51
|
Menozzi E, Schapira AHV. Enhancing the Activity of Glucocerebrosidase as a Treatment for Parkinson Disease. CNS Drugs 2020; 34:915-923. [PMID: 32607746 DOI: 10.1007/s40263-020-00746-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the glucocerebrosidase (GBA1) gene are the most common genetic risk factor for Parkinson disease (PD). Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD), characterized by deficient activity of the glucocerebrosidase enzyme (GCase). Both individuals with GD type I and heterozygous carriers of pathogenic variants of GBA1 have an increased risk of developing PD, by approximately ten- to 20-fold compared to non-carriers. GCase activity is also reduced in PD patients without GBA1 mutations, suggesting that the GCase lysosomal pathway might be involved in PD pathogenesis. Available evidence indicates that GCase can affect α-synuclein pathology in different ways. Misfolded GCase proteins are retained in the endoplasmic reticulum, altering the lysosomal trafficking of the enzyme and disrupting protein trafficking. Also, deficient GCase leads to accumulation of substrates that in turn may bind α-synuclein and promote pathological formation of aggregates. Furthermore, α-synuclein itself can lower the enzymatic activity of GCase, indicating that a bidirectional interaction exists between GCase and α-synuclein. Targeted therapies aimed at enhancing GCase activity, augmenting the trafficking of misfolded GCase proteins by small molecule chaperones, or reducing substrate accumulation, have been tested in preclinical and clinical trials. This article reviews the molecular mechanisms linking GCase to α-synuclein and discusses the therapeutic drugs that by targeting the GCase pathway can influence PD progression.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
52
|
Insights into the Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21155241. [PMID: 32718092 PMCID: PMC7432166 DOI: 10.3390/ijms21155241] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived secretome demonstrated therapeutic effects like those reported after MSCs transplantation. MSC-derived secretome may avoid various side effects of MSC-based therapy, comprising undesirable differentiation of engrafted MSCs and potential activation of the allogeneic immune response. MSC-derived secretome comprises soluble factors and encapsulated extravesicles (EVs). MSC-derived EVs comprise microvesicles, apoptotic bodies, and exosomes. In this review, we focus on the recent insights into the effects of MSC-derived secretome in Parkinson’s disease (PD). In particular, MSC-derived secretome and exosomal components counteracted neuroinflammation and enhanced antioxidant capacity and neurotrophic factors expression. In light of the insights reported in this review, MSC-derived secretome or their released exosomes may be used as a potential therapeutic approach or as adjuvant therapy to counteract the disease progression and improve PD symptoms. Also, MSC-derived secretome may be used as a vehicle in cell transplantation approaches to enhance the viability and survival of engrafted cells. Furthermore, since exosomes can cross the blood–brain barrier, they may be used as biomarkers of neural dysfunction. Further studies are necessary to fully characterize the bioactive molecules present in the secretome and to create a new, effective, cell-free therapeutic approach towards a robust clinical outcome for PD patients.
