51
|
Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, Haiech J, Frossard N. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther 2010; 126:39-55. [PMID: 20117133 PMCID: PMC7112609 DOI: 10.1016/j.pharmthera.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 02/08/2023]
Abstract
Regulation of cellular responses to external stimuli such as hormones, neurotransmitters, or cytokines is achieved through the control of all steps of the complex cascade starting with synthesis, going through maturation steps, release, distribution, degradation and/or uptake of the signalling molecule interacting with the target protein. One possible way of regulation, referred to as scavenging or neutralization of the ligand, has been increasingly studied, especially for small protein ligands. It shows innovative potential in chemical biology approaches as well as in disease treatment. Neutralization of protein ligands, as for example cytokines or chemokines can lead to the validation of signalling pathways under physiological or pathophysiological conditions, and in certain cases, to the development of therapeutic molecules now used in autoimmune diseases, chronic inflammation and cancer treatment. This review explores the field of ligand neutralization and tries to determine to what extent small chemical molecules could substitute for neutralizing antibodies in therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Galzi
- IREBS, FRE3211, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Ndode-Ekane X, Hayward N, Gröhn O, Pitkänen A. Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience 2010; 166:312-32. [DOI: 10.1016/j.neuroscience.2009.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 01/07/2023]
|
53
|
Paterniti I, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S. Liver X receptor agonist treatment regulates inflammatory response after spinal cord trauma. J Neurochem 2009; 112:611-24. [PMID: 19891733 DOI: 10.1111/j.1471-4159.2009.06471.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Liver X receptor alpha (LXRalpha) and LXRbeta are members of the nuclear receptor superfamily of ligand-activated transcription factors. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of spinal cord injury (SCI). SCI was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy in mice. Treatment with T0901317, 1 and 6 h after the SCI, significantly decreased (i) the degree of spinal cord inflammation and tissue injury (histological score); (ii) neutrophil infiltration (myeloperoxidase activity); (iii) inducible nitric oxide synthase expression; (iv) nitrotyrosine, lipid peroxidation, and poly-ADP-ribose formation; (v) pro-inflammatory cytokines expression; (vi) nuclear factor-kappa B activation; and (vii) apoptosis (terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, FAS ligand, Bax, and Bcl-2 expression). Moreover, T0901317 significantly ameliorated the loss of limb function (evaluated by motor recovery score). These data suggest that LXR ligand may be useful in the treatment of inflammation associated with SCI.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98100 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
55
|
Genovese T, Mazzon E, Esposito E, Di Paola R, Murthy K, Neville L, Bramanti P, Cuzzocrea S. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury. Free Radic Res 2009; 43:631-45. [PMID: 19418318 DOI: 10.1080/10715760902954126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30-300 microg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-kappaB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
|
56
|
Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. ACTA ACUST UNITED AC 2009; 132:2206-18. [PMID: 19528093 DOI: 10.1093/brain/awp147] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upon central nervous system injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes, two unrelated families of endogenous signalling molecules, are markedly increased at the site of damage, suggesting that they may act as 'danger signals' to alert responses to tissue damage and start repair. Here we show that, in non-injured spinal cord parenchyma, GPR17, a P2Y-like receptor responding to both uracil nucleotides (e.g. UDP-glucose) and cysteinyl-leukotrienes (e.g. LTD4 and LTC4), is present on a subset of neurons and of oligodendrocytes at different stages of maturation, whereas it is not expressed by astrocytes. GPR17 immunoreactivity was also found on ependymal cells lining the central canal that still retain some of the characteristics of stem/progenitor cells during adulthood. Induction of spinal cord injury (SCI) by acute compression resulted in marked cell death of GPR17+ neurons and oligodendrocytes inside the lesion followed by the appearance of proliferating GPR17+ microglia/macrophages migrating to and infiltrating into the lesioned area. Moreover, 72 h after SCI, GPR17+ ependymal cells started to proliferate and to express GFAP, suggesting their activation and 'de-differentiation' to pluripotent progenitor cells. The in vivo knock down of GPR17 by an antisense oligonucleotide strategy during SCI induction markedly reduced tissue damage and related histological and motor deficits, thus confirming the crucial role played by this receptor in the early phases of tissue damage development. Taken together, our findings suggest a dual and spatiotemporal-dependent role for GPR17 in SCI. At very early times after injury, GPR17 mediates neuronal and oligodendrocyte death inside the lesioned area. At later times, GPR17+ microglia/macrophages are recruited from distal parenchymal areas and move toward the lesioned zone, to suggest a role in orchestrating local remodelling responses. At the same time, the induction of the stem cell marker GFAP in GPR17+ ependymal cells suggests initiation of repair mechanisms. Thus, GPR17 may act as a 'sensor' of damage that is activated by nucleotides and cysteinyl-leukotrienes released in the lesioned area, and could also participate in post-injury responses. Moreover, its presence on spinal cord pre-oligodendrocytes and precursor-like cells suggests GPR17 as a novel target for therapeutic manipulation to foster remyelination and functional repair in SCI.