51
|
Bisphenol A: An endocrine and metabolic disruptor. ANNALES D'ENDOCRINOLOGIE 2013; 74:211-20. [DOI: 10.1016/j.ando.2013.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022]
|
52
|
Laurent O, Wu J, Li L, Chung J, Bartell S. Investigating the association between birth weight and complementary air pollution metrics: a cohort study. Environ Health 2013; 12:18. [PMID: 23413962 PMCID: PMC3599912 DOI: 10.1186/1476-069x-12-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/13/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure to air pollution is frequently associated with reductions in birth weight but results of available studies vary widely, possibly in part because of differences in air pollution metrics. Further insight is needed to identify the air pollution metrics most strongly and consistently associated with birth weight. METHODS We used a hospital-based obstetric database of more than 70,000 births to study the relationships between air pollution and the risk of low birth weight (LBW, <2,500 g), as well as birth weight as a continuous variable, in term-born infants. Complementary metrics capturing different aspects of air pollution were used (measurements from ambient monitoring stations, predictions from land use regression models and from a Gaussian dispersion model, traffic density, and proximity to roads). Associations between air pollution metrics and birth outcomes were investigated using generalized additive models, adjusting for maternal age, parity, race/ethnicity, insurance status, poverty, gestational age and sex of the infants. RESULTS Increased risks of LBW were associated with ambient O(3) concentrations as measured by monitoring stations, as well as traffic density and proximity to major roadways. LBW was not significantly associated with other air pollution metrics, except that a decreased risk was associated with ambient NO(2) concentrations as measured by monitoring stations. When birth weight was analyzed as a continuous variable, small increases in mean birth weight were associated with most air pollution metrics (<40 g per inter-quartile range in air pollution metrics). No such increase was observed for traffic density or proximity to major roadways, and a significant decrease in mean birth weight was associated with ambient O3 concentrations. CONCLUSIONS We found contrasting results according to the different air pollution metrics examined. Unmeasured confounders and/or measurement errors might have produced spurious positive associations between birth weight and some air pollution metrics. Despite this, ambient O(3) was associated with a decrement in mean birth weight and significant increases in the risk of LBW were associated with traffic density, proximity to roads and ambient O(3). This suggests that in our study population, these air pollution metrics are more likely related to increased risks of LBW than the other metrics we studied. Further studies are necessary to assess the consistency of such patterns across populations.
Collapse
Affiliation(s)
- Olivier Laurent
- Program in Public Health, University of California, Irvine, CA, USA
| | - Jun Wu
- Program in Public Health, University of California, Irvine, CA, USA
| | - Lianfa Li
- Program in Public Health, University of California, Irvine, CA, USA
- State Key Lab of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Judith Chung
- Division of Maternal Fetal Medicine, University of California, Irvine, CA, USA
| | - Scott Bartell
- Program in Public Health, University of California, Irvine, CA, USA
- Department of Epidemiology, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| |
Collapse
|
53
|
Inadera H. Developmental origins of obesity and type 2 diabetes: molecular aspects and role of chemicals. Environ Health Prev Med 2013; 18:185-97. [PMID: 23382021 PMCID: PMC3650171 DOI: 10.1007/s12199-013-0328-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity is a leading risk factor for impaired glucose tolerance and type 2 diabetes (T2D). Although the cause of the obesity epidemic is multi-factorial and not entirely clear, the recent acceleration in incidence is too rapid to be accounted for only by genetics, the wide availability of calorie-rich foods, and increasingly sedentary lifestyles. Accumulating data suggest that the important causes of the obesity epidemic may be related to developmental and early life environmental conditions. The concept of the developmental origins of health and disease (DOHaD) suggests that adverse influences early in development, particularly during intrauterine life, may result in permanent changes in the physiology and metabolism of the infant, which in turn result in an increased risk of non-communicable diseases in adulthood. For example, undernutrition during pregnancy and rapid postnatal weight gain are associated with obesity and T2D in the adult offspring. Moreover, increasing evidence suggests that early-life exposure to a wide range of chemicals has a significant impact on the causes of metabolic disorders. Although the underlying molecular mechanisms remain to be determined, these factors can affect epigenetic processes, such as DNA methylation, allowing the developmental environment to modulate gene transcription. The objective of this review article was to summarize recent progress in the biomedical implications of the DOHaD concept, focusing on the pathogenesis of obesity and T2D, and to discuss a future direction for preventive strategies from a public health perspective.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
54
|
Haddad R, Kasneci A, Mepham K, Sebag IA, Chalifour LE. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny. Toxicol Appl Pharmacol 2013; 266:27-37. [DOI: 10.1016/j.taap.2012.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/03/2023]
|
55
|
Sexton K, Salinas JJ, McDonald TJ, Gowen RMZ, Miller RP, McCormick JB, Fisher-Hoch SP. Biomarker measurements of prenatal exposure to polychlorinated biphenyls (PCB) in umbilical cord blood from postpartum Hispanic women in Brownsville, Texas. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1225-1235. [PMID: 24283394 DOI: 10.1080/15287394.2013.848744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biomarkers of polychlorinated biphenyls (PCB) were measured in both maternal and umbilical cord blood from 35 pregnant Hispanic women living in Brownsville, TX. Gas chromatography with an electron capture detector (GC/ECD) was used to analyze for 22 PCB analytes. Results indicated that both pregnant mothers and their fetuses were exposed to a variety of PCB at relatively low levels (≤ 0.2 ng/ml), and that concentrations in maternal and cord blood were similar. Concentrations of total PCB (sum or all PCB congeners) averaged more than 2.5 ng/ml, with highest values exceeding 3 ng/ml. Although health implications are uncertain, reports in the literature of PCB-related health effects raise concerns about possible future health consequences, especially obesity and diabetes, in this potentially vulnerable population.
