51
|
Mukhopadhya A, O'Doherty JV, Sweeney T. A combination of yeast beta-glucan and milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets. Sci Rep 2019; 9:616. [PMID: 30679612 PMCID: PMC6346036 DOI: 10.1038/s41598-018-37004-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Zinc oxide (ZnO) is currently used as a dietary supplement to support gut homeostasis during the standard ‘abrupt’ weaning practices in commercial pig production. However, a replacement is urgently required as a ban on ZnO usage is imminent. The objective of this study was to explore the potential of a bovine casein hydrolysate (5kDaR) and yeast β-glucan, and their combination, as an alternative to ZnO. Eighty 21d old male piglets received a basal diet or supplemented with 5kDaR and yeast β-glucan alone or in combination, or ZnO from the day of weaning and were monitored for 10 days (n = 8/group; dietary groups: control diet; control diet + 5kDaR; control diet + yeast β-glucan; control diet + 5kDaR + yeast β-glucan; control diet + ZnO). Individually, supplement yeast β-glucan or 5kDaR did not improve gut health. In contrast, the yeast β-glucan + 5kDaR combination supplement supported a healthy gut, indicated by healthy faecal scores and improved growth parameters; similar to ZnO inclusion (P > 0.05). There was no negative effect on the gut microbiota with yeast β-glucan + 5kDaR supplementation; while ZnO negatively affected the Bifidobacterium spp. abundance (P < 0.05). The inflammatory NFκB pathway was suppressed by yeast β-glucan + 5kDaR supplementation, similar to ZnO (P > 0.05). In conclusion, the dietary supplement yeast β-glucan + 5kDaR restored homeostasis of the newly weaned piglet gut similar to the widely used ZnO, and can potentially replace ZnO.
Collapse
Affiliation(s)
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
52
|
Liu Y, Ji P. Dietary Factors in Prevention of Pediatric Escherichia coli Infection: A Model Using Domestic Piglets. ILAR J 2018; 59:338-351. [PMID: 31095688 DOI: 10.1093/ilar/ilz005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major etiological agent causing acute watery diarrhea that is most frequently seen in young children in lower-income countries. The duration of diarrheal symptom may be shortened by antibiotic treatment, but ETEC is relative refractory to common antibiotics. Burgeoning evidence suggests bioactive components that naturally occur in human milk (e.g., lysozyme and oligosaccharides) and plants (e.g., nondigestible carbohydrates and phytochemicals) contain antimicrobial functions are promising preventive measures to control ETEC infection. Although the exact protective mechanisms may vary for each compound and are still not completely understood, they generally act to (1) competitively inhibit the binding of pathogenic bacteria and toxins to gut epithelium; (2) directly kill pathogens; and (3) stimulate and/or enhance host mucosal and systemic immune defense against pathogenic microorganisms. An appropriate ETEC-challenge animal model is critical to evaluate the effect and unveil the mechanism of bioactive compounds in prevention of enteric infection. Despite wide application in biomedical research, rodents do not usually manifest typical clinical signs of enteric infections. The remarkable differences in digestive physiology, immune response, and gut microbiota between rodents and human beings necessitate the use of alternative animal models. Pigs are closely related to humans in terms of genomes, physiology, anatomy of gastrointestinal tracts, digestive enzymes, components of immune system, and gut microbiota. Like human infants and young children, nursing and nursery piglets are more susceptible to ETEC infection and reproduce the clinical signs as observed in humans. Hence, the ETEC-challenge piglet represents a valuable translational model to study pathogenesis and evaluate dietary factors (e.g., milk bioactive compounds, nondigestible carbohydrates, and phytochemicals) as preventive measures for ETEC infection in pediatrics.