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Glycyrrhizin, a major active constituent of liquorice root (Glycyrrhiza glabra), has a free radical scavenging property, and its effects were evaluated on an animal model of spinal cord injury (SCI) induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, tissue damage, and apoptosis (measured by terminal deoxynucleotidyltransferase-mediated dUTP-biotin end labeling staining, Bax, and Bcl-2 expression). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine, iNOS, and poly(adenosine diphosphate-ribose) in the spinal cord tissue. Additionally, we demonstrate that these inflammatory events were associated with the activation of nuclear factor-kappaB. In contrast, the degree of (1) spinal cord inflammation and tissue injury (histological score), (2) nitrotyrosine and poly(adenosine diphosphate [ADP] ribose) formation, (3) iNOS expression, (4) nuclear factor-kappaB activation, and (5) apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP-biotin end labeling, Bax, and Bcl-2) was markedly reduced in spinal cord tissue obtained from mice treated with glycyrrhizin extract (10 mg/kg, i.p., 30 min before and 1 and 6 h after SCI). In a separate set of experiments, we have clearly demonstrated that glycyrrhizin extract treatment significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with glycyrrhizin extract reduces the development of inflammation and tissue injury events associated with spinal cord trauma.
Collapse
|
58
|
Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, Havton LA, Tuszynski MH. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol 2009; 513:151-63. [PMID: 19125408 PMCID: PMC2706096 DOI: 10.1002/cne.21940] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To examine neuroanatomical mechanisms underlying fine motor control of the primate hand, adult rhesus monkeys underwent injections of biotinylated dextran amine (BDA) into the right motor cortex. Spinal axonal anatomy was examined using detailed serial-section reconstruction and modified stereological quantification. Eighty-seven percent of corticospinal tract (CST) axons decussated in the medullary pyramids and descended through the contralateral dorsolateral tract of the spinal cord. Eleven percent of CST axons projected through the dorsolateral CST ipsilateral to the hemisphere of origin, and 2% of axons projected through the ipsilateral ventromedial CST. Notably, corticospinal axons decussated extensively across the spinal cord midline. Remarkably, nearly 2-fold more CST axons decussated across the cervical spinal cord midline (approximately 12,000 axons) than were labeled in all descending components of the CST (approximately 6,700 axons). These findings suggest that CST axons extend multiple segmental collaterals. Furthermore, serial-section reconstructions revealed that individual axons descending in either the ipsilateral or contralateral dorsolateral CST can: 1) terminate in the gray matter ipsilateral to the hemisphere of origin; 2) terminate in the gray matter contralateral to the hemisphere of origin; or 3) branch in the spinal cord and terminate on both sides of the spinal cord. These results reveal a previously unappreciated degree of bilaterality and complexity of corticospinal projections in the primate spinal cord. This bilaterality is more extensive than that of the rat CST, and may resemble human CST organization. Thus, augmentation of sprouting of these extensive bilateral CST projections may provide a novel target for enhancing recovery after spinal cord injury.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093-0626, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Genovese T, Esposito E, Mazzon E, Di Paola R, Caminiti R, Bramanti P, Cappelani A, Cuzzocrea S. Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. J Neurochem 2009; 108:1360-72. [PMID: 19183262 DOI: 10.1111/j.1471-4159.2009.05899.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interleukin-10 (IL-10) exerts a wide spectrum of regulatory activities in the immune and inflammatory response. The aim of this study was to investigate the role of endogenous IL-10 on the modulation of the secondary events in mice subjected to spinal cord injury induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. IL-10 wild-type mice developed severe spinal cord damage characterized by oedema, tissue damage and apoptosis (measured by Annexin-V, terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, Bax, Bcl-2, and Fas-L expression). Immunohistochemistry demonstrated a marked increase of localization of TNF-alpha, IL-1beta and S100beta, while western blot analysis shown an increased immunoreactivity of inducible nitric oxide synthase in the spinal cord tissues. The absence of IL-10 in IL-10 KO mice resulted in a significant augmentation of all the above described parameters. We have also demonstrated that the genetic absence of IL-10 worsened the recovery of limb function when compared with IL-10 wild-type mice group (evaluated by motor recovery score). Taken together, our results clearly demonstrate that the presence of IL-10 reduces the development of inflammation and tissue injury events associated with spinal cord trauma.