Collapse
|
53
|
Xie Y, Li J, Kang R, Tang D. Interplay Between Lipid Metabolism and Autophagy. Front Cell Dev Biol 2020; 8:431. [PMID: 32582708 PMCID: PMC7283384 DOI: 10.3389/fcell.2020.00431] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-eating process of using lysosomes to degrade macromolecular substances (e.g., proteins and organelles) that are damaged, degenerated, or aging. Lipid metabolism is the synthesis and degradation of lipids (e.g., triglycerides, steroids, and phospholipids) to generate energy or produce the structural components of cell membranes. There is a complex interplay between lipid metabolism (e.g., digestion, absorption, catabolism, biosynthesis, and peroxidation) and autophagy machinery, leading to the modulation of cell homeostasis, including cell survival and death. In particular, lipid metabolism is involved in the formation of autophagic membrane structures (e.g., phagophores and autophagosomes) during stress. Moreover, autophagy, especially selective autophagy (e.g., lipophagy, ferritinophagy, clockophagy, and mitophagy), promotes lipid catabolism or lipid peroxidation-induced ferroptosis through the degradation of various substances within the cell. A better understanding of the mechanisms of autophagy and possible links to lipid metabolism will undoubtedly promote potential treatments for a variety of diseases.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
54
|
Bonet-Ponce PhD L, Cookson MR. Can Leucine-Rich Repeat Kinase 2 Inhibition Benefit GBA-Parkinson's Disease? Mov Disord 2020; 35:721-723. [PMID: 32415718 DOI: 10.1002/mds.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luis Bonet-Ponce PhD
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
55
|
Park H, Kang JH, Lee S. Autophagy in Neurodegenerative Diseases: A Hunter for Aggregates. Int J Mol Sci 2020; 21:ijms21093369. [PMID: 32397599 PMCID: PMC7247013 DOI: 10.3390/ijms21093369] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cells have developed elaborate quality-control mechanisms for proteins and organelles to maintain cellular homeostasis. Such quality-control mechanisms are maintained by conformational folding via molecular chaperones and by degradation through the ubiquitin-proteasome or autophagy-lysosome system. Accumulating evidence suggests that impaired autophagy contributes to the accumulation of intracellular inclusion bodies consisting of misfolded proteins, which is a hallmark of most neurodegenerative diseases. In addition, genetic mutations in core autophagy-related genes have been reported to be linked to neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely, the pathogenic proteins, such as amyloid β and α-synuclein, are detrimental to the autophagy pathway. Here, we review the recent advances in understanding the relationship between autophagic defects and the pathogenesis of neurodegenerative diseases and suggest autophagy induction as a promising strategy for the treatment of these conditions.
Collapse
Affiliation(s)
- Hyungsun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Ju-Hee Kang
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seongju Lee
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Correspondence: ; Tel.: +82-32-860-9891
| |
Collapse
|
56
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
57
|
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Front Pharmacol 2020; 11:356. [PMID: 32390826 PMCID: PMC7191035 DOI: 10.3389/fphar.2020.00356] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein involved in Parkinson's disease (PD) pathology. PD is characterized by the loss of dopaminergic neuronal cells in the substantia nigra pars compacta and the abnormal accumulation and aggregation of α-Syn in the form of Lewy bodies and Lewy neurites. More precisely, the aggregation of α-Syn is associated with the dysfunctionality and degeneration of neurons in PD. Moreover, mutations in the SNCA gene, which encodes α-Syn, cause familial forms of PD and are the basis of sporadic PD risk. Given the role of the α-Syn protein in the pathology of PD, animal models that reflect the dopaminergic neuronal loss and the widespread and progressive formation of α-Syn aggregates in different areas of the brain constitute a valuable tool. Indeed, animal models of PD are important for understanding the molecular mechanisms of the disease and might contribute to the development and validation of new therapies. In the absence of animal models that faithfully reproduce human PD, in recent years, numerous animal models of PD based on α-Syn have been generated. In this review, we summarize the main features of the α-Syn pre-formed fibrils (PFFs) model and recombinant adeno-associated virus vector (rAAV) mediated α-Syn overexpression models, providing a detailed comparative analysis of both models. Here, we discuss how each model has contributed to our understanding of PD pathology and the advantages and weakness of each of them.