Collapse
Affiliation(s)
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California
| |
Collapse
|
53
|
Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv 2018; 16:27-41. [DOI: 10.1080/17425247.2019.1551874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Panakkal Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Kannissery Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| |
Collapse
|
54
|
Bzducha-Wróbel A, Pobiega K, Błażejak S, Kieliszek M. The scale-up cultivation of Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl Microbiol Biotechnol 2018; 102:9131-9145. [PMID: 30215128 PMCID: PMC6208972 DOI: 10.1007/s00253-018-9357-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/08/2022]
Abstract
New ideas on production of yeast origin β-glucan preparations for industrial application are attracting interest considering market development of that high-value functional polysaccharide. Sellecting an efficient yeast producer and designing culture conditions are a prerequisite for obtaining high yield of β-glucan. The aim of this study was to describe at the first time the influence of the mode of cultivation (shake-flasks and batch fermentation) and time of culture on characteristic and yield of biomass and β(1,3)/(1,6)-glucan preparations of Candida utilis ATCC 9950 after cultivation in medium based on waste potato juice water supplemented with 10% of glycerol. After shake-flask culture, the biomass was characterized by higher protein content (app. 26.5%) compared to 19% after batch fermentation while the cultivation on a biofermentor scale promoted polysaccharides biosynthesis. The highest output of purified β(1,3)/(1,6)-glucan preparation (5.3 gd.w./L), containing app. 85% of that polysaccharide, was found after 48 h cultivation in biofermentor. Batch fermentation promoted biosynthesis of alkali-insoluble β(1,3)/(1,6)-glucan fraction, decreasing the content of β(1,6)-glucan. The yield of β(1,3)/(1,6)-glucan synthesis was 0.063 (g/g glycerol), while the productivity of that polysaccharide reached 0.094 (g/L/h). Longer batch fermentation (72 h) resulted in reduction of production efficiency of β-glucan preparation under studied conditions. The results of the study provide a new efficient biotechnological solution to produce high-value β-glucan preparations of C. utilis origin based on valorization of agro-waste potato juice water with glycerol.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland.
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| |
Collapse
|
55
|
Dharsono T, Rudnicka K, Wilhelm M, Schoen C. Effects of Yeast (1,3)-(1,6)-Beta-Glucan on Severity of Upper Respiratory Tract Infections: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Subjects. J Am Coll Nutr 2018; 38:40-50. [PMID: 30198828 DOI: 10.1080/07315724.2018.1478339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Each year, adults suffer about two to four upper respiratory tract infections (URTIs), mostly in winter. The aim of the study was to evaluate the effects of brewers' yeast (1,3)-(1,6)-beta-glucan on incidence and severity of upper respiratory tract infections (URTIs). METHODS Generally healthy men and women (n = 299) reporting at least three URTIs during the previous year were randomized to receive either a placebo or 900 mg of yeast beta-glucan daily for 16 weeks during winter. In cases of acute URTI, the severity of URTI symptoms was assessed via the WURSS-21 questionnaire and the Jackson scale, and a clinical confirmation was implemented by the investigator. RESULTS Overall, 70 subjects under placebo and 71 subjects under yeast beta-glucan experienced at least one clinically confirmed URTI episode. The global severity using WURSS-21 had been quite similar between the study groups (p = 0.5267), whereas during the first days of URTIs the severity was less pronounced in the yeast beta-glucan group. On the episode level, the severity of physical symptoms was significantly lower for all investigated time intervals up to 7 days under yeast beta-glucan (WURSS (Q2-11) (days 1-2: p = 0.0465, days 1-3: p = 0.0323, days 1-4: p = 0.0248, days 1-7: p = 0.0278), also confirmed for the Jackson scale). The reduction of severity was accompanied by a significant increase in the joy subscore of the Perceived Stress Questionnaire (PSQ20) (p = 0.0148). In addition, there was a reduction of systolic (p = 0.0458) and diastolic (p = 0.1439) blood pressure. CONCLUSION Subjects supplementing with yeast beta-glucan benefit by a reduced severity of physical URTI symptoms during the first week of an episode, even though the incidence and global severity of common colds could not be altered in comparison to placebo. Furthermore, accompanying benefits in terms of blood pressure and mood were identified. Altogether, yeast beta-glucan supports the immune function.