Collapse
|
60
|
Rauch MF, Hynes SR, Bertram J, Redmond A, Robinson R, Williams C, Xu H, Madri JA, Lavik EB. Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci 2009; 29:132-45. [PMID: 19120441 PMCID: PMC2764251 DOI: 10.1111/j.1460-9568.2008.06567.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two-component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood-spinal cord barrier. No other groups have shown positive staining for the blood-spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.
Collapse
Affiliation(s)
- Millicent Ford Rauch
- Department of Biomedical Engineering, Yale University, Malone Engineering Center 311, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Esposito E, Genovese T, Caminiti R, Bramanti P, Meli R, Cuzzocrea S. Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury. J Pineal Res 2009; 46:79-86. [PMID: 19090911 DOI: 10.1111/j.1600-079x.2008.00633.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Permanent functional deficits following spinal cord injury (SCI) arise from both mechanical injury and from secondary tissue reactions involving inflammation. The mitogen-activated protein kinases (MAPKs) play a critical role in cell signaling and gene expression. MAPK family includes three major members: extracellular signal regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), representing three different signaling cascades. Moreover, various studies have clearly shown that high-mobility group box 1 (HMGB1) protein is implicated as a putative danger signal involved in the pathogenesis of a variety of inflammatory conditions including autoimmunity, cancer, trauma and hemorrhagic shock, and ischemia-reperfusion injury. Recently, we have reported that the pineal secretory product melatonin exerts important anti-inflammatory effects in an experimental model of SCI induced by the application of vascular clips (force of 24 g) to the dura after a four-level T5-T8 laminectomy. However, no reports are available on the effect of melatonin on MAPK signaling pathways and HMGB1 expression in SCI. The aim of the present study was to evaluate whether the melatonin protective effect observed in SCI is related to the regulation of MAPK signaling pathways and HMGB1 in mice. In this study we demonstrate the efficacy of treatment with the melatonin in SCI in mice in reducing (a) motor recovery, (b) activation of MAPKs p38, JNK and ERK1/2, (c) tumor necrosis factor-alpha expression, and (d) expression of HMGB1. We propose that melatonin's ability to reduce SCI in mice is also related to a reduction in MAPK signaling pathways and HMGB1 expression.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Experimental Pharmacology, University of Naples "Federico II", Napoli, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Alexander JK, Popovich PG. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. PROGRESS IN BRAIN RESEARCH 2009; 175:125-37. [DOI: 10.1016/s0079-6123(09)17508-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
63
|
Esposito E, Genovese T, Caminiti R, Bramanti P, Meli R, Cuzzocrea S. Melatonin regulates matrix metalloproteinases after traumatic experimental spinal cord injury. J Pineal Res 2008; 45:149-56. [PMID: 18298463 DOI: 10.1111/j.1600-079x.2008.00569.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The matrix metalloproteinases (MMPs) are important enzymes that regulate developmental processes, maintain normal physiology in adulthood and have reparative roles at specific stages after an insult to the nervous system. MMPs, particularly MMP-9/gelatinase B, promote early inflammation and barrier disruption after spinal cord injury (SCI). Recently, we have reported that the pineal secretory product melatonin exerts important anti-inflammatory effects in an experimental model of SCI induced by the application of vascular clips (force of 24 g) to the dura after a four-level T5-T8 laminectomy. However, no reports are available on the relationship between the activity of MMPs and melatonin's anti-inflammatory effects. The aim of the present study was to evaluate whether the protective effect of melatonin observed in SCI is related to the regulation of MMP-9 and MMP-2 in mice. Biochemical and zymographic methods were used to analyze MMP-9 and -2 expression and activities in spinal cord tissue from SCI-treated mice at 24 hr after the trauma. Our studies reveal that melatonin reduced SCI and lipid peroxidation in spinal cord at 24 hr after SCI. Melatonin also diminished proMMP-9 and -2 activities that were induced in the spinal cord tissues at 24 hr after SCI. The reduced activities of MMP-9 and -2 were associated with depressed expression of TNF-alpha. We propose that melatonin's ability to reduce SCI in mice is also related to a reduction in MMP-9 and MMP-2 activity and expression.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Experimental Pharmacology, University of Naples Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Siegenthaler MM, Ammon DL, Keirstead HS. Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 2008; 213:363-71. [PMID: 18644369 DOI: 10.1016/j.expneurol.2008.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/25/2022]