Collapse
Affiliation(s)
- Mónica Gómez-Benito
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Granado
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Michel
- UCB Biopharma, Neuroscience TA, Braine L'Alleud, Belgium
| | - Mireille Dumoulin
- Centre of Protein Engineering, InBios, University of Liege, Liège, Belgium
| | - Rosario Moratalla
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW GBA1 mutations, which result in the lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease and Dementia with Lewy Bodies (DLB). The pathogenesis of this association is not fully understood, but further elucidation of this link could lead to new therapeutic options. RECENT FINDINGS The characteristic clinical phenotype of GBA1-PD resembles sporadic Parkinson disease, but with an earlier onset and more severe course. Many different GBA1 mutations increase the risk of Parkinson disease, some primarily detected in specific populations. Glucocerebrosidase deficiency appears to be associated with increased α-synuclein aggregation and accumulation, mitochondrial dysfunction because of impaired autophagy, and increased endoplasmic reticulum stress. SUMMARY As our understanding of GBA1-associated Parkinson disease increases, new treatment opportunities emerge. MicroRNA profiles are providing examples of both up-regulated and down-regulated proteins related to GBA1 and may provide new therapeutic targets. Chaperone therapy, directed at either misfolded glucocerebrosidase or α-synuclein aggregation, is currently under development and there are several early clinical trials ongoing. Substrate reduction therapy, aimed at lowering the accumulation of metabolic by-products, especially glucosylsphingosine, is also being explored. Basic science insights from the rare disorder Gaucher disease are serving to catapult drug discovery for parkinsonism.
Collapse
|
59
|
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137:104782. [PMID: 31991247 PMCID: PMC7064061 DOI: 10.1016/j.nbd.2020.104782] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
A substantial proportion of risk for Parkinson's disease (PD) is driven by genetics. Progress in understanding the genetic basis of PD has been significant. So far, highly-penetrant rare genetic alterations in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1 and GBA have been linked with typical familial PD and common genetic variability at 90 loci have been linked to risk for PD. In this review, we outline the journey thus far of PD genetics, highlighting how significant advances have improved our knowledge of the genetic basis of PD risk, onset and progression. Despite remarkable progress, our field has yet to unravel how genetic risk variants disrupt biological pathways and molecular networks underlying the pathobiology of the disease. We highlight that currently identified genetic risk factors only represent a fraction of the likely genetic risk for PD. Identifying the remaining genetic risk will require us to diversify our efforts, performing genetic studies across different ancestral groups. This work will inform us on the varied genetic basis of disease across populations and also aid in fine mapping discovered loci. If we are able to take this course, we foresee that genetic discoveries in PD will directly influence our ability to predict disease and aid in defining etiological subtypes, critical steps for the implementation of precision medicine for PD.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18016, Spain.
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa 08221, Barcelona, Spain
| | - Jonggeol Jeff Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
60
|
Sanyal A, DeAndrade MP, Novis HS, Lin S, Chang J, Lengacher N, Tomlinson JJ, Tansey MG, LaVoie MJ. Lysosome and Inflammatory Defects in GBA1-Mutant Astrocytes Are Normalized by LRRK2 Inhibition. Mov Disord 2020; 35:760-773. [PMID: 32034799 DOI: 10.1002/mds.27994] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Autosomal recessive mutations in the glucocerebrosidase gene, Beta-glucocerebrosidase 1 (GBA1), cause the lysosomal storage disorder Gaucher's disease. Heterozygous carriers of most GBA1 mutations have dramatically increased Parkinson's disease (PD) risk, but the mechanisms and cells affected remain unknown. Glucocerebrosidase expression is relatively enriched in astrocytes, yet the impact of its mutation in these cells has not yet been addressed. OBJECTIVES Emerging data supporting non-cell-autonomous mechanisms driving PD pathogenesis inspired the first characterization of GBA1-mutant astrocytes. In addition, we asked whether LRRK2, likewise linked to PD and enriched in astrocytes, intersected with GBA1 phenotypes. METHODS Using heterozygous and homozygous GBA1 D409V knockin mouse astrocytes, we conducted rigorous biochemical and image-based analyses of lysosomal function and morphology. We also examined basal and evoked cytokine response at the transcriptional and secretory levels. RESULTS The D409V knockin astrocytes manifested broad deficits in lysosomal morphology and function, as expected. This, however, is the first study to show dramatic defects in basal and TLR4-dependent cytokine production. Albeit to different extents, both the lysosomal dysfunction and inflammatory responses were normalized by inhibition of LRRK2 kinase activity, suggesting functional intracellular crosstalk between glucocerebrosidase and LRRK2 activities in astrocytes. CONCLUSIONS These data demonstrate novel pathologic effects of a GBA1 mutation on inflammatory responses in astrocytes, indicating the likelihood of broader immunologic changes in GBA-PD patients. Our findings support the involvement of non-cell-autonomous mechanisms contributing to the pathogenesis of GBA1-linked PD and identify new opportunities to correct these changes with pharmacological intervention. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P DeAndrade
