51
|
Bowles S, Williamson WR, Nettles D, Hickman J, Welle CG. Closed-loop automated reaching apparatus (CLARA) for interrogating complex motor behaviors. J Neural Eng 2021; 18:10.1088/1741-2552/ac1ed1. [PMID: 34407518 PMCID: PMC8699662 DOI: 10.1088/1741-2552/ac1ed1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022]
Abstract
Objective.Closed-loop neuromodulation technology is a rapidly expanding category of therapeutics for a broad range of indications. Development of these innovative neurological devices requires high-throughput systems for closed-loop stimulation of model organisms, while monitoring physiological signals and complex, naturalistic behaviors. To address this need, we developed CLARA, a closed-loop automated reaching apparatus.Approach.Using breakthroughs in computer vision, CLARA integrates fully-automated, markerless kinematic tracking of multiple features to classify animal behavior and precisely deliver neural stimulation based on behavioral outcomes. CLARA is compatible with advanced neurophysiological tools, enabling the testing of neurostimulation devices and identification of novel neurological biomarkers.Results.The CLARA system tracks unconstrained skilled reach behavior in 3D at 150 Hz without physical markers. The system fully automates trial initiation and pellet delivery and is capable of accurately delivering stimulation in response to trial outcome with short latency. Kinematic data from the CLARA system provided novel insights into the dynamics of reach consistency over the course of learning, suggesting that learning selectively improves reach failures but does not alter the kinematics of successful reaches. Additionally, using the closed-loop capabilities of CLARA, we demonstrate that vagus nerve stimulation (VNS) improves skilled reach performance and increases reach trajectory consistency in healthy animals.Significance.The CLARA system is the first mouse behavior apparatus that uses markerless pose tracking to provide real-time closed-loop stimulation in response to the outcome of an unconstrained motor task. Additionally, we demonstrate that the CLARA system was essential for our investigating the role of closed-loop VNS stimulation on motor performance in healthy animals. This approach has high translational relevance for developing neurostimulation technology based on complex human behavior.
Collapse
Affiliation(s)
- S Bowles
- Neurosurgery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
- These authors contributed equally
| | - W R Williamson
- NeuroTechnology Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
- These authors contributed equally
| | - D Nettles
- Neurosurgery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - J Hickman
- Neurosurgery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - C G Welle
- Neurosurgery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| |
Collapse
|
52
|
NeuroTec Sitem-Insel Bern: Closing the Last Mile in Neurology. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2021. [DOI: 10.3390/ctn5020013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurology is focused on a model where patients receive their care through repeated visits to clinics and doctor’s offices. Diagnostic tests often require expensive and specialized equipment that are only available in clinics. However, this current model has significant drawbacks. First, diagnostic tests, such as daytime EEG and sleep studies, occur under artificial conditions in the clinic, which may mask or wrongly emphasize clinically important features. Second, early detection and high-quality management of chronic neurological disorders require repeat measurements to accurately capture the dynamics of the disease process, which is impractical to execute in the clinic for economical and logistical reasons. Third, clinic visits remain inaccessible to many patients due to geographical and economical circumstances. Fourth, global disruptions to daily life, such as the one caused by COVID-19, can seriously harm patients if access to in-person clinical visits for diagnostic and treatment purposes is throttled. Thus, translating diagnostic and treatment procedures to patients’ homes will convey multiple substantial benefits and has the potential to substantially improve clinical outcomes while reducing cost. NeuroTec was founded to accelerate the re-imagining of neurology and to promote the convergence of technological, scientific, medical and societal processes. The goal is to identify and validate new digital biomarkers that can close the last mile in neurology by enabling the translation of personalized diagnostics and therapeutic interventions from the clinic to the patient’s home.
Collapse
|
53
|
Personalized Medicine in Parkinson's Disease: New Options for Advanced Treatments. J Pers Med 2021; 11:jpm11070650. [PMID: 34357117 PMCID: PMC8303729 DOI: 10.3390/jpm11070650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) presents varying motor and non-motor features in each patient owing to their different backgrounds, such as age, gender, genetics, and environmental factors. Furthermore, in the advanced stages, troublesome symptoms vary between patients due to motor and non-motor complications. The treatment of PD has made great progress over recent decades and has directly contributed to an improvement in patients’ quality of life, especially through the progression of advanced treatment. Deep brain stimulation, radiofrequency, MR–guided focused ultrasound, gamma knife, levodopa-carbidopa intestinal gel, and apomorphine are now used in the clinical setting for this disease. With multiple treatment options currently available for all stages of PD, we here discuss the most recent options for advanced treatment, including cell therapy in advanced PD, from the perspective of personalized medicine.
Collapse
|
54
|
Doshi PK, Das D. Deep Brain Stimulation for Parkinson's Disease: Currents Status and Emerging Concepts. Neurol India 2021; 68:S179-S186. [PMID: 33318348 DOI: 10.4103/0028-3886.302466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The clinical application of DBS has become manifold and there has been a tremendous growth in DBS technology in the last few decades making it safer and user friendly. The earlier concept of its delayed application in motor fluctuations of Parkinson's disease has been replaced by Class-I evidence of EARLY-STIM trial in 2013, leading to its FDA approval to be used in early-stage despite criticism. Various studies have provided evidence of beneficial effects of bilateral STN-DBS on both motor as well as nonmotor symptoms and different new targets such as the pedunculopontine nucleus, posterior subthalamic area or caudal zona incerta, centromedian-parafascicular complex, and substantia nigra pars reticulata have now become a new area of interest in addition to the subthalamic nucleus and globus pallidus internus for the alleviation of both motor and nonmotor symptoms of Parkinson's disease. New data has confirmed that the DBS is clinically as effective and safe in elderly patients as it is in younger ones. Technological advances like current steering, directional leads, and closed-loop DBS are directed towards reducing the stimulation-induced adverse effects and preservation of the battery life for a longer period. Results of the long-term efficacy of DBS on Parkinson's disease are now available. These have shown that as the motor benefit continues, the clinical progression of Parkinson's disease also continues. We plan to discuss all these in this paper.
Collapse
Affiliation(s)
- Paresh K Doshi
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| | - Deepak Das
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| |
Collapse
|
55
|
Xu SS, Malpas CB, Bulluss KJ, McDermott HJ, Kalincik T, Thevathasan W. Lesser-Known Aspects of Deep Brain Stimulation for Parkinson's Disease: Programming Sessions, Hardware Surgeries, Residential Care Admissions, and Deaths. Neuromodulation 2021; 25:836-845. [PMID: 34114293 DOI: 10.1111/ner.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The long-term treatment burden, duration of community living, and survival of patients with Parkinson's disease (PD) after deep brain stimulation (DBS) implantation are unclear. This study aims to determine the frequency of programming, repeat hardware surgeries (of the intracranial electrode, implantable pulse generator [IPG], and extension-cable), and the timings of residential care and death in patients with PD treated with DBS. MATERIALS AND METHODS In this cross-sectional, population-based study, individual-level data were collected from the Australian government covering a 15-year period (2002-2016) on 1849 patients with PD followed from DBS implantation. RESULTS The mean DBS implantation age was 62.6 years and mean follow-up 5.0 years. Mean annual programming rates were 6.9 in the first year and 2.8 in subsequent years. 51.4% of patients required repeat hardware surgery. 11.3% of patients had repeat intracranial electrode surgery (including an overall 1.1% of patients who were completely explanted). 47.6% of patients had repeat IPG/extension-cable surgery including for presumed battery depletion. 6.2% of patients had early repeat IPG/extension-cable surgery (within one year of any previous such surgery). Thirty-day postoperative mortality was 0.3% after initial DBS implantation and 0.6% after any repeat hardware surgery. 25.3% of patients were admitted into residential care and 17.4% died. The median interval to residential care and death was 10.2 years and 11.4 years, respectively. Age more than 65 years was associated with fewer repeat hardware surgeries for presumed complications (any repeat surgery of electrodes, extension-cables, and early IPG surgery) and greater rates of residential care admission and death. CONCLUSIONS Data from a large cohort of patients with PD treated with DBS found that the median life span after surgery is ten years. Repeat hardware surgery, including of the intracranial electrodes, is common. These findings support development of technologies to reduce therapy burden such as enhanced surgical navigation, hardware miniaturization, and improved battery efficiency.