Collapse
Affiliation(s)
- Ken Sexton
- a University of Texas School of Public Health , Brownville Regional Campus , Brownsville , Texas , USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Petro E, Leroy J, Van Cruchten S, Covaci A, Jorssen E, Bols P. Endocrine disruptors and female fertility: Focus on (bovine) ovarian follicular physiology. Theriogenology 2012; 78:1887-900. [DOI: 10.1016/j.theriogenology.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/03/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
57
|
De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:713696. [PMID: 22991565 PMCID: PMC3443608 DOI: 10.1155/2012/713696] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/21/2022]
Abstract
The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.
Collapse
Affiliation(s)
| | - Nicolas van Larebeke
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium
| |
Collapse
|
58
|
Werner Fürst R, Pistek VL, Kliem H, Skurk T, Hauner H, Meyer HHD, Ulbrich SE. Maternal low-dose estradiol-17β exposure during pregnancy impairs postnatal progeny weight development and body composition. Toxicol Appl Pharmacol 2012; 263:338-44. [DOI: 10.1016/j.taap.2012.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 07/03/2012] [Indexed: 01/06/2023]
|
59
|
Li DK, Ferber JR, Odouli R, Quesenberry CP. A prospective study of in-utero exposure to magnetic fields and the risk of childhood obesity. Sci Rep 2012; 2:540. [PMID: 22844581 PMCID: PMC3406339 DOI: 10.1038/srep00540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/20/2012] [Indexed: 11/14/2022] Open
Abstract
We conducted a prospective study to examine whether in-utero exposure to magnetic fields (MFs) increases the risk of childhood obesity. Participating women carried a meter measuring MF levels during pregnancy and 733 of their children were followed up to 13 years to collect clinically recorded information on growth patterns with 33 weight measurements per child on average. Prenatal exposure to high MF level was associated with increased risk of being obese in offspring than those with lower MF level (odds ratio = 1.69, 95% confidence interval: 1.01–2.84). The association demonstrated a dose-response relationship and was stronger (more than 2.3 fold increased risk) among children who were followed up to the end of the study. The association existed only for persistent obesity, but not for transitory (unlikely) obesity. Maternal exposure to high MF during pregnancy may be a new and previously unknown factor contributing to the world-wide epidemic of childhood obesity/overweight.
Collapse
Affiliation(s)
- De-Kun Li
- Division of Research, Kaiser Foundation Research Institute, Kaiser Permanente, 2000 Broadway, Oakland, California 94612, USA.
| | | | | | | |
Collapse
|
60
|
Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M, Quinn J, Camann D, Perera F, Whyatt R. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 2012; 175:1163-72. [PMID: 22505764 DOI: 10.1093/aje/kwr455] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are concerns that prenatal exposure to endocrine-disrupting chemicals increases children's risk of obesity. African-American and Hispanic children born in the Bronx or Northern Manhattan, New York (1998-2006), whose mothers underwent personal air monitoring for polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy, were followed up to ages 5 (n = 422) and 7 (n = 341) years. At age 5 years, 21% of the children were obese, as were 25% of those followed to age 7 years. After adjustment for child's sex, age at measurement, ethnicity, and birth weight and maternal receipt of public assistance and prepregnancy obesity, higher prenatal PAH exposures were significantly associated with higher childhood body size. In adjusted analyses, compared with children of mothers in the lowest tertile of PAH exposure, children of mothers in the highest exposure tertile had a 0.39-unit higher body mass index z score (95% confidence interval (CI): 0.08, 0.70) and a relative risk of 1.79 (95% CI: 1.09, 2.96) for obesity at age 5 years, and they had a 0.30-unit higher body mass index z score (95% CI: 0.01, 0.59), a 1.93-unit higher percentage of body fat (95% CI: 0.33, 3.54), and a relative risk of 2.26 (95% CI: 1.28, 4.00) for obesity at age 7 years. The data indicate that prenatal exposure to PAHs is associated with obesity in childhood.
