Collapse
|
85
|
Abstract
Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway.
Collapse
|
86
|
Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 2010; 21:142-50. [PMID: 19857975 PMCID: PMC2831144 DOI: 10.1016/j.tem.2009.10.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/04/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Degradation of intracellular components in lysosomes, generically known as autophagy, can occur through different pathways. This review discusses chaperone-mediated autophagy (CMA), a type of autophagy set apart from other autophagic pathways owing to its selectivity and distinctive mechanism by which substrates reach the lysosomal lumen. CMA participates in quality control and provides energy to cells under persistently poor nutritional conditions. Alterations in CMA have recently been shown to underlie some severe human disorders for which the decline with age in the activity of this pathway might become a major aggravating factor. Prevention of the age-dependent decline in CMA has major beneficial effects on cellular and organ homeostasis and function, revealing that CMA is an essential component of the anti-aging fight.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
87
|
Transient receptor potential channelopathies. Pflugers Arch 2010; 460:437-50. [PMID: 20127491 DOI: 10.1007/s00424-010-0788-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
In the past years, several hereditary diseases caused by defects in transient receptor potential channels (TRP) genes have been described. This review summarizes our current knowledge about TRP channelopathies and their possible pathomechanisms. Based on available genetic indications, we will also describe several putative pathological conditions in which (mal)function of TRP channels could be anticipated.
Collapse
|
88
|
Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett 2010; 584:2013-21. [PMID: 20074572 DOI: 10.1016/j.febslet.2009.12.056] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
Abstract
The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.
Collapse
|
89
|
Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP. The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch 2010; 459:79-91. [PMID: 19763610 DOI: 10.1007/s00424-009-0716-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 11/29/2022]
Abstract
Mucolipidosis type IV is a lysosomal storage disorder caused by the loss or dysfunction of the mucolipin-1 (TRPML1) protein. It has been suggested that TRPML2 could genetically compensate (i.e., become upregulated) for the loss of TRPML1. We thus investigated this possibility by first studying the expression pattern of mouse TRPML2 and its basic channel properties using the varitint-waddler (Va) model. Here, we confirmed the presence of long variant TRPML2 (TRPML2lv) and short variant (TRPML2sv) isoforms. We showed for the first time that, heterologously expressed, TRPML2lv-Va is an active, inwardly rectifying channel. Secondly, we quantitatively measured TRPML2 and TRPML3 mRNA expressions in TRPML1-/- null and wild-type (Wt) mice. In wild-type mice, the TRPML2lv transcripts were very low while TRPML2sv and TRPML3 transcripts have predominant expressions in lymphoid and kidney organs. Significant reductions of TRPML2sv, but not TRPML2lv or TRPML3 transcripts, were observed in lymphoid and kidney organs of TRPML1-/- mice. RNA interference of endogenous human TRPML1 in HEK-293 cells produced a comparable decrease of human TRPML2 transcript levels that can be restored by overexpression of human TRPML1. Conversely, significant upregulation of TRPML2sv transcripts was observed when primary mouse lymphoid cells were treated with nicotinic acid adenine dinucleotide phosphate, or N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide, both known activators of TRPML1. In conclusion, our results indicate that TRPML2 is unlikely to compensate for the loss of TRPML1 in lymphoid or kidney organs and that TRPML1 appears to play a novel role in the tissue-specific transcriptional regulation of TRPML2.
Collapse
Affiliation(s)
- Mohammad A Samie
- Department of Biological Science, and Center for Applied, Biotechnology Studies, California State University Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Kiselyov K, Yamaguchi S, Lyons CW, Muallem S. Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 2010; 47:103-11. [PMID: 20053447 DOI: 10.1016/j.ceca.2009.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 12/27/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by inability of cells to process the material captured during endocytosis. While they are essentially diseases of cellular "indigestion", LSDs affect large number of cellular activities and, as such, they teach us about the integrative function of the cell, as well as about the gaps in our knowledge of the endocytic pathway and membrane transport. The present review summarizes recent findings on Ca2+ handling in LSDs and attempts to identify the key questions on alterations in Ca2+ signaling and membrane transport in this group of diseases, answers to which may lie in delineating the cellular pathogeneses of LSDs.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
91
|
Kon M, Cuervo AM. Chaperone-mediated autophagy in health and disease. FEBS Lett 2009; 584:1399-404. [PMID: 20026330 DOI: 10.1016/j.febslet.2009.12.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/13/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal pathway that participates in the degradation of cytosolic proteins. CMA is activated by starvation and in response to stressors that result in protein damage. The selectivity intrinsic to CMA allows for removal of damaged proteins without disturbing nearby functional ones. CMA works in a coordinated manner with other autophagic pathways, which can compensate for each other. Interest in CMA has recently grown because of the connections established between this autophagic pathway and human pathologies. Here we review the unique properties of CMA compared to other autophagic pathways and its relevance in health and disease.