Collapse
Affiliation(s)
- San San Xu
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, East Melbourne, VIC, Australia.,Department of Neurology, Austin Hospital, Heidelberg, VIC, Australia
| | - Charles B Malpas
- CORe, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia.,MS Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Kristian J Bulluss
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Neurosurgery, St Vincent's Hospital Melbourne, Fitzroy, and Department of Neurosurgery, Austin Hospital, Heidelberg, VIC, Australia
| | - Hugh J McDermott
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, East Melbourne, VIC, Australia
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,MS Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Wesley Thevathasan
- Bionics Institute, East Melbourne, VIC, Australia.,Department of Neurology, Austin Hospital, Heidelberg, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
56
|
Sand D, Rappel P, Marmor O, Bick AS, Arkadir D, Lu BL, Bergman H, Israel Z, Eitan R. Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients. J Neural Eng 2021; 18. [PMID: 33906182 DOI: 10.1088/1741-2552/abfc1d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson's disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients.Approach.Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3-12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states.Main results.Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models.Significance.We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
Collapse
Affiliation(s)
- Daniel Sand
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Pnina Rappel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Liang Lu
- Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Israel
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Jerusalem Mental Health Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
57
|
Johnson LA, Aman JE, Yu Y, Escobar Sanabria D, Wang J, Hill M, Dharnipragada R, Patriat R, Fiecas M, Li L, Schrock LE, Cooper SE, Johnson MD, Park MC, Harel N, Vitek JL. High-Frequency Oscillations in the Pallidum: A Pathophysiological Biomarker in Parkinson's Disease? Mov Disord 2021; 36:1332-1341. [PMID: 33847406 DOI: 10.1002/mds.28566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Abnormal oscillatory neural activity in the beta-frequency band (13-35 Hz) is thought to play a role in Parkinson's disease (PD); however, increasing evidence points to alterations in high-frequency ranges (>100 Hz) also having pathophysiological relevance. OBJECTIVES Studies have found that power in subthalamic nucleus (STN) high-frequency oscillations is increased with dopaminergic medication and during voluntary movements, implicating these brain rhythms in normal basal ganglia function. The objective of this study was to investigate whether similar signaling occurs in the internal globus pallidus (GPi), a nucleus increasingly used as a target for deep brain stimulation (DBS) for PD. METHODS Spontaneous and movement-related GPi field potentials were recorded from DBS leads in 5 externalized PD patients on and off dopaminergic medication, as well as from 3 rhesus monkeys before and after the induction of parkinsonism with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. RESULTS In the parkinsonian condition, we identified a prominent oscillatory peak centered at 200-300 Hz that increased during movement. In patients the magnitude of high-frequency oscillation modulation was negatively correlated with bradykinesia. In monkeys, high-frequency oscillations were mostly absent in the naive condition but emerged after the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. In patients, spontaneous high-frequency oscillations were significantly attenuated on-medication. CONCLUSIONS Our findings provide evidence in support of the hypothesis that exaggerated, movement-modulated high-frequency oscillations in the GPi are pathophysiological features of PD. These findings suggest that the functional role(s) of high-frequency oscillations may differ between the STN and GPi and motivate additional investigations into their relationship to motor control in normal and diseased states.
Collapse
Affiliation(s)
- Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua E Aman
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meghan Hill
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rajiv Dharnipragada
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Remi Patriat
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Fiecas
- School of Public Health Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura Li
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren E Schrock
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Noam Harel
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
58
|
Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Sci Rep 2021; 11:7973. [PMID: 33846456 PMCID: PMC8041890 DOI: 10.1038/s41598-021-87031-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback.
Collapse
|
59
|
Chen Y, Ma B, Hao H, Li L. Removal of Electrocardiogram Artifacts From Local Field Potentials Recorded by Sensing-Enabled Neurostimulator. Front Neurosci 2021; 15:637274. [PMID: 33912002 PMCID: PMC8071948 DOI: 10.3389/fnins.2021.637274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Sensing-enabled neurostimulators are an advanced technology for chronic observation of brain activities, and show great potential for closed-loop neuromodulation and as implantable brain-computer interfaces. However, local field potentials (LFPs) recorded by sensing-enabled neurostimulators can be contaminated by electrocardiogram (ECG) signals due to complex recording conditions and limited common-mode-rejection-ratio (CMRR). In this study, we propose a solution for removing such ECG artifacts from local field potentials (LFPs) recorded by a sensing-enabled neurostimulator. A synchronized monopolar channel was added as an ECG reference, and two pre-existing methods, i.e., template subtraction and adaptive filtering, were then applied. ECG artifacts were successfully removed and the performance of the method was insensitive to residual stimulation artifacts. This approach to removal of ECG artifacts broadens the range of applications of sensing-enabled neurostimulators.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Bozhi Ma
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China.,Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,International Data Group (IDG)/McGovern Institute for Brain Research at Tsinghua University, Beijing, China.,Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
60
|
De Ridder D, Maciaczyk J, Vanneste S. The future of neuromodulation: smart neuromodulation. Expert Rev Med Devices 2021; 18:307-317. [PMID: 33764840 DOI: 10.1080/17434440.2021.1909470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The International Neuromodulation Society defines neuromodulation as the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body.Areas covered: In the near future (<5 years) increasingly complex implantable neuromodulation systems will enter the market. These devices are capable of closed-loop stimulation and the delivery of novel stimulation designs, pushing the need for upgradability. But what about the near-to-far future, meaning 5-10 years from now?Expert opinion: We propose that neuromodulation in the near to far future (5-10 years) will involve integration of adaptive network neuromodulation with predictive artificial intelligence, automatically adjusted by brain and external sensors, and controlled via cloud-based applications. The components will be introduced in a phased approach, culminating in a fully autonomous brain-stimulator-cloud interface. This may, in the long future (>10 years), lead to the brain of the future, a brain with integrated artificial intelligence.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jarek Maciaczyk
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
61
|
Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson's disease and related disorders. Expert Rev Med Devices 2021; 18:319-332. [PMID: 33765395 DOI: 10.1080/17434440.2021.1909471] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Several software and hardware advances in the field of deep brain stimulation (DBS) have been realized in recent years and devices from three manufacturers are available. The Percept™ PC platform (Medtronic, Inc.) enables brain sensing, the latest innovation. Clinicians should be familiar with the differences in devices, and with the latest technologies to deliver optimized patient care.Areas covered: In this device profile, the sensing capabilities of the Percept™ PC platform are described, and the system capabilities are differentiated from other available platforms. The development of the preceding Activa™ PC+S research platform, an investigational device to simultaneously sense brain signals and provide therapeutic stimulation, is provided to place Percept™ PC in the appropriate context.Expert opinion: Percept™ PC offers unique sensing and diary functions as a means to refine therapeutic stimulation, track symptoms and correlate them to neurophysiologic characteristics. Additional features enhance the patient experience with DBS, including 3 T magnetic resonance imaging compatibility, wireless telemetry, a smaller and thinner battery profile, and increased battery longevity. Future work will be needed to illustrate the clinical utility and added value of using sensing to optimize DBS therapy. Patients implanted with Percept™ PC will have ready access to future technology developments.