Collapse
Affiliation(s)
- Andrew Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Schell LM, Gallo MV. Overweight and obesity among North American Indian infants, children, and youth. Am J Hum Biol 2012; 24:302-13. [PMID: 22378356 PMCID: PMC3514018 DOI: 10.1002/ajhb.22257] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 11/12/2022] Open
Abstract
The frequency of overweight and obesity among North American Indian children and youth exceeds that of other ethnic groups in the United States. This observation is based on studies using body mass index as the primary measure of overweight and obesity. In the mid-20th century, there were regional differences among North American Indian groups in sub-adults' size and shape and only a few Southwestern groups were characterized by high rates of overweight and obesity. In most populations, the high prevalence of overweight and obesity developed in the last decades of the 20th century. Childhood obesity may begin early in life as many studies report higher birth weights and greater weight-for-height in the preschool years. Contributing factors include higher maternal weights, a nutritional transition from locally caught or raised foods to store bought items, psychosocial stress associated with threats to cultural identity and national sovereignty, and exposure to obesogenic pollutants, all associated to some degree with poverty. Obesity is part of the profile of poor health among Native Americans in the US and Canada, and contributes to woefully high rates of diabetes, cardiovascular disease, and early mortality. Interventions that are culturally appropriate are needed to reduce weights at all points in the lifespan.
Collapse
Affiliation(s)
- Lawrence M Schell
- Center for the Elimination of Minority Health Disparities, University at Albany, New York, USA.
| | | |
Collapse
|
62
|
Holtcamp W. Obesogens: an environmental link to obesity. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:a62-8. [PMID: 22296745 PMCID: PMC3279464 DOI: 10.1289/ehp.120-a62] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
63
|
Genuis SJ, Beesoon S, Birkholz D, Lobo RA. Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2011; 2012:185731. [PMID: 22253637 PMCID: PMC3255175 DOI: 10.1155/2012/185731] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/10/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is an ubiquitous chemical contaminant that has recently been associated with adverse effects on human health. There is incomplete understanding of BPA toxicokinetics, and there are no established interventions to eliminate this compound from the human body. Using 20 study participants, this study was designed to assess the relative concentration of BPA in three body fluids-blood, urine, and sweat-and to determine whether induced sweating may be a therapeutic intervention with potential to facilitate elimination of this compound. METHODS Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for various environmental toxicants including BPA. RESULTS BPA was found to differing degrees in each of blood, urine, and sweat. In 16 of 20 participants, BPA was identified in sweat, even in some individuals with no BPA detected in their serum or urine samples. CONCLUSIONS Biomonitoring of BPA through blood and/or urine testing may underestimate the total body burden of this potential toxicant. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of BPA in humans. Induced sweating appears to be a potential method for elimination of BPA.
Collapse
|
64
|
Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev 2011; 12:622-36. [PMID: 21457182 DOI: 10.1111/j.1467-789x.2011.00871.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans. The results depended on the type of chemical, exposure level, timing of exposure and gender. Nearly all the studies investigating dichlorodiphenyldichloroethylene (DDE) found that exposure was associated with an increase in body size, whereas the results of the studies investigating polychlorinated biphenyl (PCB) exposure were depending on dose, timing and gender. Hexachlorobenzene, polybrominated biphenyls, beta-hexachlorocyclohexane, oxychlordane and phthalates were likewise generally associated with an increase in body size. Studies investigating polychlorinated dibenzodioxins and polychlorinated dibenzofurans found either associations with weight gain or an increase in waist circumference, or no association. The one study investigating relations with bisphenol A found no association. Studies investigating prenatal exposure indicated that exposure in utero may cause permanent physiological changes predisposing to later weight gain. The study findings suggest that some endocrine disruptors may play a role for the development of the obesity epidemic, in addition to the more commonly perceived putative contributors.
Collapse
Affiliation(s)
- J L Tang-Péronard
- Research Unit for Dietary Studies, Institute of Preventive Medicine, Centre for Health and Society, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
65
|
Abstract
Synthetic chemicals currently used in a variety of industrial and agricultural applications are leading to widespread contamination of the environment. Even though the intended uses of pesticides, plasticizers, antimicrobials, and flame retardants are beneficial, effects on human health are a global concern. These so-called endocrine-disrupting chemicals (EDCs) can disrupt hormonal balance and result in developmental and reproductive abnormalities. New in vitro, in vivo, and epidemiological studies link human EDC exposure with obesity, metabolic syndrome, and type 2 diabetes. Here we review the main chemical compounds that may contribute to metabolic disruption. We then present their demonstrated or suggested mechanisms of action with respect to nuclear receptor signaling. Finally, we discuss the difficulties of fairly assessing the risks linked to EDC exposure, including developmental exposure, problems of high- and low-dose exposure, and the complexity of current chemical environments.
Collapse
Affiliation(s)
- Cristina Casals-Casas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | | |
Collapse
|
66
|
The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose. Toxicol Appl Pharmacol 2011; 255:65-75. [PMID: 21683088 DOI: 10.1016/j.taap.2011.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5μg/kg). At higher doses (50-500μg/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ERα or ERβ, TBT (in a dose range of 1-100nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ERα in undifferentiated preadipocytic cells and by ERβ in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed.