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hailey S Novis
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Lin
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Malú G Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Matthew J LaVoie
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
61
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
62
|
Hanss Z, Boussaad I, Jarazo J, Schwamborn JC, Krüger R. Quality Control Strategy for CRISPR-Cas9-Based Gene Editing Complicated by a Pseudogene. Front Genet 2020; 10:1297. [PMID: 31998363 PMCID: PMC6961559 DOI: 10.3389/fgene.2019.01297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
CRISPR-Cas9 mediated gene editing in induced pluripotent stem cells became an efficient tool to investigate biological mechanisms underlying genetic-driven diseases while accounting for the respective genetic background. This technique relies on the targeting of a specific nucleotide sequence present in the gene of interest. Therefore, the gene editing of some genes can be complicated by non-coding pseudogenes presenting a high homology of sequence with their respective genes. Among them, GBA is raising special interest because of its implication as the most common genetic risk factor for Parkinson’s disease. In this study, we present an easy-to-use CRISPR-Cas9 gene editing strategy allowing for specific editing of point mutations in a gene without genetic alteration of its pseudogene exemplified by the correction or insertion of the common N370S mutation in GBA. A quality control strategy by combined fluorescence and PCR-based screening allows the early identification of correctly edited clones with unambiguous identification of the status of its pseudogene, GBAP1. Successful gene editing was confirmed by functional validation. Our work presents the first CRISPR-Cas9 based editing of a point mutation in GBA and paves the way for technically demanding gene engineering due to the presence of pseudogenes.
Collapse
Affiliation(s)
- Zoé Hanss
- Clinical and Experimental Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ibrahim Boussaad
- Clinical and Experimental Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Clinical and Experimental Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
63
|
Schöndorf DC, Ivanyuk D, Baden P, Sanchez-Martinez A, De Cicco S, Yu C, Giunta I, Schwarz LK, Di Napoli G, Panagiotakopoulou V, Nestel S, Keatinge M, Pruszak J, Bandmann O, Heimrich B, Gasser T, Whitworth AJ, Deleidi M. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease. Cell Rep 2019; 23:2976-2988. [PMID: 29874584 DOI: 10.1016/j.celrep.2018.05.009] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/05/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022] Open
Abstract
While mitochondrial dysfunction is emerging as key in Parkinson's disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- David C Schöndorf
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Dina Ivanyuk
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Pascale Baden
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Alvaro Sanchez-Martinez
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Silvia De Cicco
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Cong Yu
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Ivana Giunta
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lukas K Schwarz
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Gabriele Di Napoli
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Vasiliki Panagiotakopoulou
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Marcus Keatinge
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg 79104, Germany
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tübingen 72076, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
64
|
Generation of an integration-free iPSC line, ICCSICi005-A, derived from a Parkinson's disease patient carrying the L444P mutation in the GBA1 gene. Stem Cell Res 2019; 40:101578. [DOI: 10.1016/j.scr.2019.101578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
|
65
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
66
|
Rodríguez-Traver E, Díaz-Guerra E, Rodríguez C, Fernández P, Arenas F, Araúzo-Bravo M, Orera M, Kulisevsky J, Moratalla R, Vicario C. A collection of integration-free iPSCs derived from Parkinson's disease patients carrying mutations in the GBA1 gene. Stem Cell Res 2019; 38:101482. [PMID: 31203165 DOI: 10.1016/j.scr.2019.101482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022] Open
Abstract
Mutations in the GBA1 gene, which encodes the lysosomal enzyme Glucocerebrosidase1 are major risk factors for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of four PD patients carrying the N370S/wt or the L444P/wt heterozygous mutations in GBA1. The iPSCs presented a normal morphology, expressed endogenous pluripotency markers and could be differentiated into endodermal, mesodermal and ectodermal cells. These iPSCs were free from Sendai viral vectors and reprogramming factors, had a normal karyotype and maintained the original GBA1 genotype.