Collapse
Affiliation(s)
- Joohi Jimenez-Shahed
- Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
62
|
Boakye M, Ugiliweneza B, Madrigal F, Mesbah S, Ovechkin A, Angeli C, Bloom O, Wecht JW, Ditterline B, Harel NY, Kirshblum S, Forrest G, Wu S, Harkema S, Guest J. Clinical Trial Designs for Neuromodulation in Chronic Spinal Cord Injury Using Epidural Stimulation. Neuromodulation 2021; 24:405-415. [PMID: 33794042 DOI: 10.1111/ner.13381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
STUDY DESIGN This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Sciences, University of Louisville, Louisville, KY, USA
| | - Fabian Madrigal
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alexander Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - Ona Bloom
- Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Jill W Wecht
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Noam Y Harel
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NY, USA.,Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samuel Wu
- Department of Biostatistics, CTSI Data Coordinating Center, University of Florida, Gainesville, FL, USA
| | - Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - James Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
63
|
Noor MS, McIntyre CC. Biophysical characterization of local field potential recordings from directional deep brain stimulation electrodes. Clin Neurophysiol 2021; 132:1321-1329. [PMID: 33867263 DOI: 10.1016/j.clinph.2021.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Two major advances in clinical deep brain stimulation (DBS) technology have been the introduction of local field potential (LFP) recording capabilities, and the deployment of directional DBS electrodes. However, these two technologies are not operationally integrated within current clinical DBS devices. Therefore, we evaluated the theoretical advantages of using directional DBS electrodes for LFP recordings, with a focus on measuring beta-band activity in the subthalamic nucleus (STN). METHODS We used a computational model of human STN neural activity to simulate LFP recordings. The model consisted of 235,280 anatomically and electrically detailed STN neurons surrounding the DBS electrode, which was previously optimized to mimic beta-band synchrony in the dorsolateral STN. We then used that model system to compare LFP recordings from cylindrical and directional DBS contacts, and evaluate how the selection of different contacts for bipolar recording affected the LFP measurements. RESULTS The model predicted two advantages of directional DBS electrodes over cylindrical DBS electrodes for STN LFP recording. First, recording from directional contacts could provide additional insight on the location of a synchronous volume of neurons within the STN. Second, directional contacts could detect a smaller volume of synchronous neurons than cylindrical contacts, which our simulations predicted to be a ~0.5 mm minimum radius. CONCLUSIONS STN LFP recordings from 8-contact directional DBS electrodes (28 possible bipolar pairs) can provide more information than 4-contact cylindrical DBS electrodes (6 possible bipolar pairs), but they also introduce additional complexity in analyzing the signals. SIGNIFICANCE Integration of directional electrodes with DBS systems that are capable of LFP recordings could improve localization of targeted volumes of synchronous neurons in PD patients.
Collapse
Affiliation(s)
- M Sohail Noor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
64
|
Neumann WJ, Memarian Sorkhabi M, Benjaber M, Feldmann LK, Saryyeva A, Krauss JK, Contarino MF, Sieger T, Jech R, Tinkhauser G, Pollo C, Palmisano C, Isaias IU, Cummins DD, Little SJ, Starr PA, Kokkinos V, Gerd-Helge S, Herrington T, Brown P, Richardson RM, Kühn AA, Denison T. The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces. Brain Stimul 2021; 14:1301-1306. [PMID: 34428554 PMCID: PMC8460992 DOI: 10.1016/j.brs.2021.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Majid Memarian Sorkhabi
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Lucia K Feldmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Tomas Sieger
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Daniel D Cummins
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simon J Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Schneider Gerd-Helge
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Todd Herrington
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Brown
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
65
|
Castaño-Candamil S, Ferleger BI, Haddock A, Cooper SS, Herron J, Ko A, Chizeck HJ, Tangermann M. A Pilot Study on Data-Driven Adaptive Deep Brain Stimulation in Chronically Implanted Essential Tremor Patients. Front Hum Neurosci 2020; 14:541625. [PMID: 33250727 PMCID: PMC7674800 DOI: 10.3389/fnhum.2020.541625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is an established therapy for Parkinson's disease (PD) and essential-tremor (ET). In adaptive DBS (aDBS) systems, online tuning of stimulation parameters as a function of neural signals may improve treatment efficacy and reduce side-effects. State-of-the-art aDBS systems use symptom surrogates derived from neural signals-so-called neural markers (NMs)-defined on the patient-group level, and control strategies assuming stationarity of symptoms and NMs. We aim at improving these aDBS systems with (1) a data-driven approach for identifying patient- and session-specific NMs and (2) a control strategy coping with short-term non-stationary dynamics. The two building blocks are implemented as follows: (1) The data-driven NMs are based on a machine learning model estimating tremor intensity from electrocorticographic signals. (2) The control strategy accounts for local variability of tremor statistics. Our study with three chronically implanted ET patients amounted to five online sessions. Tremor quantified from accelerometer data shows that symptom suppression is at least equivalent to that of a continuous DBS strategy in 3 out-of 4 online tests, while considerably reducing net stimulation (at least 24%). In the remaining online test, symptom suppression was not significantly different from either the continuous strategy or the no treatment condition. We introduce a novel aDBS system for ET. It is the first aDBS system based on (1) a machine learning model to identify session-specific NMs, and (2) a control strategy coping with short-term non-stationary dynamics. We show the suitability of our aDBS approach for ET, which opens the door to its further study in a larger patient population.
Collapse
Affiliation(s)
- Sebastián Castaño-Candamil
- Brain State Decoding Lab, Department of Computer Science, BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau, Germany
| | - Benjamin I Ferleger
- BioRobotics Lab, Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Andrew Haddock
- BioRobotics Lab, Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Sarah S Cooper
- BioRobotics Lab, Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Jeffrey Herron
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Andrew Ko
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Howard J Chizeck
- BioRobotics Lab, Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Michael Tangermann
- Brain State Decoding Lab, Department of Computer Science, BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau, Germany.,Autonomous Intelligent Systems, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany.,Artificial Cognitive Systems Lab, Artificial Intelligence Department, Faculty of Social Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
66
|
Structure-function relationship of the posterior subthalamic area with directional deep brain stimulation for essential tremor. NEUROIMAGE-CLINICAL 2020; 28:102486. [PMID: 33395977 PMCID: PMC7674616 DOI: 10.1016/j.nicl.2020.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/10/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022]
Abstract
Directional DBS of the DRTT and the zona incerta is correlated with tremor suppression. Activation patterns for tremor suppression and side effects involve mostly the dentato-rubro-thalamic tract and the zona incerta. Concomitant side effects often limit the therapeutic window of directional deep brain stimulation.
Deep Brain Stimulation of the posterior subthalamic area is an emergent target for the treatment of Essential Tremor. Due to the heterogeneous and complex anatomy of the posterior subthalamic area, it remains unclear which specific structures mediate tremor suppression and different side effects. The objective of the current work was to yield a better understanding of what anatomical structures mediate the different clinical effects observed during directional deep brain stimulation of that area. We analysed a consecutive series of 12 essential tremor patients. Imaging analysis and systematic clinical testing performed 4–6 months postoperatively yielded location, clinical efficacy and corresponding therapeutic windows for 160 directional contacts. Overlap ratios between individual activation volumes and neighbouring thalamic and subthalamic nuclei as well as individual fiber tracts were calculated. Further, we generated stimulation heatmaps to assess the area of activity and structures stimulated during tremor suppression and occurrence of side effects. Stimulation of the dentato-rubro-thalamic tract and the zona incerta was most consistently correlated with tremor suppression. Both individual and group analysis demonstrated a similar pattern of activation for tremor suppression and different sorts of side-effects. Unlike current clinical concepts, induction of spasms and paresthesia were not correlated with stimulation of the corticospinal tract and the medial lemniscus. Furthermore, we noticed a significant difference in the therapeutic window between the best and worst directional contacts. The best directional contacts did not provide significantly larger therapeutic windows than omnidirectional stimulation at the same level. Deep brain stimulation of the posterior subthalamic area effectively suppresses all aspects of ET but can be associated with concomitant side effects limiting the therapeutic window. Activation patterns for tremor suppression and side effects were similar and predominantly involved the dentato-rubro-thalamic tract and the zona incerta. We found no different activation patterns between different types of side effects and no clear correlation between structure and function. Future studies with use of more sophisticated modelling of activation volumes taking into account fiber heterogeneity and orientation may eventually better delineate these different clusters, which may allow for a refined targeting and programming within this area.