Collapse
Affiliation(s)
| | - Karolina Rudnicka
- b Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Manfred Wilhelm
- c Department of Mathematics, Natural and Economic Sciences , University of Applied Sciences Ulm , Ulm , Germany
| | | |
Collapse
|
56
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, García F, Rodríguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 2018; 61:129-139. [PMID: 30236870 DOI: 10.1016/j.jnutbio.2018.08.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| |
Collapse
|
57
|
Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, Sun J. Cell wall polysaccharides: before and after autolysis of brewer's yeast. World J Microbiol Biotechnol 2018; 34:137. [PMID: 30128783 DOI: 10.1007/s11274-018-2508-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Brewer's yeast is used in production of beer since millennia, and it is receiving increased attention because of its distinct fermentation ability and other biological properties. During fermentation, autolysis occurs naturally at the end of growth cycle of yeast. Yeast cell wall provides yeast with osmotic integrity and holds the cell shape upon the cell wall stresses. The cell wall of yeast consists of β-glucans, chitin, mannoproteins, and proteins that cross linked with glycans and a glycolipid anchor. The variation in composition and amount of cell wall polysaccharides during autolysis in response to cell wall stress, laying significant impacts on the autolysis ability of yeast, either benefiting or destroying the flavor of final products. On the other hand, polysaccharides from yeast cell wall show outstanding health effects and are recommended to be used in functional foods. This article reviews the influence of cell wall polysaccharides on yeast autolysis, covering cell wall structure changings during autolysis, and functions and possible applications of cell wall components derived from yeast autolysis.
Collapse
Affiliation(s)
- Jinjing Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Mengqi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Feiyun Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chengtuo Niu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China.
| | - Jinyuan Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
58
|
Desamero MJ, Kakuta S, Chambers JK, Uchida K, Hachimura S, Takamoto M, Nakayama J, Nakayama H, Kyuwa S. Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma. Int Immunopharmacol 2018; 60:211-220. [PMID: 29763881 DOI: 10.1016/j.intimp.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity.
Collapse
Affiliation(s)
- Mark Joseph Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
59
|
Impact of yeast and fungi (1 → 3)(1 → 6)-β-glucan concentrates on viscoelastic behavior and bread making performance of gluten-free rice-based doughs. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
60
|
Fortin O, Aguilar-Uscanga BR, Vu KD, Salmieri S, Lacroix M. Effect of Saccharomyces Boulardii Cell Wall Extracts on Colon Cancer Prevention in Male F344 Rats Treated with 1,2-Dimethylhydrazine. Nutr Cancer 2018; 70:632-642. [DOI: 10.1080/01635581.2018.1460672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Blanca R. Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh D. Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| |
Collapse
|
61
|
Peterson KR, Cottam MA, Kennedy AJ, Hasty AH. Macrophage-Targeted Therapeutics for Metabolic Disease. Trends Pharmacol Sci 2018; 39:536-546. [PMID: 29628274 DOI: 10.1016/j.tips.2018.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of the innate immune system that are resident in all tissues, including metabolic organs such as the liver and adipose tissue (AT). Because of their phenotypic flexibility, they play beneficial roles in tissue homeostasis, but they also contribute to the progression of metabolic disease. Thus, they are ideal therapeutic targets for diseases such as insulin resistance (IR), nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. Recently, discoveries in the area of drug delivery have facilitated phenotype-specific targeting of macrophages. In this review we discuss advances in potential therapeutics for metabolic diseases via macrophage-specific delivery. We highlight micro- and nanoparticles, liposomes, and oligopeptide complexes, and how they can be used to alter macrophage phenotype for a more metabolically favorable tissue environment.