Collapse
|
67
|
Graham LA, Shaw IC. Does the oestrogen receptor encourage oestrogenicity in environmental pollutants? The case of 4-nonylphenol. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:329-350. [PMID: 21598197 DOI: 10.1080/1062936x.2011.569899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A computer-aided docking study was conducted to explore in detail the binding interactions between the structurally unlikely environmental oestrogen 4-nonylphenol (4NP) and three of its metabolites with the human oestrogen receptor alpha (hERα). Docking was done within the Schrodinger Suite 2008 using both a conventional rigid receptor with flexible ligand and the induced-fit docking protocol. Induced-fit docking allows side-chain and backbone movement in the receptor to accommodate the ligand. This study has revealed unconventional interactions between the ligands and the hERα binding pocket that could explain the observed oestrogen-like behaviour of 4NP and suggests some of the metabolites of 4NP may also be oestrogenic.
Collapse
Affiliation(s)
- L A Graham
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
68
|
Bonacasa B, Siow RCM, Mann GE. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 2011; 18:270-85. [PMID: 21418378 DOI: 10.1111/j.1549-8719.2011.00088.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological evidence suggests that soy-based diets containing phytoestrogens (isoflavones) afford protection against cardiovascular diseases (CVDs); however, supplementation trials have largely reported only marginal health benefits. The molecular mechanisms by which the isoflavones genistein, daidzein, and equol afford protection against oxidative stress remain to be investigated in large scale clinical trials. Isoflavones are transferred across the placenta in both rodents and humans, yet there is limited information on their actions in pregnancy and the developmental origins of disease. Our studies established that feeding a soy isoflavone-rich diet during pregnancy, weaning, and postweaning affords cardiovascular protection in aged male rats. Notably, rats exposed to a soy isoflavone-deficient diet throughout pregnancy and adult life exhibited increased oxidative stress, diminished antioxidant enzyme and eNOS levels, endothelial dysfunction, and elevated blood pressure in vivo. The beneficial effects of refeeding isoflavones to isoflavone-deficient rats include an increased production of nitric oxide and EDHF, an upregulation of antioxidant defense enzymes and lowering of blood pressure in vivo. This review focuses on the role that isoflavones in the fetal circulation may play during fetal development in affording protection against CVD in the offspring via their ability to activate eNOS, EDHF, and redox-sensitive gene expression.
Collapse
Affiliation(s)
- Barbara Bonacasa
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
69
|
Migliarini B, Piccinetti CC, Martella A, Maradonna F, Gioacchini G, Carnevali O. Perspectives on endocrine disruptor effects on metabolic sensors. Gen Comp Endocrinol 2011; 170:416-23. [PMID: 21130769 DOI: 10.1016/j.ygcen.2010.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 11/15/2022]
Abstract
Endocrine disrupting (EDs) chemicals can increase or block the metabolism of endogenous peptidergic or steroid hormones by activating or antagonizing nuclear receptors in the hypothalamus, besides adipose tissue, liver and gonads. Toxicological and epidemiological studies have suggested the involvement of different EDs in an increasing number of metabolic disorders such as obesity and diabetes. The aim of this review is to summarize the literature from experimental animal studies demonstrating the impairment of body weight raised by the deregulation of peptidergic signals as well as by the activation of key metabolic molecular targets. Regarding the modification of gene transcription levels induced by EDs, new data on DEHP effect on food intake and lipid metabolism in the experimental model zebrafish (Danio rerio) have also been included in this review providing evidences about the dangerousness of DEHP low doses.
Collapse
Affiliation(s)
- B Migliarini
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Endocrine disrupting compounds (EDCs) alter the function of the endocrine system and consequently cause adverse health effects. Phytoestrogens, natural plant compounds abundantly found in soy and soy products, behave as weak estrogen mimics or as antiestrogens. They are considered to be EDCs, and have some beneficial effects on health, including reducing the risk of breast cancer and improving metabolic parameters. However, the supporting evidence that consumption of phytoestrogens is beneficial is indirect and inconsistent. Lifetime exposure to estrogenic substances, especially during critical periods of development, has been associated with formation of malignancies and several anomalies of the reproductive systems. Phytoestrogen consumption in infants, through soy-based formulas, is of particular concern. Prospective epidemiological studies for the evaluation of the effect of phytoestrogens alone, and in combination with other estrogenic chemicals, are lacking, yet possible adverse effects should not be taken lightly.
Collapse
Affiliation(s)
- Dadon S Bar-El
- School of Nutritional Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
71
|
Abstract
Male infertility, characterized by hypogonadism, decreased semen quality or ejaculatory dysfunction, accounts for approximately 20% of infertility cases. Obesity and metabolic dysfunction have been identified, among other causal factors, to contribute to male infertility. In the context of the Western world's 'obesity epidemic', this article discusses three main biological mechanisms linking obesity to impaired male reproductive function: hypogonadism, testicular heat stress/hypoxia-induced apoptosis and endocrine disruption by 'obesogens'. Among these, obesity-induced hypogonadism is undoubtedly the most clinically significant and is easily assessed. Rapidly expanding areas of research in this area include leptin modulation of kisspeptins and hypothalamic-pituitary-testicular hormone pathways, and roles of other adipocytokines in male infertility, as well as the impact of exposure to obesogens on the quality of semen.