Collapse
|
67
|
Ferleger BI, Houston B, Thompson MC, Cooper SS, Sonnet KS, Ko AL, Herron JA, Chizeck HJ. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients. J Neural Eng 2020; 17:056026. [DOI: 10.1088/1741-2552/abb416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
68
|
Wu YH, Ou-Yang YH, Chen CC, Lee CY, Wu CY, Ker MD. Miniaturized Intracerebral Potential Recorder for Long-Term Local Field Potential of Deep Brain Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5188-5191. [PMID: 33019154 DOI: 10.1109/embc44109.2020.9175384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A miniaturized intracerebral potential recorder for long-term local field potential (LFP) of deep brain signals is proposed. LFP can be recorded by deep brain electrodes. The abnormal beta-band oscillation of LFP in subthalamic nucleus and internal globus pallidus in patients with Parkinson's disease (PD) are associated with the severity of the symptoms. The LFP signal from patients who have been implanted with deep brain electrode can be monitored by our system for at least 24 hours in real time. Graphical user interface has also been developed for use by medical personnel. Imitation experiments and in vivo experiments were performed to successfully verify that our system can measure LFP signals. With 24-hour intracerebral signals, researchers can analyze what is happened in the brain in daily life. In the future, more effective PD treatment can be developed, such as intelligent closed-loop deep brain stimulation.
Collapse
|
69
|
Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S. Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 2020; 220:117144. [DOI: 10.1016/j.neuroimage.2020.117144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
|
70
|
Baaske MK, Kormann E, Holt AB, Gulberti A, McNamara CG, Pötter-Nerger M, Westphal M, Engel AK, Hamel W, Brown P, Moll CKE, Sharott A. Parkinson's disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input in vivo. Neurobiol Dis 2020; 146:105119. [PMID: 32991998 PMCID: PMC7710979 DOI: 10.1016/j.nbd.2020.105119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022] Open
Abstract
Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson's disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35 Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake human PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In these patients, we demonstrate that a subset of putative STN neurons is strongly and selectively sensitive to magnitude fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to the full range of instantaneous amplitude in the beta-frequency range. In rats, we probed the frequency response of STN neurons in the cortico-basal-ganglia-network more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40 Hz) and constant amplitude. In both healthy and dopamine-depleted rats, only beta-frequency stimulation led to a progressive reduction in the variability of spike timing through the stimulation train. This suggests, that the interval of beta-frequency input provides an optimal window for eliciting the next spike with high fidelity. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input. STN-neurons are selectively entrained to cortical beta oscillations in PD patients. Phase-locking of STN-neurons is linearly dependent on oscillation magnitude. Beta bursts in LFP/EEG are accompanied by transient synchronisation of STN spiking. STN neurons are selectively entrained to cortical beta stimulation in rats. Beta-selectivity of STN neurons is present in control and dopamine-depleted rats.
Collapse
Affiliation(s)
- Magdalena K Baaske
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Abbey B Holt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
71
|
Tsuboi T, Cauraugh JH, Wong JK, Okun MS, Ramirez-Zamora A. Quality of life outcomes after globus pallidus internus deep brain stimulation in idiopathic or inherited isolated dystonia: a meta-analysis. J Neurol Neurosurg Psychiatry 2020; 91:938-944. [PMID: 32732389 DOI: 10.1136/jnnp-2019-322575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/08/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Several studies reported the beneficial effects of globus pallidus internus deep brain stimulation (GPi DBS) on health-related quality of life (HRQoL) in patients with inherited or idiopathic isolated dystonia. However, the impact of this intervention on physical and mental/psychological domains and the effects over time remain unclear. METHODS We conducted a systematic literature review from January 2000 to May 2019 and performed a meta-analysis of HRQoL outcomes based on the Short Form Health Survey-36 (SF-36) after GPi DBS in patients with inherited or idiopathic isolated dystonia to evaluate the effects of DBS on physical and mental QoL. RESULTS Seven studies comprising 144 patients with dystonia (78, generalised; 34, segmental; and 32, focal cervical) were included in this comprehensive analysis. The mean (SD) age at DBS implantation was 41.0 (11.4) years, and the follow-up period after implantation was 3.2 (3.8) years. The random effects model meta-analysis revealed that both physical and mental domains of SF-36 improved following DBS with a significantly larger effect size for the physical domains (effect size=0.781; p<0.0001) compared with the mental domains (effect size=0.533; p<0.0001). A moderator variable analysis demonstrated that effect sizes for HRQoL improvement were maintained over time. CONCLUSIONS This is the first meta-analysis that demonstrates significant benefits in HRQoL following DBS in patients with inherited or idiopathic isolated dystonia. The benefits are greater for physical QoL domains compared with mental/psychological QoL. These findings highlight the importance of a comprehensive multidisciplinary approach to improve mental/psychological QoL.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA .,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
72
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
73
|
Ozturk M, Telkes I, Jimenez-Shahed J, Viswanathan A, Tarakad A, Kumar S, Sheth SA, Ince NF. Randomized, Double-Blind Assessment of LFP Versus SUA Guidance in STN-DBS Lead Implantation: A Pilot Study. Front Neurosci 2020; 14:611. [PMID: 32655356 PMCID: PMC7325925 DOI: 10.3389/fnins.2020.00611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The efficacy of deep brain stimulation (DBS) therapy in Parkinson's disease (PD) patients is highly dependent on the precise localization of the target structures such as subthalamic nucleus (STN). Most commonly, microelectrode single unit activity (SUA) recordings are performed to refine the target. This process is heavily experience based and can be technically challenging. Local field potentials (LFPs), representing the activity of a population of neurons, can be obtained from the same microelectrodes used for SUA recordings and allow flexible online processing with less computational complexity due to lower sampling rate requirements. Although LFPs have been shown to contain biomarkers capable of predicting patients' symptoms and differentiating various structures, their use in the localization of the STN in the clinical practice is not prevalent. Methods: Here we present, for the first time, a randomized and double-blinded pilot study with intraoperative online LFP processing in which we compare the clinical benefit from SUA- versus LFP-based implantation. Ten PD patients referred for bilateral STN-DBS were randomly implanted using either SUA or LFP guided targeting in each hemisphere. Although both SUA and LFP were recorded for each STN, the electrophysiologist was blinded to one at a time. Three months postoperatively, the patients were evaluated by a neurologist blinded to the intraoperative recordings to assess the performance of each modality. While SUA-based decisions relied on the visual and auditory inspection of the raw traces, LFP-based decisions were given through an online signal processing and machine learning pipeline. Results: We found a dramatic agreement between LFP- and SUA-based localization (16/20 STNs) providing adequate clinical improvement (51.8% decrease in 3-month contralateral motor assessment scores), with LFP-guided implantation resulting in greater average improvement in the discordant cases (74.9%, n = 3 STNs). The selected tracks were characterized by higher activity in beta (11-32 Hz) and high-frequency (200-400 Hz) bands (p < 0.01) of LFPs and stronger non-linear coupling between these bands (p < 0.05). Conclusion: Our pilot study shows equal or better clinical benefit with LFP-based targeting. Given the robustness of the electrode interface and lower computational cost, more centers can utilize LFP as a strategic feedback modality intraoperatively, in conjunction to the SUA-guided targeting.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ilknur Telkes
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Arjun Tarakad
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Suneel Kumar
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Nuri F. Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
74
|