Collapse
Affiliation(s)
- Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; These authors contributed equally to this work
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; These authors contributed equally to this work
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
62
|
Zhang M, Kim JA, Huang AYC. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Front Immunol 2018; 9:341. [PMID: 29535722 PMCID: PMC5834761 DOI: 10.3389/fimmu.2018.00341] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy is revolutionizing cancer treatment. Recent clinical success with immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and adoptive immune cellular therapies has generated excitement and new hopes for patients and investigators. However, clinically efficacious responses to cancer immunotherapy occur only in a minority of patients. One reason is the tumor microenvironment (TME), which potently inhibits the generation and delivery of optimal antitumor immune responses. As our understanding of TME continues to grow, strategies are being developed to change the TME toward one that augments the emergence of strong antitumor immunity. These strategies include eliminating tumor bulk to provoke the release of tumor antigens, using adjuvants to enhance antigen-presenting cell function, and employ agents that enhance immune cell effector activity. This article reviews the development of β-glucan and β-glucan-based nanoparticles as immune modulators of TME, as well as their potential benefit and future therapeutic applications. Cell-wall β-glucans from natural sources including plant, fungi, and bacteria are molecules that adopt pathogen-associated molecular pattern (PAMP) known to target specific receptors on immune cell subsets. Emerging data suggest that the TME can be actively manipulated by β-glucans and their related nanoparticles. In this review, we discuss the mechanisms of conditioning TME using β-glucan and β-glucan-based nanoparticles, and how this strategy enables future design of optimal combination cancer immunotherapies.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
| | - Julian A. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
- Division of Surgical Oncology, Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alex Yee-Chen Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
63
|
Yan J, Han Z, Qu Y, Yao C, Shen D, Tai G, Cheng H, Zhou Y. Structure elucidation and immunomodulatory activity of a β-glucan derived from the fruiting bodies of Amillariella mellea. Food Chem 2018; 240:534-543. [DOI: 10.1016/j.foodchem.2017.07.154] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
|
64
|
Cao Y, Sun Y, Zou S, Duan B, Sun M, Xu X. Yeast β-Glucan Suppresses the Chronic Inflammation and Improves the Microenvironment in Adipose Tissues of ob/ob Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:621-629. [PMID: 29285925 DOI: 10.1021/acs.jafc.7b04921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inflammation in visceral adipose tissues (VATs) contributes to the pathology of diabetes. This study focused on the inflammatory regulation in VATs by a yeast β-1,3-glucan (BYG) orally administered to ob/ob mice. BYG decreased pro-inflammatory modulators of TNF-α, IL-6, IL-1β, CCL2, and SAA3, and increased anti-inflammatory factors of Azgp1 (2.53 ± 0.02-fold change) at protein and/or mRNA levels (p < 0.05). Remarkably, BYG decreased the degree of adipose tissue macrophages (ATMs) infiltration to 82.5 ± 8.3%, especially the newly recruited ATMs. Interestingly, BYG increased the protective Th2 cell regulator GATA3 (7.72 ± 0.04-fold change) and decreased immunosuppressors IL-10 and IL-1ra, suggesting that BYG elicited inflammation inhibition via stimulating immune responses. Additionally, BYG increased the gut microbiota proportion of Akkermansia from 0.07% to 4.85% and improved the microenvironment of VATs through decreasing fibrosis and angiogenesis. These findings suggest that BYG has anti-inflammatory effect in diabetic mice, which can be used as a food component and/or therapeutic agent for diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Mengying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
65
|
Netea MG, Joosten LAB, van der Meer JWM. Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J Leukoc Biol 2017; 102:1323-1332. [PMID: 29018149 DOI: 10.1189/jlb.5ri0217-064rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023] Open
Abstract