Collapse
Affiliation(s)
- Karen P Phillips
- a Assistant Professor, Interdisciplinary School of Health Sciences, Faculty of Health Sciences, Principal Scientist, Institute of Population Health, University of Ottawa, 43 Templeton Street, Room 215, Ottawa, ON K1N 6N5, Canada.
| | - Nongnuj Tanphaichitr
- b Senior Scientist, Ottawa Hospital Research Institute, and Professor in Obstetrics and Gynecology, and Biochemistry/Microbiology/Immunology, University of Ottawa, 725 Parkdale Avenue, Ottawa, ON K1Y 4E9, Canada.
| |
Collapse
|
72
|
Reproductive and Developmental Toxicity. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
73
|
Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C. Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology 2010; 151:595-605. [PMID: 19966179 PMCID: PMC2817622 DOI: 10.1210/en.2009-1015] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/30/2009] [Indexed: 12/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy of reproductive-aged women and is exacerbated by obesity. Exposure of ewes to excess testosterone (T) from d 30-90 of gestation culminates in anovulation, functional hyperandrogenism, LH excess, and polyfollicular ovaries, features similar to those of women with PCOS, with some reproductive defects programmed by androgenic actions of T and others not. Excess weight gain during postnatal life increases the severity of these reproductive defects. Prenatal T-treated ewes also manifest reduced insulin sensitivity, a feature found in more than 70% of PCOS women. We tested the hypotheses that reduced insulin sensitivity of prenatal T-treated ewes is programmed by androgenic actions of T, and excess postnatal weight gain exaggerates this defect. In addition, we tested whether disruptive effects of excess weight gain on insulin sensitivity index are transferred to female offspring. Insulin sensitivity was assessed using iv glucose tolerance tests. Results revealed that disruptive effects of prenatal T excess on insulin sensitivity were programmed by androgenic action of T and postnatal overfeeding-impaired insulin sensitivity in both T-treated and controls and that prenatal T-treated sheep tend to manifest such overfeeding impairments earlier than controls. Importantly, offspring of overweight controls also manifest defects in insulin dynamics supportive of intergenerational transfer of obesity-related traits. The findings are of relevance in the context of developmental programming of insulin resistance by prenatal steroids and excess weight gain.
Collapse
Affiliation(s)
- V Padmanabhan
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, 300 North Ingalls Building, Ann Arbor, Michigan 48109-0404, USA.
| | | | | | | | | |
Collapse
|
74
|
Toxic environment and obesity pandemia: is there a relationship? Ital J Pediatr 2010; 36:8. [PMID: 20205780 PMCID: PMC2823765 DOI: 10.1186/1824-7288-36-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/22/2010] [Indexed: 02/08/2023] Open
Abstract
Obesity is a multi-factorial disease, resulting from genes, environment and behaviour interactions, and represents the most common metabolic disorder in the Western Hemisphere. Its prevalence has dramatically risen during the last three decades, reaching worldwide epidemic proportions. Recent cumulating evidence suggests that obesity may represent an adverse health consequence of exposure during the critical developmental windows to environmental chemicals disrupting endocrine function. Moreover, exposure to these chemicals seems to play a key role in the development of obesity-related metabolic and cardiovascular diseases. Further research is needed to elucidate the relationship between this exposure and the obesity pandemia and the involved mechanisms as well as to refine hazard identification.
Collapse
|
75
|
Abstract
Obesity has reached epidemic proportions in the United States, with 35.1% of adults being classified as obese. Obesity affects every segment of the US population and continues to increase steadily, especially in children. Obesity increases the risk for many other chronic diseases, including diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, and decreases overall quality of life. The current US generation may have a shorter life expectancy than their parents if the obesity epidemic is not controlled, and there is no indication that the prevalence of obesity is decreasing. Because of the complexity of obesity, it is likely to be one of the most difficult public health issues our society has faced.
Collapse
Affiliation(s)
- Victoria A Catenacci
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, CO 80220, USA
| | | | | |
Collapse
|
76
|
Maternal flaxseed diet during lactation alters milk composition and programs the offspring body composition, lipid profile and sexual function. Food Chem Toxicol 2009; 48:697-703. [PMID: 19948200 DOI: 10.1016/j.fct.2009.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/17/2009] [Accepted: 11/25/2009] [Indexed: 11/21/2022]
Abstract
We evaluated the effects of maternal dietary flaxseed during lactation on milk composition, body composition and sexual function of the adult female offspring. The dams were fed a control casein diet (C) or flaxseed diet (F, 25%) throughout lactation. F mothers showed higher serum 17beta-estradiol (E2) and leptin at weaning. F mother's milk had lower total cholesterol (TC) and higher E2 and leptin. The offspring of F dams showed lower body mass (BM), body fat mass (BFM), visceral fat mass (VFM), TC and triglycerides (TG) and higher serum leptin and E2 at 21 days. F offspring showed delayed puberty onset. At 150 days, these offspring presented higher BFM, VFM, TC, TG, E2 and lower relative uterine weight and lower progesterone. In conclusion, flaxseed during lactation did affect the lipid profile, adipose tissue and sexual function in adulthood, probably due hyperestrogenism and hyperleptinemia at weaning.