Tsuboi T, Au KLK, Deeb W, Almeida L, Foote KD, Okun MS, Ramirez-Zamora A. Motor outcomes and adverse effects of deep brain stimulation for dystonic tremor: A systematic review. Parkinsonism Relat Disord 2020; 76:32-41. [PMID: 32559631 DOI: 10.1016/j.parkreldis.2020.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Dystonic tremor (DT) is defined as the tremor in body parts affected by dystonia. Although deep brain stimulation (DBS) has been used to manage medically-refractory DT patients, its efficacy has not been well established. The objective of this study is to provide an up-to-date systematic review of DBS outcomes for DT patients. We conducted a literature search using Medline, Embase, and Cochrane Library databases in February 2020 according to the PRISMA guidelines. From 858 publications, we identified 30 articles involving 89 DT patients who received DBS of different targets. Thalamic DBS was the most common (n = 39) and improved tremor by 40-50% potentially in the long-term over five years with variable effects on dystonic symptoms. Globus pallidus internus (GPi), subthalamic, and subthalamic nucleus (STN) DBS improved both tremor and dystonic symptoms; however, data were limited. A few studies have reported better tremor and dystonia outcomes with combinations of different targets. Concerning adverse effects, gait/balance disorders, and ataxia seemed to be more common among patients treated with thalamic or subthalamic DBS, whereas parkinsonian adverse effects were observed only in patients treated with subthalamic or GPi DBS. Comparative benefits and limitations of these targets remain unclear because of the lack of randomized controlled trials. In conclusion, DBS of these targets may improve tremor with a variable effect on dystonia with different adverse effect profiles. The shortcomings in the literature include long-term motor outcomes, quality of life outcomes, optimal DBS targeting, and DBS programming strategy.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Ka Loong Kelvin Au
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Wissam Deeb
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
75
|
Petersson P, Halje P, Cenci MA. Significance and Translational Value of High-Frequency Cortico-Basal Ganglia Oscillations in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:183-196. [PMID: 30594935 PMCID: PMC6484276 DOI: 10.3233/jpd-181480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both clinical and basic investigators. In Parkinson’s disease (PD), neural activity in basal ganglia nuclei is characterized by oscillatory patterns that are believed to disrupt the dynamic processing of movement-related information and thus generate motor symptoms. Beta-band oscillations associated with hypokinetic states have been reviewed in several excellent previous articles. Here we focus on faster oscillatory phenomena that have been reported in association with a diverse range of motor states. We review the occurrence of different types of fast oscillations and the evidence supporting their pathophysiological role. We also provide a general discussion on the definition, possible mechanisms, and translational value of synchronized oscillations of different frequencies in cortico-basal ganglia structures. Revealing how oscillatory phenomena are caused and spread in cortico-basal ganglia-thalamocortical networks will offer a key to unlock the neural codes of both motor and non-motor symptoms in PD. In preclinical therapeutic research, recording of oscillatory neural activities holds the promise to unravel mechanisms of action of current and future treatments.
Collapse
Affiliation(s)
- Per Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - Pär Halje
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
76
|
Abstract
Abstract
Background
General anesthetics-induced changes of electrical oscillations in the basal ganglia may render the identification of the stimulation targets difficult. The authors hypothesized that while sevoflurane anesthesia entrains coherent lower frequency oscillations, it does not affect the identification of the subthalamic nucleus and clinical outcome.
Methods
A cohort of 19 patients with Parkinson’s disease with comparable disability underwent placement of electrodes under either sevoflurane general anesthesia (n = 10) or local anesthesia (n = 9). Microelectrode recordings during targeting were compared for neuronal spiking characteristics and oscillatory dynamics. Clinical outcomes were compared at 5-yr follow-up.
Results
Under sevoflurane anesthesia, subbeta frequency oscillations predominated (general vs. local anesthesia, mean ± SD; delta: 13 ± 7.3% vs. 7.8 ± 4.8%; theta: 8.4 ± 4.1% vs. 3.9 ± 1.6%; alpha: 8.1 ± 4.1% vs. 4.8 ± 1.5%; all P < 0.001). In addition, distinct dorsolateral beta and ventromedial gamma oscillations were detected in the subthalamic nucleus solely in awake surgery (mean ± SD; dorsal vs. ventral beta band power: 20.5 ± 6.6% vs. 15.4 ± 4.3%; P < 0.001). Firing properties of subthalamic neurons did not show significant difference between groups. Clinical outcomes with regard to improvement in motor and psychiatric symptoms and adverse effects were comparable for both groups. Tract numbers of microelectrode recording, active contact coordinates, and stimulation parameters were also equivalent.
Conclusions
Sevoflurane general anesthesia decreased beta-frequency oscillations by inducing coherent lower frequency oscillations, comparable to the pattern seen in the scalp electroencephalogram. Nevertheless, sevoflurane-induced changes in electrical activity patterns did not reduce electrode placement accuracy and clinical effect. These observations suggest that microelectrode-guided deep brain stimulation under sevoflurane anesthesia is a feasible clinical option.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
77
|
Ozturk M, Kaku H, Jimenez-Shahed J, Viswanathan A, Sheth SA, Kumar S, Ince NF. Subthalamic Single Cell and Oscillatory Neural Dynamics of a Dyskinetic Medicated Patient With Parkinson's Disease. Front Neurosci 2020; 14:391. [PMID: 32390796 PMCID: PMC7193777 DOI: 10.3389/fnins.2020.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 02/01/2023] Open
Abstract
Single cell neuronal activity (SUA) and local field potentials (LFP) in the subthalamic nucleus (STN) of unmedicated Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery have been well-characterized during microelectrode recordings (MER). However, there is limited knowledge about the changes in the firing patterns and oscillations above and within the territories of STN after the intake of dopaminergic medication. Here, for the first time, we report the STN single cell and oscillatory neural dynamics in a medicated patient with idiopathic PD using intraoperative MER. We recorded LFP and SUA with microelectrodes at various depths during bilateral STN-DBS electrode implantation. We isolated 26 neurons in total and observed that tonic and irregular firing patterns of individual neurons predominated throughout the territories of STN. While burst-type firings have been well-characterized in the dorsal territories of STN in unmedicated patients, interestingly, this activity was not observed in our medicated subject. LFP recordings lacked the excessive beta (8-30 Hz) activity, characteristic of the unmedicated state and signal energy was mainly dominated by slow oscillations below 8 Hz. We observed sharp gamma oscillations between 70 and 90 Hz within and above the STN. Despite the presence of a broadband high frequency activity in 200-400 Hz range, no cross-frequency interaction in the form of phase-amplitude coupling was noted between low and high frequency oscillations of LFPs. While our results are in agreement with the previously reported LFP recordings from the DBS lead in medicated PD patients, the sharp gamma peak present throughout the depth recordings and the lack of bursting firings after levodopa intake have not been reported before. The lack of bursting in SUA, the lack of excessive beta activity and cross frequency coupling between HFOs and lower rhythms further validate the link between bursting firing regime of neurons and pathological oscillatory neural activity in PD-STN. Overall, these observations not only validate the existing literature on the PD electrophysiology in healthy/medicated animal models but also provide insights regarding the underlying electro-pathophysiology of levodopa-induced dyskinesias in PD patients through demonstration of multiscale relationships between single cell firings and field potentials.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Heet Kaku
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Suneel Kumar
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Nuri F. Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
78
|
Anjum MF, Haug J, Alberico SL, Dasgupta S, Mudumbai R, Kennedy MA, Narayanan NS. Linear Predictive Approaches Separate Field Potentials in Animal Model of Parkinson's Disease. Front Neurosci 2020; 14:394. [PMID: 32390797 PMCID: PMC7193738 DOI: 10.3389/fnins.2020.00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) causes impaired movement and cognition. PD can involve profound changes in cortical and subcortical brain activity as measured by electroencephalography or intracranial recordings of local field potentials (LFP). Such signals can adaptively guide deep-brain stimulation (DBS) as part of PD therapy. However, adaptive DBS requires the identification of triggers of neuronal activity dependent on real time monitoring and analysis. Current methods do not always identify PD-related signals and can entail delays. We test an alternative approach based on linear predictive coding (LPC), which fits autoregressive (AR) models to time-series data. Parameters of these AR models can be calculated by fast algorithms in real time. We compare LFPs from the striatum in an animal model of PD with dopamine depletion in the absence and presence of the dopamine precursor levodopa, which is used to treat motor symptoms of PD. We show that in dopamine-depleted mice a first order AR model characterized by a single LPC parameter obtained by LFP sampling at 1 kHz for just 1 min can distinguish between levodopa-treated and saline-treated mice and outperform current methods. This suggests that LPC may be useful in online analysis of neuronal signals to guide DBS in real time and could contribute to DBS-based treatment of PD.