Collapse
Affiliation(s)
- Maria Kon
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
92
|
Vergarajauregui S, Martina JA, Puertollano R. Identification of the penta-EF-hand protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1. J Biol Chem 2009; 284:36357-36366. [PMID: 19864416 DOI: 10.1074/jbc.m109.047241] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of function mutations in mucolipin-1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a recessive lysosomal storage disease characterized by severe neurological and ophthalmological abnormalities. MCOLN1 is an ion channel that regulates membrane transport along the endolysosomal pathway. It has been suggested that MCOLN1 participates in several Ca(2+)-dependent processes, including fusion of lysosomes with the plasma membrane, fusion of late endosomes and autophagosomes with lysosomes, and lysosomal biogenesis. Here, we searched for proteins that interact with MCOLN1 in a Ca(2+)-dependent manner. We found that the penta-EF-hand protein ALG-2 binds to the NH-terminal cytosolic tail of MCOLN1. The interaction is direct, strictly dependent on Ca(2+), and mediated by a patch of charged and hydrophobic residues located between MCOLN1 residues 37 and 49. We further show that MCOLN1 and ALG-2 co-localize to enlarged endosomes induced by overexpression of an ATPase-defective dominant-negative form of Vps4B (Vps4B(E235Q)). In agreement with the proposed role of MCOLN1 in the regulation of fusion/fission events, we found that overexpression of MCOLN1 caused accumulation of enlarged, aberrant endosomes that contain both early and late endosome markers. Interestingly, aggregation of abnormal endosomes was greatly reduced when the ALG-2-binding domain in MCOLN1 was mutated, suggesting that ALG-2 regulates MCOLN1 function. Overall, our data provide new insight into the molecular mechanisms that regulate MCOLN1 activity. We propose that ALG-2 acts as a Ca(2+) sensor that modulates the function of MCOLN1 along the late endosomal-lysosomal pathway.
Collapse
Affiliation(s)
- Silvia Vergarajauregui
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jose A Martina
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Rosa Puertollano
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
93
|
Zeevi DA, Frumkin A, Offen-Glasner V, Kogot-Levin A, Bach G. A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 2009; 219:153-62. [PMID: 19557826 DOI: 10.1002/path.2587] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/28/2009] [Indexed: 11/10/2022]
Abstract
Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.
Collapse
Affiliation(s)
- David A Zeevi
- Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
94
|
Woloszynek JC, Kovacs A, Ohlemiller KK, Roberts M, Sands MS. Metabolic adaptations to interrupted glycosaminoglycan recycling. J Biol Chem 2009; 284:29684-91. [PMID: 19700765 DOI: 10.1074/jbc.m109.020818] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal storage diseases (LSD) are metabolic disorders characterized by accumulation of undegraded material. The mucopolysaccharidoses (MPS) are LSDs defined by the storage of glycosaminoglycans. Previously, we hypothesized that cells affected with LSD have increased energy expenditure for biosynthesis because of deficiencies of raw materials sequestered within the lysosome. Thus, LSDs can be characterized as diseases of deficiency as well as overabundance (lysosomal storage). In this study, metabolite analysis identified deficiencies in simple sugars, nucleotides, and lipids in the livers of MPSI mice. In contrast, most amino acids, amino acid derivatives, dipeptides, and urea were elevated. These data suggest that protein catabolism, perhaps because of increased autophagy, is at least partially fulfilling intermediary metabolism. Thus, maintaining glycosaminoglycan synthesis in the absence of recycled precursors results in major shifts in the energy utilization of the cells. A high fat diet increased simple sugars and some fats and lowered the apparent protein catabolism. Interestingly, autophagy, which is increased in several LSDs, is responsive to dietary intervention and is reduced in MPSVII and MPSI mice fed a high fat diet. Although long term dietary treatment improved body weight in MPSVII mice, it failed to improve life span or retinal function. In addition, the ventricular hypertrophy and proximal aorta dilation observed in MPSVII mice were unchanged by a high fat, simple sugar diet. As the mechanism of this energy imbalance is better understood, a more targeted nutrient approach may yet prove beneficial as an adjunct therapy to traditional approaches.
Collapse
Affiliation(s)
- Josh C Woloszynek
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|