Cancer immunotherapy has steadily progressed during the past decades, with checkpoint inhibitor therapy becoming the latest and one of the most promising treatments. Despite the progress, most of the patients do not respond or develop resistance, and novel additional approaches are needed to improve the clinical effectiveness of immunotherapy. Trained immunity (TI) has been described recently as a process of epigenetic and metabolic reprogramming that induces a long-term enhanced function of innate immune cells. TI is considered to have beneficial effects in improving host response to infections and vaccination, and increasing evidence suggests that TI-mediated mechanisms also have useful and potent antitumor effects. We hypothesized that novel and more effective approaches for immunotherapy in cancer may involve induction of TI, alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
66
|
Cárdenas-Reyna T, Angulo C, Guluarte C, Hori-Oshima S, Reyes-Becerril M. In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:350-358. [PMID: 28888536 DOI: 10.1016/j.dci.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
This study attempts to describe the immunostimulatory effects of three fungal glucans on innate immunity responses in an in vitro assays using Pacific red snapper leukocytes. First, the yield glucans obtained was higher in Aspergillus niger, follow by Aspergillus ochraceus and Alternaria botrytis (40, 20 and 10%, respectively). Structural characterization of these fungal glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. The immunostimulatory activity of fungal glucans were assessed in head-kidney leukocytes at 24 h using colorimetric assays and molecular gene expression. In addition, the response against bacterial infection using Aeromonas hydrophila was evaluated by flow cytometry with annexin V/propidium iodide. Leukocytes responded positively to fungal glucans where the viability was higher than 80%. Interestingly, A. niger β-glucans enhanced the phagocytic ability and capacity in head-kidney leukocytes. Immunological assays reveled an increased in nitric oxide production, myeloperoxidase, superoxide dismutase and catalase activities, in fish stimulated with A. niger β-glucans. Induction of cytokines (IL-1β, TNF-α, IL-6, IL-8 and IL-12) were more pronounced in A. niger β-glucans leukocytes stimulated compared to other group. Finally, flow cytometry assay showed that A. botrytis and A. niger β-glucans were able to inhibit apoptosis caused by Aeromonas hydrophila in the Pacific red snapper leukocytes indicating an immunostimulant potent response by fungi derived-glucans. These results strongly support the idea that fungal β-glucans can stimulate the immune mechanism in head-kidney leukocytes and that Aspergillus niger β-glucan possess immunostimulatory properties cell increasing viability, and reducing necrotic cell death caused by Aeromonas hydrophila.
Collapse
Affiliation(s)
- Tomás Cárdenas-Reyna
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico.
| |
Collapse
|
67
|
Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer Chemopreventive, Antiproliferative, and Superoxide Anion Scavenging Properties ofKluyveromyces marxianusandSaccharomyces cerevisiae var. boulardiiCell Wall Components. Nutr Cancer 2017; 70:83-96. [DOI: 10.1080/01635581.2018.1380204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Blanca Aguilar-Uscanga
- Department of Pharmacobiology, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh Dang Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| |
Collapse
|
68
|
Zhang M, Chun L, Sandoval V, Graor H, Myers J, Nthale J, Rauhe P, Senders Z, Choong K, Huang AY, Kim J. Systemic administration of β-glucan of 200 kDa modulates melanoma microenvironment and suppresses metastatic cancer. Oncoimmunology 2017; 7:e1387347. [PMID: 29308312 DOI: 10.1080/2162402x.2017.1387347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023] Open
Abstract