Abstract
Most spinal cord injuries (SCI) occur in young adults. In the past few decades however, the average age at time of SCI and the percentage of injuries in persons over the age of 60 have increased. Studies have shown that there is an age-associated delay in the rate of remyelination following toxin-induced demyelination of the spinal cord, suggesting that there may be an age-associated difference in regenerative efficiency. Here we examine for the first time locomotor recovery, bladder recovery, and myelin pathology in young (3 months), aged (12 months), and geriatric (24 months) female rats following contusion SCI. Our assessments indicate that aged and geriatric rats have a delayed rate of locomotor recovery following contusion SCI as compared to young rats. Additionally, aged and geriatric rats have significantly slower bladder recovery as compared to young rats. Examination of myelin pathology reveals that aged and geriatric rats have significantly greater area of pathology and amount of demyelination, as well as significantly less remyelination as compared to young rats following contusion SCI. These data are the first to indicate that there is an age-associated decline in the rate and extent of both locomotor and bladder recovery following contusion SCI, and that age adversely affects the degree of general pathology, demyelination, and remyelination that accompanies contusion SCI.
Collapse
Affiliation(s)
- Monica M Siegenthaler
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | | | |
Collapse
|
65
|
Genovese T, Esposito E, Mazzon E, Paola RD, Meli R, Bramanti P, Piomelli D, Calignano A, Cuzzocrea S. Effects of Palmitoylethanolamide on Signaling Pathways Implicated in the Development of Spinal Cord Injury. J Pharmacol Exp Ther 2008; 326:12-23. [DOI: 10.1124/jpet.108.136903] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
66
|
Genovese T, Esposito E, Mazzon E, Muià C, Di Paola R, Meli R, Bramanti P, Cuzzocrea S. Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury. J Pharmacol Exp Ther 2008; 325:100-14. [PMID: 18180375 DOI: 10.1124/jpet.107.131060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways involve two closely related MAPKs, known as extracellular signal-regulated kinase (ERK)1 and ERK2. The aim of the present study was to evaluate the contribution of MAPK3/MAPK1 in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059), which is an inhibitor of MAPK3/MAPK1. Spinal cord trauma was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, and apoptosis. PD98059 treatment (10 mg/kg i.p.) at 1 and 6 h after the SCI significantly reduced 1) the degree of spinal cord inflammation and tissue injury (histological score), 2) neutrophil infiltration (myeloperoxidase activity), 3) nitrotyrosine formation, 4) proinflammatory cytokines expression, 5) nuclear factor-kappaB activation, 6) phospho-ERK1/2 expression, and 6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, Fas ligand, Bax, and Bcl-2 expression). Moreover, PD98059 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. Taken together, our results clearly demonstrate that PD98059 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica-Policlinico Universitario Via C. Valeria-Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2007; 210:207-16. [PMID: 18164294 DOI: 10.1016/j.expneurol.2007.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/26/2007] [Accepted: 10/27/2007] [Indexed: 11/26/2022]
Abstract
Over the past few decades, the average age at time of spinal cord injury (SCI) has increased. Here we examined locomotor recovery and myelin pathology in both young and aged adult rats following contusion SCI. Our assessment indicates that the rate of locomotor recovery following SCI is significantly delayed in aged rats as compared to young rats, and is associated with a greater degree of pathology and demyelination. Additionally, we examined the effect of voluntary exercise, pre- and post-injury, on locomotor recovery and myelin pathology following contusion SCI. Our data indicate that exercise improves the locomotor recovery of injured aged rats such that it is comparable to the recovery rate of injured young rats, and is associated with a decreased area of pathology and amount of demyelination. Interestingly, the rate of locomotor recovery and myelin pathology in the aged exercised rats was similar to that of the young sedentary rats after injury, indicating that exercise attenuates the delayed recovery of function and associated histopathology in aged rats. These data indicate that there is an age-related delay in locomotor recovery following SCI, and an age-related increase in histopathology following SCI. Importantly, our data indicate that exercise attenuates these age-related deficits following SCI.