Collapse
|
77
|
Cederroth CR, Nef S. Fetal programming of adult glucose homeostasis in mice. PLoS One 2009; 4:e7281. [PMID: 19789640 PMCID: PMC2748646 DOI: 10.1371/journal.pone.0007281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/08/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes. OBJECTIVES The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters. METHODS Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system. RESULTS Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density. CONCLUSION Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain.
Collapse
Affiliation(s)
- Christopher R. Cederroth
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
78
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2876] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- Endocrine Section of First Department of Medicine, Laiko Hospital, Medical School University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental & Cell Biology, University of California Irvine, 92697-2300, USA
| | | |
Collapse
|
80
|
Abstract
Many chemicals in the environment, in particular those with estrogenic activity, can disrupt the programming of endocrine signaling pathways that are established during development and result in adverse consequences that may not be apparent until much later in life. Most recently, obesity and diabetes join the growing list of adverse consequences that have been associated with developmental exposure to environmental estrogens during critical stages of differentiation. These diseases are quickly becoming significant public health issues and are fast reaching epidemic proportions worldwide. In this review, we summarize the literature from experimental animal studies documenting an association of environmental estrogens and the development of obesity, and further describe an animal model of exposure to diethylstilbestrol (DES) that has proven useful in studying mechanisms involved in abnormal programming of various differentiating estrogen-target tissues. Other examples of environmental estrogens including the phytoestrogen genistein and the environmental contaminant Bisphenol A are also discussed. Together, these data suggest new targets (i.e., adipocyte differentiation and molecular mechanisms involved in weight homeostasis) for abnormal programming by estrogenic chemicals, and provide evidence that support the scientific hypothesis termed "the developmental origins of adult disease". The proposal of an association of environmental estrogens with obesity and diabetes expands the focus on the diseases from intervention/treatment to include prevention/avoidance of chemical modifiers especially during critical windows of development.
Collapse
Affiliation(s)
- Retha R Newbold
- Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| | | | | |
Collapse
|
81
|
Ferguson SA, Delclos KB, Newbold RR, Flynn KM. Few effects of multi-generational dietary exposure to genistein or nonylphenol on sodium solution intake in male and female Sprague–Dawley rats. Neurotoxicol Teratol 2009; 31:143-8. [PMID: 19452615 DOI: 10.1016/j.ntt.2009.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
82
|
Abstract
Obesity and obesity-related disorders, such as type 2 diabetes, hypertension, and cardiovascular disease, are epidemic in Western countries, particularly the United States. The conventional wisdom holds that obesity is primarily the result of a positive energy balance, i.e. too many calories in and too few calories burned. Although it is self-evident that fat cannot be accumulated without a higher caloric intake than expenditure, recent research in a number of laboratories suggests the existence of chemicals that alter regulation of energy balance to favor weight gain and obesity. These obesogens derail the homeostatic mechanisms important for weight control, such that exposed individuals are predisposed to weight gain, despite normal diet and exercise. This review considers the evidence for obesogens, how they might act, and where future research is needed to clarify their relative contribution to the obesity epidemic.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300, USA
| | | |
Collapse
|
83
|
|
84
|
Iguchi T, Katsu Y. Commonality in Signaling of Endocrine Disruption from Snail to Human. Bioscience 2008. [DOI: 10.1641/b581109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
85
|
Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1642-7. [PMID: 19079714 PMCID: PMC2599757 DOI: 10.1289/ehp.11537] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/14/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND The incidence of obesity has risen dramatically over the last few decades. This epidemic may be affected by exposure to xenobiotic chemicals. Bisphenol A (BPA), an endocrine disruptor, is detectable at nanomolar levels in human serum worldwide. Adiponectin is an adipocyte-specific hormone that increases insulin sensitivity and reduces tissue inflammation. Thus, any factor that suppresses adiponectin release could lead to insulin resistance and increased susceptibility to obesity-associated diseases. OBJECTIVES In this study we aimed to compare a) the effects of low doses of BPA and estradiol (E(2)) on adiponectin secretion from human breast, subcutaneous, and visceral adipose explants and mature adipocytes, and b) expression of putative estrogen and estrogen-related receptors (ERRs) in these tissues. METHODS We determined adiponectin levels in conditioned media from adipose explants or adipocytes by enzyme-linked immunosorbant assay. We determined expression of estrogen receptors (ERs) alpha and beta, G-protein-coupled receptor 30 (GPR30), and ERRs alpha, beta, and gamma by quantitative real-time polymerase chain reaction. RESULTS BPA at 0.1 and 1 nM doses suppressed adiponectin release from all adipose depots examined. Despite substantial variability among patients, BPA was as effective, and often more effective, than equimolar concentrations of E(2). Adipose tissue expresses similar mRNA levels of ERalpha, ERbeta, and ERRgamma, and 20- to 30-fold lower levels of GPR30, ERRalpha, and ERRbeta. CONCLUSIONS BPA at environmentally relevant doses inhibits the release of a key adipokine that protects humans from metabolic syndrome. The mechanism by which BPA suppresses adiponectin and the receptors involved remains to be determined.