Converting an immunosuppressive melanoma microenvironment into one that favors the induction of antitumor immunity is indispensable for effective cancer immunotherapy. In the current study we demonstrate that oat-derived β-(1-3)-(1-4)-glucan of 200 kDa molecular size (BG34-200) previously shown to mediate direct interaction with macrophages could alter the immune signature within melanoma microenvironment. Systemic administration of BG34-200 resulted in reversion of tolerant melanoma microenvironment to an immunogenic one that allows M1-type activation of macrophages, the induction of pro-inflammatory cytokines/chemokines including IFN-γ, TNF-α, CXCL9, and CXCL10, and enhanced IRF1 and PD-L1 expression. In turn, BG34-200 induced a superior antitumor response against primary and lung metastatic B16F10 melanoma compared to untreated controls. The enhanced tumor destruction was accompanied with significantly increased tumor infiltration of CD4+ and CD8+ T cells as well as elevated IFN-γ in the tumor sites. Systemic administration of BG34-200 also provoked systemic activation of tumor draining lymph node T cells that recognize antigens naturally expressing in melanoma (gp100/PMEL). Mechanistic studies using CD11b-knockout (KO), CD11 c-DTR transgenic mice and nude mice revealed that macrophages, DCs, T cells and NK cells were all required for the BG34-200-induced therapeutic benefit. Studies using IFN-γ-KO transgenic mice showed that IFN-γ was essential for the BG34-200-elicited antitumor response. Beyond melanoma, the therapeutic efficacy of BG34-200 and its immune stimulating activity were demonstrated in a mouse model of osteosarcoma. Together, BG34-200 is highly effective in modulating antitumor immunity. Our data support the potential therapeutic use of this novel immune modulator in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Liane Chun
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Victor Sandoval
- Division of Surgical Oncology, University Hospitals, Cleveland, OH, United States
| | - Hallie Graor
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jay Myers
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University; Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Joseph Nthale
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University; Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Peter Rauhe
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University; Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Zachary Senders
- Division of Surgical Oncology, University Hospitals, Cleveland, OH, United States
| | - Kevin Choong
- Division of Surgical Oncology, University Hospitals, Cleveland, OH, United States
| | - Alex Y Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Cleveland, OH, United States.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University; Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Julian Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Cleveland, OH, United States.,School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
| |
Collapse
|
69
|
Rieder A, Ballance S, Böcker U, Knutsen S. Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread. Carbohydr Polym 2017; 181:34-42. [PMID: 29253981 DOI: 10.1016/j.carbpol.2017.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022]
Abstract
Due to their immunomodulatory effect, 1,3-β-G from yeast are used as functional ingredients, but reliable methods for their detection in foods are lacking. We have adapted a method based on fluorescence detection with aniline blue to quantify the amount of five commercial yeast β-glucan preparations added to crisp or yeast-leavened bread. This assay detected yeast β-glucan preparations added to different breads with an average recovery of 90, 96, 99 and 105%, while one of the preparations was overestimated, with an average recovery of 157%. The presence of cereal 1,3-1,4-β-D-glucans did not interfere with assay performance. The addition of 1,3-β-G at 0.2 and 0.5 g/100g is low compared to the recommended dose of 1,3-β-G per serving demonstrating assay sensitivity. However, more research is needed to fully understand the effect of 1,3-β-G conformation/structure on aniline blue interaction as well as the effect of baking on structure and dissolution properties of yeast β-glucans.
Collapse
Affiliation(s)
- Anne Rieder
- Nofima, Norwegian Institute for Food, Fisheries and Aquaculture Research, PB 210, N-1431 Aas, Norway.
| | - Simon Ballance
- Nofima, Norwegian Institute for Food, Fisheries and Aquaculture Research, PB 210, N-1431 Aas, Norway
| | - Ulrike Böcker
- Nofima, Norwegian Institute for Food, Fisheries and Aquaculture Research, PB 210, N-1431 Aas, Norway
| | - Svein Knutsen
- Nofima, Norwegian Institute for Food, Fisheries and Aquaculture Research, PB 210, N-1431 Aas, Norway
| |
Collapse
|
70
|
Arevalo‐Villena M, Briones‐Perez A, Corbo M, Sinigaglia M, Bevilacqua A. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. J Appl Microbiol 2017; 123:1360-1372. [DOI: 10.1111/jam.13548] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- M. Arevalo‐Villena
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - A. Briones‐Perez
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - M.R. Corbo