Collapse
Affiliation(s)
- Md Fahim Anjum
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
| | - Joshua Haug
- DISTek Integration Inc., Cedar Falls, IA, United States
| | - Stephanie L. Alberico
- Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Soura Dasgupta
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center, Jinan, China
| | - Raghuraman Mudumbai
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
| | - Morgan A. Kennedy
- Department of Neurology, Papajohn Biomedical Institute, The University of Iowa, Iowa City, IA, United States
| | - Nandakumar S. Narayanan
- Department of Neurology, Papajohn Biomedical Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
79
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
80
|
Beuter A, Balossier A, Vassal F, Hemm S, Volpert V. Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. BIOLOGICAL CYBERNETICS 2020; 114:5-21. [PMID: 32020368 DOI: 10.1007/s00422-020-00818-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.
Collapse
Affiliation(s)
- Anne Beuter
- Bordeaux INP, University of Bordeaux, Bordeaux, France.
| | - Anne Balossier
- Service de neurochirurgie fonctionnelle et stéréotaxique, AP-HM La Timone, Aix-Marseille University, Marseille, France
| | - François Vassal
- INSERM U1028 Neuropain, UMR 5292, Centre de Recherche en Neurosciences, Universités Lyon 1 et Saint-Etienne, Saint-Étienne, France
- Service de Neurochirurgie, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
- INRIA Team Dracula, INRIA Lyon La Doua, 69603, Villeurbanne, France
- People's Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
81
|
Xu W, Zhang C, Deeb W, Patel B, Wu Y, Voon V, Okun MS, Sun B. Deep brain stimulation for Tourette's syndrome. Transl Neurodegener 2020; 9:4. [PMID: 31956406 PMCID: PMC6956485 DOI: 10.1186/s40035-020-0183-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/05/2020] [Indexed: 01/11/2023] Open
Abstract
Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. TS usually co-occurs with one or multiple psychiatric disorders. Although behavioral and pharmacological treatments for TS are available, some patients do not respond to the available treatments. For these patients, TS is a severe, chronic, and disabling disorder. In recent years, deep brain stimulation (DBS) of basal ganglia-thalamocortical networks has emerged as a promising intervention for refractory TS with or without psychiatric comorbidities. Three major challenges need to be addressed to move the field of DBS treatment for TS forward: (1) patient and DBS target selection, (2) ethical concerns with treating pediatric patients, and (3) DBS treatment optimization and improvement of individual patient outcomes (motor and phonic tics, as well as functioning and quality of life). The Tourette Association of America and the American Academy of Neurology have recently released their recommendations regarding surgical treatment for refractory TS. Here, we describe the challenges, advancements, and promises of the use of DBS in the treatment of TS. We summarize the results of clinical studies and discuss the ethical issues involved in treating pediatric patients. Our aim is to provide a better understanding of the feasibility, safety, selection process, and clinical effectiveness of DBS treatment for select cases of severe and medically intractable TS.
Collapse
Affiliation(s)
- Wenying Xu
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Chencheng Zhang
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Wissam Deeb
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Bhavana Patel
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Yiwen Wu
- 3Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Valerie Voon
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China.,4Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael S Okun
- 2Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Bomin Sun
- 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai, 200025 China
| |
Collapse
|
82
|
Valsky D, Blackwell KT, Tamir I, Eitan R, Bergman H, Israel Z. Real-time machine learning classification of pallidal borders during deep brain stimulation surgery. J Neural Eng 2020; 17:016021. [PMID: 31675740 DOI: 10.1088/1741-2552/ab53ac] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease and dystonia improves motor symptoms and quality of life. Traditionally, pallidal borders have been demarcated by electrophysiological microelectrode recordings (MERs) during DBS surgery. However, detection of pallidal borders can be challenging due to the variability of the firing characteristics of neurons encountered along the trajectory. MER can also be time-consuming and therefore costly. Here we show the feasibility of real-time machine learning classification of striato-pallidal borders to assist neurosurgeons during DBS surgery. APPROACH An electrophysiological dataset from 116 trajectories of 42 patients consisting of 11 774 MER segments of background spiking activity in five classes of disease was used to train the classification algorithm. The five classes included awake Parkinson's disease patients, as well as awake and lightly anesthetized genetic and non-genetic dystonia patients. A machine learning algorithm was designed to provide prediction of the striato-pallidal borders, based on hidden Markov models (HMMs) and the L1-distance measure in normalized root mean square (NRMS) and power spectra of the MER. We tested its performance prospectively against the judgment of three electrophysiologists in the operating rooms of three hospitals using newly collected data. MAIN RESULTS The awake and the light anesthesia dystonia classes could be merged. Using MER NRMS and spectra, the machine learning algorithm was on par with the performance of the three electrophysiologists across the striatum-GPe, GPe-GPi, and GPi-exit transitions for all disease classes. SIGNIFICANCE Machine learning algorithms enable real-time GPi navigation systems to potentially shorten the duration of electrophysiological mapping of pallidal borders, while ensuring correct pallidal border detection.
Collapse
Affiliation(s)
- Dan Valsky
- The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University, Jerusalem, Israel. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
83
|
Yao L, Brown P, Shoaran M. Improved detection of Parkinsonian resting tremor with feature engineering and Kalman filtering. Clin Neurophysiol 2020; 131:274-284. [PMID: 31744673 PMCID: PMC6927801 DOI: 10.1016/j.clinph.2019.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Accurate and reliable detection of tremor onset in Parkinson's disease (PD) is critical to the success of adaptive deep brain stimulation (aDBS) therapy. Here, we investigated the potential use of feature engineering and machine learning methods for more accurate detection of rest tremor in PD. METHODS We analyzed the local field potential (LFP) recordings from the subthalamic nucleus region in 12 patients with PD (16 recordings). To explore the optimal biomarkers and the best performing classifier, the performance of state-of-the-art machine learning (ML) algorithms and various features of the subthalamic LFPs were compared. We further used a Kalman filtering technique in feature domain to reduce the false positive rate. RESULTS The Hjorth complexity showed a higher correlation with tremor, compared to other features in our study. In addition, by optimal selection of a maximum of five features with a sequential feature selection method and using the gradient boosted decision trees as the classifier, the system could achieve an average F1 score of up to 88.7% and a detection lead of 0.52 s. The use of Kalman filtering in feature space significantly improved the specificity by 17.0% (p = 0.002), thereby potentially reducing the unnecessary power dissipation of the conventional DBS system. CONCLUSION The use of relevant features combined with Kalman filtering and machine learning improves the accuracy of tremor detection during rest. SIGNIFICANCE The proposed method offers a potential solution for efficient on-demand stimulation for PD tremor.
Collapse
Affiliation(s)
- Lin Yao
- ECE Department, Cornell University, Ithaca, NY, USA.