Collapse
Affiliation(s)
- Eric R. Hugo
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Terry D. Brandebourg
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jessica G. Woo
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - J. Wesley Alexander
- Center for Surgical Weight Loss, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
86
|
Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, Iguchi T, Juul A, McLachlan JA, Schwartz J, Skakkebaek N, Soto AM, Swan S, Walker C, Woodruff TK, Woodruff TJ, Giudice LC, Guillette LJ. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 2008; 90:911-40. [PMID: 18929049 DOI: 10.1016/j.fertnstert.2008.08.067] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/13/2008] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive disruptions warrant evaluation of the impact of EDCs on female reproductive health. DESIGN Publications related to the contribution of EDCs to disorders of the ovary (aneuploidy, polycystic ovary syndrome, and altered cyclicity), uterus (endometriosis, uterine fibroids, fetal growth restriction, and pregnancy loss), breast (breast cancer, reduced duration of lactation), and pubertal timing were identified, reviewed, and summarized at a workshop. CONCLUSION(S) The data reviewed illustrate that EDCs contribute to numerous human female reproductive disorders and emphasize the sensitivity of early life-stage exposures. Many research gaps are identified that limit full understanding of the contribution of EDCs to female reproductive problems. Moreover, there is an urgent need to reduce the incidence of these reproductive disorders, which can be addressed by correlative studies on early life exposure and adult reproductive dysfunction together with tools to assess the specific exposures and methods to block their effects. This review of the EDC literature as it relates to female health provides an important platform on which women's health can be improved.
Collapse
|
87
|
Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. ACTA ACUST UNITED AC 2008; 31:201-8. [PMID: 18315718 DOI: 10.1111/j.1365-2605.2007.00858.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Environmental chemicals with hormone-like activity can disrupt the programming of endocrine signalling pathways that are established during perinatal life and result in adverse consequences that may not be apparent until much later in life. Increasing evidence implicates developmental exposure to environmental hormone mimics with a growing list of adverse health consequences in both males and females. Most recently, obesity has been proposed to be yet another adverse health effect of exposure to endocrine disrupting chemicals (EDCs) during critical stages of development. Obesity is quickly becoming a significant human health crisis because it is reaching epidemic proportions worldwide, and is associated with chronic illnesses such as diabetes and cardiovascular disease. In this review, we summarize the literature reporting an association of EDCs and the development of obesity, and further describe an animal model of exposure to diethylstilbestrol that has proven useful in studying mechanisms involved in abnormal programming of various oestrogen target tissues during differentiation. Together, these data suggest new targets (i.e. adipocyte differentiation and mechanisms involved in weight homeostasis) of abnormal programming by EDCs, and provide evidence that support the scientific term 'the developmental origins of adult disease'. The emerging idea of an association of EDCs and obesity expands the focus on obesity from intervention and treatment to include prevention and avoidance of these chemical modifiers.
Collapse
Affiliation(s)
- Retha R Newbold
- Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
88
|
Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. PATHOPHYSIOLOGY 2008; 15:79-89. [PMID: 18571908 PMCID: PMC2593649 DOI: 10.1016/j.pathophys.2008.04.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/18/2008] [Accepted: 04/28/2008] [Indexed: 01/04/2023] Open
Abstract
One of the most profound challenges facing public health and public health policy in Western society is the increased incidence and prevalence of both overweight and obesity. While this condition can have significant consequences for patient mortality and quality of life, it can be further exacerbated as overweight/obesity can be a powerful stimulus for the development of additional risk factors for a negative cardiovascular outcome, including increased insulin resistance, dyslipidemia and hypertension. This manuscript will present the effects of systemic obesity on broad issues of vascular function in both afflicted human populations and in the most relevant animal models. Among the topics that will be covered are alterations to vascular reactivity (both dilator and constrictor responses), adaptations in microvascular network and vessel wall structure, and alterations to the patterns of tissue/organ perfusion as a result of the progression of the obese condition. Additionally, special attention will be paid to the contribution of chronic inflammation as a contributor to alterations in vascular function, as well as the role of perivascular adipose tissue in terms of impacting vessel behavior. When taken together, it is clearly apparent that the development of the obese condition can have profound, and frequently difficult to predict, impacts on integrated vascular function. Much of this complexity appears to have its basis in the extent to which other co-morbidities associated with obesity (e.g., insulin resistance) are present and exert contributing effects.
Collapse
Affiliation(s)
- Phoebe A. Stapleton
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Milinda E. James
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Adam G. Goodwill
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jefferson C. Frisbee
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
89
|
García-Peláez B, Vilà R, Remesar X. Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning. Reprod Biol Endocrinol 2008; 6:23. [PMID: 18570654 PMCID: PMC2459176 DOI: 10.1186/1477-7827-6-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/20/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In rats, oral oleoyl-estrone (OE) decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. METHODS Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day). Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. RESULTS Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. CONCLUSION The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood.