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - M. Sinigaglia
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - A. Bevilacqua
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| |
Collapse
|
71
|
Vojtek B, Mojžišová J, Smrčo P, Drážovská M. Effects of orally administered β – 1,3/1,6 – glucan on vaccination responses and immunological parameters in dogs. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1324407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Boris Vojtek
- Institute of Epizootiology and Preventive Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Jana Mojžišová
- Institute of Epizootiology and Preventive Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Peter Smrčo
- Institute of Epizootiology and Preventive Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Monika Drážovská
- Institute of Epizootiology and Preventive Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
72
|
Hu X, Zhang J. Yeast capsules for targeted delivery: the future of nanotherapy? Nanomedicine (Lond) 2017; 12:955-957. [DOI: 10.2217/nnm-2017-0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xiankang Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
73
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
74
|
Andrade EF, Lima ARV, Nunes IE, Orlando DR, Gondim PN, Zangeronimo MG, Alves FHF, Pereira LJ. Exercise and Beta-Glucan Consumption (Saccharomyces cerevisiae) Improve the Metabolic Profile and Reduce the Atherogenic Index in Type 2 Diabetic Rats (HFD/STZ). Nutrients 2016; 8:nu8120792. [PMID: 27999319 PMCID: PMC5188447 DOI: 10.3390/nu8120792] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
Physical activity and the ingestion of dietary fiber are non-drug alternatives commonly used as adjuvants to glycemic control in diabetic individuals. Among these fibers, we can highlight beta-glucans. However, few studies have compared isolated and synergic effects of physical exercise and beta-glucan ingestion, especially in type 2 diabetic rats. Therefore, we evaluated the effects beta-glucan (Saccharomyces cerevisiae) consumption, associated or not to exercise, on metabolic parameters of diabetic Wistar rats. The diabetes mellitus (DM) was induced by high-fat diet (HFD) associated with a low dose of streptozotocin (STZ-35 mg/kg). Trained groups were submitted to eight weeks of exercise in aquatic environment. In the last 28 days of experiment, animals received 30 mg/kg/day of beta-glucan by gavage. Isolated use of beta-glucan decreased glucose levels in fasting, Glycated hemoglobin (HbA1c), triglycerides (TAG), total cholesterol (TC), low-density lipoprotein (LDL-C), the atherogenic index of plasma. Exercise alone also decreased blood glucose levels, HbA1c, and renal lesions. An additive effect for reducing the atherogenic index of plasma and renal lesions was observed when both treatments were combined. It was concluded that both beta-glucan and exercise improved metabolic parameters in type 2 (HFD/STZ) diabetic rats.
Collapse
MESH Headings
- Animals
- Atherosclerosis/blood
- Atherosclerosis/diagnosis
- Atherosclerosis/etiology
- Atherosclerosis/prevention & control
- Biomarkers/blood
- Blood Glucose/metabolism
- Combined Modality Therapy
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/therapy
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/diagnosis
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/prevention & control
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Diet, High-Fat
- Dietary Fiber/administration & dosage
- Dietary Supplements
- Exercise Therapy
- Glycated Hemoglobin/metabolism
- Lipids/blood
- Male
- Rats, Wistar
- Saccharomyces cerevisiae/metabolism
- Streptozocin
- beta-Glucans/administration & dosage
- beta-Glucans/isolation & purification
Collapse
Affiliation(s)
- Eric Francelino Andrade
- Department of Veterinary Medicine, Federal University of Lavras, Mail Box 3037, Lavras 37200-000, Brazil.
| | | | - Ingrid Edwiges Nunes
- Department of Animal Sciences, Federal University of Lavras, Mail Box 3037, Lavras 37200-000, Brazil.
| | - Débora Ribeiro Orlando
- Department of Agricultural Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Rua Vereador João Narciso, 1380-Bairro Cachoeira, Unaí 3861-000, Brazil.
| | - Paula Novato Gondim
- Department of Veterinary Medicine, Federal University of Lavras, Mail Box 3037, Lavras 37200-000, Brazil.
| | | | | | - Luciano José Pereira
- Department of Health Sciences, Federal University of Lavras, Mail Box 3037, Lavras 37200-000, Brazil.