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
84
|
Yu Y, Wang X, Wang Q, Wang Q. A review of computational modeling and deep brain stimulation: applications to Parkinson's disease. APPLIED MATHEMATICS AND MECHANICS 2020; 41:1747-1768. [PMID: 33223591 PMCID: PMC7672165 DOI: 10.1007/s10483-020-2689-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/12/2020] [Indexed: 05/11/2023]
Abstract
Biophysical computational models are complementary to experiments and theories, providing powerful tools for the study of neurological diseases. The focus of this review is the dynamic modeling and control strategies of Parkinson's disease (PD). In previous studies, the development of parkinsonian network dynamics modeling has made great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG) circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkinsonian network, such as synchronization. Deep brain stimulation (DBS) is an effective strategy for the treatment of PD. At present, many studies are based on the side effects of the DBS. However, the translation from modeling results to clinical disease mitigation therapy still faces huge challenges. Here, we introduce the progress of DBS improvement. Its specific purpose is to develop novel DBS treatment methods, optimize the treatment effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Xiaomin Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qishao Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
85
|
Averna A, Pasquale V, Murphy MD, Rogantin MP, Van Acker GM, Nudo RJ, Chiappalone M, Guggenmos DJ. Differential Effects of Open- and Closed-Loop Intracortical Microstimulation on Firing Patterns of Neurons in Distant Cortical Areas. Cereb Cortex 2019; 30:2879-2896. [PMID: 31832642 DOI: 10.1093/cercor/bhz281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Intracortical microstimulation can be used successfully to modulate neuronal activity. Activity-dependent stimulation (ADS), in which action potentials recorded extracellularly from a single neuron are used to trigger stimulation at another cortical location (closed-loop), is an effective treatment for behavioral recovery after brain lesion, but the related neurophysiological changes are still not clear. Here, we investigated the ability of ADS and random stimulation (RS) to alter firing patterns of distant cortical locations. We recorded 591 neuronal units from 23 Long-Evan healthy anesthetized rats. Stimulation was delivered to either forelimb or barrel field somatosensory cortex, using either RS or ADS triggered from spikes recorded in the rostral forelimb area (RFA). Both RS and ADS stimulation protocols rapidly altered spike firing within RFA compared with no stimulation. We observed increase in firing rates and change of spike patterns. ADS was more effective than RS in increasing evoked spikes during the stimulation periods, by producing a reliable, progressive increase in stimulus-related activity over time and an increased coupling of the trigger channel with the network. These results are critical for understanding the efficacy of closed-loop electrical microstimulation protocols in altering activity patterns in interconnected brain networks, thus modulating cortical state and functional connectivity.
Collapse
Affiliation(s)
- Alberto Averna
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, 16145 Genova, Italy.,Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Valentina Pasquale
- Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maxwell D Murphy
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Gustaf M Van Acker
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Randolph J Nudo
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - David J Guggenmos
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
86
|
Zanos S. Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034314. [PMID: 30559253 DOI: 10.1101/cshperspect.a034314] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuromodulation, the focused delivery of energy to neural tissue to affect neural or physiological processes, is a common method to study the physiology of the nervous system. It is also successfully used as treatment for disorders in which the nervous system is affected or implicated. Typically, neurostimulation is delivered in open-loop mode (i.e., according to a predetermined schedule and independently of the state of the organ or physiological system whose function is sought to be modulated). However, the physiology of the nervous system or the modulated organ can be dynamic, and the same stimulus may have different effects depending on the underlying state. As a result, open-loop stimulation may fail to restore the desired function or cause side effects. In such cases, a neuromodulation intervention may be preferable to be administered in closed-loop mode. In a closed-loop neuromodulation (CLN) system, stimulation is delivered when certain physiological states or conditions are met (responsive neurostimulation); the stimulation parameters can also be adjusted dynamically to optimize the effect of stimulation in real time (adaptive neurostimulation). In this review, the reasons and the conditions for using CLN are discussed, the basic components of a CLN system are described, and examples of CLN systems used in physiological and translational research are presented.
Collapse
Affiliation(s)
- Stavros Zanos
- Translational Neurophysiology Laboratory, Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
87
|
Bigelow MD, Kouzani AZ. Neural stimulation systems for the control of refractory epilepsy: a review. J Neuroeng Rehabil 2019; 16:126. [PMID: 31665058 PMCID: PMC6820988 DOI: 10.1186/s12984-019-0605-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.
Collapse
Affiliation(s)
- Matthew D Bigelow
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
88
|
Schmidt R, Herrojo Ruiz M, Kilavik BE, Lundqvist M, Starr PA, Aron AR. Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. J Neurosci 2019; 39:8231-8238. [PMID: 31619492 PMCID: PMC6794925 DOI: 10.1523/jneurosci.1163-19.2019] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
Beta oscillations (∼13 to 30 Hz) have been observed during many perceptual, cognitive, and motor processes in a plethora of brain recording studies. Although the function of beta oscillations (hereafter "beta" for short) is unlikely to be explained by any single monolithic description, we here discuss several convergent findings. In prefrontal cortex (PFC), increased beta appears at the end of a trial when working memory information needs to be erased. A similar "clear-out" function might apply during the stopping of action and the stopping of long-term memory retrieval (stopping thoughts), where increased prefrontal beta is also observed. A different apparent role for beta in PFC occurs during the delay period of working memory tasks: it might serve to maintain the current contents and/or to prevent interference from distraction. We confront the challenge of relating these observations to the large literature on beta recorded from sensorimotor cortex. Potentially, the clear-out of working memory in PFC has its counterpart in the postmovement clear-out of the motor plan in sensorimotor cortex. However, recent studies support alternative interpretations. In addition, we flag emerging research on different frequencies of beta and the relationship between beta and single-neuron spiking. We also discuss where beta might be generated: basal ganglia, cortex, or both. We end by considering the clinical implications for adaptive deep-brain stimulation.
Collapse
Affiliation(s)
- Robert Schmidt
- Department of Psychology, University of Sheffield, Sheffield, S1 2LT, UK,
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths University of London, London, SE14 6NW, UK
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Bjørg E Kilavik
- Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Mikael Lundqvist
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Philip A Starr
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, and
| | - Adam R Aron
- Department of Psychology, University of California San Diego La Jolla, CA 92093
| |
Collapse
|
89
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
90
|
Shanechi MM. Brain–machine interfaces from motor to mood. Nat Neurosci 2019; 22:1554-1564. [DOI: 10.1038/s41593-019-0488-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
|
91
|
Scheller U, Lofredi R, Wijk BC, Saryyeva A, Krauss JK, Schneider G, Kroneberg D, Krause P, Neumann W, Kühn AA. Pallidal low‐frequency activity in dystonia after cessation of long‐term deep brain stimulation. Mov Disord 2019; 34:1734-1739. [DOI: 10.1002/mds.27838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ute Scheller
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Roxanne Lofredi
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Bernadette C.M. Wijk
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- Integrative Model‐Based Cognitive Neuroscience Research Unit, Department of Psychology University of Amsterdam Amsterdam the Netherlands
- Wellcome Centre for Human Neuroimaging University College London Institute of Neurology London UK
| | - Assel Saryyeva
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Joachim K. Krauss
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Gerd‐Helge Schneider
- Charité, Universitätsmedizin Berlin Campus Mitte, Department of Neurosurgery Berlin Germany
| | - Daniel Kroneberg
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Patricia Krause
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Wolf‐Julian Neumann
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Andrea A. Kühn
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- NeuroCure Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
92
|
Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Human gene therapy approaches for the treatment of Parkinson's disease: An overview of current and completed clinical trials. Parkinsonism Relat Disord 2019; 66:16-24. [DOI: 10.1016/j.parkreldis.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
|
93
|
Geraedts V, van Ham R, Marinus J, van Hilten J, Mosch A, Hoffmann C, van der Gaag N, Contarino M. Intraoperative test stimulation of the subthalamic nucleus aids postoperative programming of chronic stimulation settings in Parkinson's disease. Parkinsonism Relat Disord 2019; 65:62-66. [DOI: 10.1016/j.parkreldis.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
|
94
|
Adaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study. Sci Rep 2019; 9:10585. [PMID: 31332226 PMCID: PMC6646395 DOI: 10.1038/s41598-019-47036-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered permanently. Using a computational model of subthalamic nucleus and external globus pallidus, we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization. Additionally, we combine adaptive on-off delivery with continuous delayed feedback modulation by introducing adaptive pulsatile linear delayed feedback stimulation (apLDF), where cpLDF is turned on and off using pre-defined amplitude thresholds. By varying the stimulation parameters of cDBS, aDBS, cpLDF, and apLDF we obtain optimal parameter ranges. We reveal a simple relation between the thresholds of the local field potential (LFP) for aDBS and apLDF, the extent of the stimulation-induced desynchronization, and the integral stimulation time required. We find that aDBS and apLDF can be more efficient in suppressing abnormal synchronization than continuous simulation. However, apLDF still remains more efficient and also causes a stronger reduction of the LFP beta burst length. Hence, adaptive on-off delivery may further improve the intrinsically demand-controlled pLDF.