Collapse
Affiliation(s)
- Beatriz García-Peláez
- Departament de Nutrició i Bromatologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Ruth Vilà
- Departament de Nutrició i Bromatologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- CIBER (Fisiopatología de la Obesidad), Instituto de Salud Carlos III, Spain
| | - Xavier Remesar
- Departament de Nutrició i Bromatologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- CIBER (Fisiopatología de la Obesidad), Instituto de Salud Carlos III, Spain
| |
Collapse
|
90
|
Boberg J, Metzdorff S, Wortziger R, Axelstad M, Brokken L, Vinggaard AM, Dalgaard M, Nellemann C. Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 2008; 250:75-81. [PMID: 18602967 DOI: 10.1016/j.tox.2008.05.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Endocrine disrupting chemicals can induce malformations and impairment of reproductive function in experimental animals and may have similar effects in humans. Recently, the environmental obesogen hypothesis was proposed, suggesting that environmental chemicals contribute to the development of obesity and insulin resistance. These effects could be related to chemical interaction with nuclear receptors such as the peroxisome proliferator activated receptors (PPARs). As several testosterone-reducing drugs are PPAR activators, we aimed to examine whether four PPAR agonists were able to affect fetal testosterone production and masculinization of rats. Additionally, we wished to examine whether these chemicals affected fetal plasma levels of insulin and leptin, which play important roles in the developmental programming of the metabolic system. Pregnant Wistar rats were exposed from gestation day (GD) 7-21 to diisobutyl phthalate (DiBP), butylparaben, perfluorooctanoate, or rosiglitazone (600, 100, 20, or 1 mg/kg bw/day, respectively). Endocrine endpoints were studied in offspring at GD 19 or 21. DiBP, butylparaben and rosiglitazone reduced plasma leptin levels in male and female offspring. DiBP and rosiglitazone additionally reduced fetal plasma insulin levels. In males, DiBP reduced anogenital distance, testosterone production and testicular expression of Insl-3 and genes related to steroidogenesis. PPARalpha mRNA levels were reduced by DiBP at GD 19 in testis and liver. In females, DiBP increased anogenital distance and increased ovarian aromatase mRNA levels. This study reveals new targets for phthalates and parabens in fetal male and female rats and contributes to the increasing concern about adverse effects of human exposure to these compounds.
Collapse
Affiliation(s)
- Julie Boberg
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Dietert RR, Dietert JM. Possible role for early-life immune insult including developmental immunotoxicity in chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME). Toxicology 2008; 247:61-72. [PMID: 18336982 DOI: 10.1016/j.tox.2008.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 01/06/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Chronic fatigue syndrome (CFS), also known as myalgic encephalomyelitis (ME) in some countries, is a debilitating disease with a constellation of multi-system dysfunctions primarily involving the neurological, endocrine and immune systems. While substantial information is available concerning the complex dysfunction-associated symptoms of CFS, environmental origins of the disease have yet to be determined. Part of the dilemma in identifying the cause(s) has been the focus on biomarkers (hormones, neurotransmitters, cytokines, infectious agents) that are contemporary with later-life CFS episodes. Yet, recent investigations on the origins of environmental diseases of the neurological, endocrine, reproductive, respiratory and immune systems suggest that early life toxicologic and other insults are pivotal in producing later-life onset of symptoms. As with autism and childhood asthma, CFS can also occur in children where the causes are certainly early-life events. Immune dysfunction is recognized as part of the CFS phenotype but has received comparatively less attention than aberrant neurological or endocrine function. However, recent research results suggest that early life immune insults (ELII) including developmental immunotoxicity (DIT), which is induced by xenobiotics, may offer an important clue to the origin(s) of CFS. The developing immune system is a sensitive and novel target for environmental insult (xenobiotic, infectious agents, stress) with major ramifications for postnatal health risks. Additionally, many prenatal and early postnatal neurological lesions associated with postnatal neurobehavioral diseases are now recognized as linked to prenatal immune insult and inflammatory dysregulation. This review considers the potential role of ELII including DIT as an early-life component of later-life CFS.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
92
|
Kaludjerovic J, Ward WE. Diethylstilbesterol has gender-specific effects on weight gain and bone development in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1032-1042. [PMID: 18569612 DOI: 10.1080/15287390801988947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neonatal exposure to diethylstilbesterol (DES) in female mice programs estrogen-sensitive tissues, resulting in greater body weight gain and positive effects on bone architecture at adulthood. Using the CD-1 mouse model, the objective of the present study was to examine how short-term neonatal exposure to DES modulates weight gain as well as bone mineral density (BMD), bone strength, and bone microarchitecture in both males and females at adulthood. Male and female offspring (n = 8-12 pups/treatment/gender) were randomized to DES (2 mg/kg bw/d) or control (corn oil) from postnatal day 1 to 5 (subcutaneous injection, once daily) and sacrificed at 4 mo of age. Body weight was measured weekly, while bone mineral, strength, and microarchitecture were measured at 4 mo of age. DES treatment resulted in significantly higher body weight in females but lower weight in males at 4 mo of age. In DES-treated females, markedly higher BMD of lumbar vertebrae (LV1-LV3) was translated into significantly stronger LV2 that was more resistant to fracture; similar effects were observed at the femur midpoint. At the spine, males had a markedly lower BMD and peak load, suggesting an adverse effect. Microstructural analyses demonstrated that functional changes in femurs, i.e., peak load, were primarily due to modulation of cortical bone. In conclusion, neonatal exposure to DES exerted gender-specific effects on body weight gain and bone health.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|