Collapse
Affiliation(s)
- Eva Rodríguez-Traver
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - César Rodríguez
- Servicio de Bioquímica Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pablo Fernández
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fabián Arenas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Movement Disorders Unit, Neurology Dept., Hospital Sant Pau, Barcelona, Spain
| | | | - María Orera
- Servicio de Bioquímica Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jaime Kulisevsky
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Movement Disorders Unit, Neurology Dept., Hospital Sant Pau, Barcelona, Spain
| | - Rosario Moratalla
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
67
|
Segura-Aguilar J. On the Role of Aminochrome in Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Parkinson's Disease. Front Neurosci 2019; 13:271. [PMID: 30983959 PMCID: PMC6449441 DOI: 10.3389/fnins.2019.00271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile
| |
Collapse
|
68
|
Standaert DG. What would Dr. James parkinson think today? Mutations in beta-glucocerebrosidase and risk of Parkinson's disease. Mov Disord 2019; 32:1341-1342. [PMID: 29068500 DOI: 10.1002/mds.27206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
69
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
70
|
Genetic Knockdown of mGluR5 in Striatal D1R-Containing Neurons Attenuates L-DOPA-Induced Dyskinesia in Aphakia Mice. Mol Neurobiol 2018; 56:4037-4050. [PMID: 30259400 DOI: 10.1007/s12035-018-1356-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
L-DOPA is the main pharmacological therapy for Parkinson's disease. However, long-term exposure to L-DOPA induces involuntary movements termed dyskinesia. Clinical trials show that dyskinesia is attenuated by metabotropic glutamate receptor type 5 (mGluR5) antagonists. Further, the onset of dyskinesia is delayed by nicotine and mGluR5 expression is lower in smokers than in non-smokers. However, the mechanisms by which mGluR5 modulates dyskinesia and how mGluR5 and nicotine interact have not been established. To address these issues, we studied the role of mGluR5 in D1R-containing neurons in dyskinesia and examined whether nicotine reduces dyskinesia via mGluR5. In the aphakia mouse model of Parkinson's disease, we selectively knocked down mGluR5 in D1R-containing neurons (aphakia-mGluR5KD-D1). We found that genetic downregulation of mGluR5 decreased dyskinesia in aphakia mice. Although chronic nicotine increased the therapeutic effect of L-DOPA in both aphakia and aphakia-mGluR5KD-D1 mice, it caused a robust reduction in dyskinesia only in aphakia, and not in aphakia-mGluR5KD-D1 mice. Downregulating mGluR5 or nicotine treatment after L-DOPA decreased ERK and histone 3 activation, and FosB expression. Combining nicotine and mGluR5 knockdown did not have an added antidyskinetic effect, indicating that the effect of nicotine might be mediated by downregulation of mGluR5 expression. Treatment of aphakia-mGluR5KD-D1 mice with a negative allosteric modulator did not further modify dyskinesia, suggesting that mGluR5 in non-D1R-containing neurons does not play a role in its development. In conclusion, this work suggests that mGluR5 antagonists reduce dyskinesia by mainly affecting D1R-containing neurons and that the effect of nicotine on dyskinetic signs in aphakia mice is likely via mGluR5.