Collapse
|
95
|
Tekriwal A, Afshar NM, Santiago-Moreno J, Kuijper FM, Kern DS, Halpern CH, Felsen G, Thompson JA. Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery. Brain Sci 2019; 9:brainsci9070173. [PMID: 31330813 PMCID: PMC6681002 DOI: 10.3390/brainsci9070173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed for early insights in functional localization to improve surgical outcomes, but has since expanded into exploring fundamental aspects of human cognition including reward processing, language, the storage and retrieval of memory, decision-making, as well as sensory and motor processing. The increasing use of chronic neuromodulation, via deep brain stimulation, for a spectrum of neurological and psychiatric conditions has in tandem led to increased opportunity for linking theories of cognitive processing and neural circuit function. Our purpose here is to motivate the neuroscience and neurosurgical community to capitalize on the opportunities that this next decade will bring. To this end, we will highlight recent studies that have successfully leveraged invasive recordings during deep brain stimulation surgery to advance our understanding of human cognition with an emphasis on reward processing, improving clinical outcomes, and informing advances in neuromodulatory interventions.
Collapse
Affiliation(s)
- Anand Tekriwal
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Neema Moin Afshar
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Juan Santiago-Moreno
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA.
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA.
| |
Collapse
|
96
|
Widge AS, Miller EK. Targeting Cognition and Networks Through Neural Oscillations: Next-Generation Clinical Brain Stimulation. JAMA Psychiatry 2019; 76:671-672. [PMID: 31116372 PMCID: PMC7067567 DOI: 10.1001/jamapsychiatry.2019.0740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alik S. Widge
- Department of Psychiatry, University of Minnesota, Minneapolis
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
97
|
Gallino D, Devenyi GA, Germann J, Guma E, Anastassiadis C, Chakravarty MM. Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: Application of fornical DBS in an Alzheimer’s mouse model. Brain Res 2019; 1715:213-223. [DOI: 10.1016/j.brainres.2019.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
98
|
Yao L, Brown P, Shoaran M. Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE : HEALTHCARE TECHNOLOGY : [PROCEEDINGS]. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE 2019; 2018:BIOCAS.2018.8584721. [PMID: 31334499 PMCID: PMC6645988 DOI: 10.1109/biocas.2018.8584721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F(1,15)=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.
Collapse
Affiliation(s)
- Lin Yao
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Mahsa Shoaran
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
99
|
Cao C, Huang P, Wang T, Zhan S, Liu W, Pan Y, Wu Y, Li H, Sun B, Li D, Litvak V. Cortico-subthalamic Coherence in a Patient With Dystonia Induced by Chorea-Acanthocytosis: A Case Report. Front Hum Neurosci 2019; 13:163. [PMID: 31191273 PMCID: PMC6548057 DOI: 10.3389/fnhum.2019.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 02/01/2023] Open
Abstract
The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatment in Parkinson's disease (PD) but much less frequently targeted for other disorders. Here we report the results of simultaneous local field potential (LFP) recordings and magnetoencephalography (MEG) in a single patient who was implanted bilaterally in the STN for the treatment of dystonia induced by chorea-acanthocytosis. Consistent with the previous results in PD, the dystonia patient showed significant subthalamo-cortical coherence in the high beta band (28-35 Hz) on both sides localized to the mesial sensorimotor areas. In addition, on the right side, significant coherence was found in the theta-alpha band (4-12 Hz) that localized to the medial prefrontal cortex with the peak in the anterior cingulate gyrus. Comparison of STN power spectra with a previously reported PD cohort showed increased power in the theta and alpha bands and decreased power in the low beta band in dystonia which is consistent with most of the previous studies. The present report extends the range of disorders for which cortico-subthalamic oscillatory connectivity has been characterized. Our results strengthen the evidence that at least some of the subthalamo-cortical oscillatory coherent networks are a feature of the healthy brain, although we do not rule out that coherence magnitude could be affected by disease.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Peng Huang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Tao Wang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shikun Zhan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Liu
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yixin Pan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
100
|
Ferreira JJ, Mestre TA, Lyons KE, Benito-León J, Tan EK, Abbruzzese G, Hallett M, Haubenberger D, Elble R, Deuschl G. MDS evidence-based review of treatments for essential tremor. Mov Disord 2019; 34:950-958. [PMID: 31046186 DOI: 10.1002/mds.27700] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Essential tremor is one of the most prevalent movement disorders. Many treatments for essential tremor have been reported in clinical practice, but it is uncertain which options have the most robust evidence. The International Parkinson and Movement Disorder Society commissioned a task force on tremor to review clinical studies of treatments for essential tremor. OBJECTIVES To conduct an evidence-based review of current pharmacological and surgical treatments for essential tremor, using standardized criteria defined a priori by the International Parkinson and Movement Disorder Society. METHODS We followed the recommendations of the International Parkinson and Movement Disorder Society Evidence Based Medicine Committee. RESULTS Sixty-four studies of pharmacological and surgical interventions were included in the review. Propranolol and primidone were classified as clinically useful, similar to Topiramate, but only for doses higher than 200 mg/day. Alprazolam and botulinum toxin type A were classified as possibly useful. Unilateral Ventralis intermedius thalamic DBS, radiofrequency thalamotomy, and MRI-guided focused ultrasound thalamotomy were considered possibly useful. All the above recommendations were made for limb tremor in essential tremor. There was insufficient evidence for voice and head tremor as well as for the remaining interventions. CONCLUSION Propranolol, primidone, and topiramate (>200 mg/day) are the pharmacological interventions in which the data reviewed robustly supported efficacy. Their safety profile and patient preference may guide the prioritization of these interventions in clinical practice. MRI-guided focused ultrasound thalamotomy was, for the first time, assessed and was considered to be possibly useful. There is a need to improve study design in essential tremor and overcome the limitation of small sample sizes, cross-over studies, short-term follow-up studies, and use of nonvalidated clinical scales. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelly E Lyons
- Parkinson's Disease and Movement Disorder Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julián Benito-León
- Department of Neurology, University Hospital 12 de Octubre; Center of Biomedical Network Research on Neurodegenerative diseases (CIBERNED), Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Eng-King Tan
- National Neuroscience Institute, Duke NUS Medical School, Singapore
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa-IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mark Hallett
- Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dietrich Haubenberger
- Clinical Trials Unit, Office of the Clinical Director, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Günther Deuschl
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel Campus, Christian Albrechts University Kiel, Kiel, Germany
| | | |
Collapse
|