Collapse
Affiliation(s)
- Monica M Siegenthaler
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | | | | | |
Collapse
|
68
|
Gonzalez R, Hickey MJ, Espinosa JM, Nistor G, Lane TE, Keirstead HS. Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regen Med 2007; 2:771-83. [PMID: 17907930 DOI: 10.2217/17460751.2.5.771] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation plays a critical role in the secondary degenerative response to spinal cord injury (SCI). The influx of inflammatory cells following SCI is preceded by the expression of specific chemoattractants, including chemokines. The chemokine CXCL10 is a potent T lymphocyte recruiter and has been strongly implicated in the pathology of many CNS disorders. We have previously demonstrated that CXCL10 exacerbates secondary degeneration by blocking the function of CXCL10 prior to SCI. Here we administered neutralizing antibodies against CXCL10 1 h after SCI in order to investigate the efficacy of this therapeutic intervention in abating histologic and functional deficit following acute SCI and further assess the functional role of CXCL10 in secondary degeneration. Neutralization of CXCL10 significantly reduced inflammation, apoptosis, neuronal loss and whole tissue loss. Notably, this therapeutic treatment also promoted revascularization of the injured spinal cord and functional recovery. These data suggest that anti-CXCL10 antibody treatment is a viable therapeutic strategy for acute SCI.
Collapse
Affiliation(s)
- Rafael Gonzalez
- University of California, Reeve Irvine Research Center, Department of Anatomy and Neurobiology, 2111 Gillespie Neuroscience Research Facility, College of Medicine, Irvine, CA 92697-4292, USA
| | | | | | | | | | | |
Collapse
|
69
|
Genovese T, Mazzon E, Esposito E, Muià C, Di Paola R, Bramanti P, Cuzzocrea S. Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury. Free Radic Biol Med 2007; 43:763-80. [PMID: 17664140 DOI: 10.1016/j.freeradbiomed.2007.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to assess the contribution of peroxynitrite formation in the pathophysiology of spinal cord injury (SCI) in mice. To this purpose, we used a peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride (FeTSPP). Spinal cord trauma was induced by the application of vascular clips (force of 24g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of inflammatory mediators, tissue damage, and apoptosis. FeTSPP treatment (10-100 mg/kg, i.p.) significantly reduced in dose-dependent manner 1 and 4 h after the SCI (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and poly-(ADP-ribose) polymerase activation, (4) proinflammmaory cytokines expression, (5) NF-kappaB activation, and (6) apoptosis (TUNEL staining, Bax and Bcl-2 expression). Moreover, FeTSPP significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. Taken together, our results clearly demonstrate that FeTSPP treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma similarly to dexamethasone, a well-known antiinflammatory agent which we have used as positive control.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
70
|
Okano H, Kaneko S, Okada S, Iwanami A, Nakamura M, Toyama Y. Regeneration-based therapies for spinal cord injuries. Neurochem Int 2007; 51:68-73. [PMID: 17544171 DOI: 10.1016/j.neuint.2007.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/12/2007] [Accepted: 04/14/2007] [Indexed: 12/18/2022]
Abstract
Although it has been long believed that the damaged central nervous system does not regenerate upon injury, there is an emerging hope for regeneration-based therapy of the damaged central nervous system (CNS) due to the progress of developmental biology and regenerative medicine including stem cell biology. In this review, we have summarized recent studies aimed at the development of regeneration-based therapeutic approaches for spinal cord injuries, including therapy with anti-inflammatory cytokines, transplantation of neural stem/precursor cells and induction of axonal regeneration.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|