Collapse
|
71
|
Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic 2018; 19:918-931. [DOI: 10.1111/tra.12613] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Fengjuan Wang
- Unit Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, CNRS/Université de Strasbourg; Illkirch France
| | - Raquel Gómez-Sintes
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|
72
|
Thomas RE, Vincow ES, Merrihew GE, MacCoss MJ, Davis MY, Pallanck LJ. Glucocerebrosidase deficiency promotes protein aggregation through dysregulation of extracellular vesicles. PLoS Genet 2018; 14:e1007694. [PMID: 30256786 PMCID: PMC6175534 DOI: 10.1371/journal.pgen.1007694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/08/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in the glucosylceramidase beta (GBA) gene are strongly associated with neurodegenerative diseases marked by protein aggregation. GBA encodes the lysosomal enzyme glucocerebrosidase, which breaks down glucosylceramide. A common explanation for the link between GBA mutations and protein aggregation is that lysosomal accumulation of glucosylceramide causes impaired autophagy. We tested this hypothesis directly by measuring protein turnover and abundance in Drosophila mutants with deletions in the GBA ortholog Gba1b. Proteomic analyses revealed that known autophagy substrates, which had severely impaired turnover in autophagy-deficient Atg7 mutants, showed little to no overall slowing of turnover or increase in abundance in Gba1b mutants. Likewise, Gba1b mutants did not have the marked impairment of mitochondrial protein turnover seen in mitophagy-deficient parkin mutants. Proteasome activity, microautophagy, and endocytic degradation also appeared unaffected in Gba1b mutants. However, we found striking changes in the turnover and abundance of proteins associated with extracellular vesicles (EVs), which have been proposed as vehicles for the spread of protein aggregates in neurodegenerative disease. These changes were specific to Gba1b mutants and did not represent an acceleration of normal aging. Western blotting of isolated EVs confirmed the increased abundance of EV proteins in Gba1b mutants, and nanoparticle tracking analysis revealed that Gba1b mutants had six times as many EVs as controls. Genetic perturbations of EV production in Gba1b mutants suppressed protein aggregation, demonstrating that the increase in EV abundance contributed to the accumulation of protein aggregates. Together, our findings indicate that glucocerebrosidase deficiency causes pathogenic changes in EV metabolism and may promote the spread of protein aggregates through extracellular vesicles.
Collapse
Affiliation(s)
- Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Marie Y. Davis
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- Department of Neurology, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
73
|
Klein AD, Mazzulli JR. Is Parkinson's disease a lysosomal disorder? Brain 2018; 141:2255-2262. [PMID: 29860491 PMCID: PMC6061679 DOI: 10.1093/brain/awy147] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/05/2018] [Accepted: 03/30/2018] [Indexed: 12/19/2022] Open
Abstract
Common forms of Parkinson's disease have long been described as idiopathic, with no single penetrant genetic factor capable of influencing disease aetiology. Recent genetic studies indicate a clear association of variants within several lysosomal genes as risk factors for idiopathic Parkinson's disease. The emergence of novel variants suggest that the aetiology of idiopathic Parkinson's disease may be explained by the interaction of several partially penetrant mutations that, while seemingly complex, all appear to converge on cellular clearance pathways. These newly evolving data are consistent with mechanistic studies linking α-synuclein toxicity to lysosomal abnormalities, and indicate that idiopathic Parkinson's disease resembles features of Mendelian lysosomal storage disorders at a genetic and biochemical level. These findings offer novel pathways to exploit for the development of disease-altering therapies for idiopathic Parkinson's disease that target specific components of the lysosomal system.
Collapse
Affiliation(s)
- Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes 12461, Santiago 7590943, Chile
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| |
Collapse
|
74
|
Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson's disease. Cell Tissue Res 2018; 373:9-20. [PMID: 29536161 PMCID: PMC6201690 DOI: 10.1007/s00441-018-2817-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Over the last two decades, we have witnessed a revolution in the field of Parkinson's disease (PD) genetics. Great advances have been made in identifying many loci that confer a risk for PD, which has subsequently led to an improved understanding of the molecular pathways involved in disease pathogenesis. Despite this success, it is predicted that only a relatively small proportion of the phenotypic variability has been explained by genetics. Therefore, it is clear that common heritable components of disease are still to be identified. Dissecting the genetic architecture of PD constitutes a critical effort in identifying therapeutic targets and although such substantial progress has helped us to better understand disease mechanism, the route to PD disease-modifying drugs is a lengthy one. In this review, we give an overview of the known genetic risk factors in PD, focusing not on individual variants but the larger networks that have been implicated following comprehensive pathway analysis. We outline the challenges faced in the translation of risk loci to pathobiological relevance and illustrate the need for integrating big-data by noting success in recent work which adopts a broad-scale screening approach. Lastly, with PD genetics now progressing from identifying risk to predicting disease, we review how these models will likely have a significant impact in the future.
Collapse
Affiliation(s)
- K J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3BX, Liverpool, UK
| | - S Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - S Saez-Atienzar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - A B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
75
|
Franco R, Sánchez-Arias JA, Navarro G, Lanciego JL. Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes. Front Neuroanat 2018; 12:52. [PMID: 30002620 PMCID: PMC6031742 DOI: 10.3389/fnana.2018.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Gaucher's disease (GD) is the most prevalent lysosomal storage disorder. GD is caused by homozygous mutations of the GBA1 gene, which codes for beta-glucocerebrosidase (GCase). Although GD primarily affects peripheral tissues, the presence of neurological symptoms has been reported in several GD subtypes. GBA1 mutations have recently deserved increased attention upon the demonstration that both homo- and heterozygous GBA1 mutations represent the most important genetic risk factor for the appearance of synucleinopathies like Parkinson's disease (PD) and dementia with Lewy bodies (LBD). Although reduced GCase activity leads to alpha-synuclein aggregation, the mechanisms sustaining a role for GCase in alpha-synuclein homeostasis still remain largely unknown. Furthermore, the role to be played by impairment in the physiological function of endoplasmic reticulum, mitochondria and other subcellular membranous components is currently under investigation. Here we focus on the impact of GCase loss-of-function that impact on the levels of sterylglucosides, molecules that are known to trigger a PD-related synucleinopathy upon administration in rats. Moreover, the concurrence of another gene also coding for an enzyme with GCase activity (GBA2 gene) should also be taken into consideration, bearing in mind that in addition to a hydrolytic function, both GCases also share transglycosylation as a second catalytic activity. Accordingly, sterylglycoside levels should also be considered to further assess their impact on the neurodegenerative process. In this regard-and besides GBA1 genotyping-we suggest that screening for GBA2 mutations should be considered, together with analytical measurements of cholesterol glycosides in body fluids, as biomarkers for both PD risk and disease progression.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Arias
- Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain.,Department of Neuroscience, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
76
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
77
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 DOI: 10.3389/fnagi.2018.00109if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2024] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
78
|
Stoessel D, Schulte C, Teixeira dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease. Front Aging Neurosci 2018; 10:51. [PMID: 29556190 PMCID: PMC5844983 DOI: 10.3389/fnagi.2018.00051] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0-4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD.
Collapse
Affiliation(s)
- Daniel Stoessel
- Metabolomic Discoveries GmbH, Potsdam, Germany
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | - Irene Rebollo-Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Christian Deuschle
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Dirk Walther
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | - Daniela Berg
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andre Nogueira da Costa
- Experimental Medicine and Diagnostics, Global Exploratory Development, UCB Biopharma SPRL, Brussels, Belgium
| | - Walter Maetzler
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
79
|
Gegg ME, Schapira AHV. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J 2018; 285:3591-3603. [DOI: 10.1111/febs.14393] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew E. Gegg
- Department of Clinical Neuroscience; Institute of Neurology; University College London; UK
| | - Anthony H. V. Schapira
- Department of Clinical Neuroscience; Institute of Neurology; University College London; UK
| |
Collapse
|
80
|
García-Sanz P, Moratalla R. The importance of cholesterol in Parkinson's disease. Mov Disord 2018; 33:343-344. [PMID: 29315826 DOI: 10.1002/mds.27251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Affiliation(s)
- Patricia García-Sanz
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
81
|
Fernandes HJ. Beyond the lysosome: Cholesterol role on endoplasmic reticulum and lipid droplets in Parkinson's disease. Mov Disord 2017; 33:342. [DOI: 10.1002/mds.27249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hugo J.R. Fernandes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus; Cambridge United Kingdom
| |
Collapse
|