| |
Collapse
|
75
|
Mello MB, Machado CS, Ribeiro DL, Aissa AF, Burim RV, Alves da Cunha MA, Barcelos GRM, Antunes LMG, Bianchi MLP. Protective effects of the exopolysaccharide Lasiodiplodan against DNA damage and inflammation induced by doxorubicin in rats: Cytogenetic and gene expression assays. Toxicology 2016; 376:66-74. [PMID: 27181935 DOI: 10.1016/j.tox.2016.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
The lasiodiplodan (LS) is a β-(1→6)-d-glucan produced by the fungus Lasiodiplodia theobromae and some of the biological activities of LS were reported as hypoglycemic, anticoagulant, anti-proliferative and anticancer action; however, its effects on DNA instability and modulation of gene expression are still unclear. Aims of study were investigate the genotoxic effects of lasiodiplodan, and its protective activity against DNA damage induced by doxorubicin (DXR) and its impact on the expression of genes associated with DNA damage and inflammatory response pathways. Therefore, Wistar rats were treated (15 days) orally with LS (5.0; 10 and 20mg/kg bw) alone and in combination with DXR (15mg/kg bw; administrated intraperitoneally on 14th day) as well as their respective controls: distilled water and DXR. Monitoring of DNA damage was assessed by comet and micronucleus (MN) assays and gene expression was evaluated by PCR-Arrays. Treatments with LS alone did not induce disturbances on DNA; when LS was given in combination with DXR, comet and MN formations were reduced to those found in the respective controls. Moreover, LS was able to reduce the disturbances on gene expressions induced by DXR treatment, since the animals that receive LS associated with DXR showed no alteration in the expression of genes related to DNA damage response. Also, DXR induced several up- and down-regulation of several genes associated to inflammatory process, while the animals that received LS+DXR had their gene expression patterns similar to those found in the control group. In conclusion, our results showed that LS did not induce disturbances on DNA stability and significantly reduce the DNA damage and inflammation caused by DXR exposure. In addition, we give further information concerning the molecular mechanisms associated to LS protective effects which seems to be a promising nutraceutical with chemopreventive potential.
Collapse
Affiliation(s)
- M B Mello
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - C S Machado
- Department of Genetics; School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - D L Ribeiro
- Department of Genetics; School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - A F Aissa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - R V Burim
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - M A Alves da Cunha
- Department of Chemistry, Federal University of Technology of Paraná, Via do Conhecimento, km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - G R M Barcelos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, São Paulo, Brazil.
| | - L M G Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - M L P Bianchi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
76
|
Zittermann A, Pilz S, Hoffmann H, März W. Vitamin D and airway infections: a European perspective. Eur J Med Res 2016; 21:14. [PMID: 27009076 PMCID: PMC4806418 DOI: 10.1186/s40001-016-0208-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/16/2016] [Indexed: 01/03/2023] Open
Abstract
Vitamin D has immuno-modulatory properties, and deficient levels of circulating 25-hydroxyvitamin D (<30 nmol/l) may contribute to increased risk of infectious illnesses. This narrative review summarises data on vitamin D status in Europe and updates results of randomised controlled trials (RCTs) regarding vitamin D and airway infections such as tuberculosis (TB) and acute upper respiratory tract infection. In Europe, the prevalence of vitamin D deficiency is up to 37% in the general population and up to 80% in nursing home residents and non-European immigrants. Half of TB patients have a migration background. While results of RCTs do not support the concept of beneficial adjunctive effects of vitamin D supplements in anti-TB treatment [odds ratio (OR) = 0.86; 95% CI 0.62-1.19], the few published RCTs on the prophylaxis of TB suggest some protective vitamin D effects in individuals with deficient circulating 25-hydroxyvitamin D levels. Regarding acute respiratory tract infection, RCTs indicate a significant risk reduction by vitamin D supplements [OR = 0.65; 95% confidence interval (CI) 0.50-0.85]. There is evidence that daily administration is more effective than high-dose bolus administration [OR = 0.48 (95% CI 0.30-0.77) vs. OR = 0.87 (95% CI 0.67-1.14)] and that individuals with deficient or insufficient (30-50 nmol/l) circulating 25-hydroxyvitamin D levels benefit most. Several vitamin D effects on innate immunity may explain these protective effects. In summary, there is possible evidence from RCTs for protective vitamin D effects on TB and likely evidence for protective effects on acute airway infection. Since vitamin D deficiency is prevalent in Europe, especially in institutionalised individuals and non-European immigrants, daily oral vitamin D intake, e.g. 1000 international units, is an inexpensive measure to ensure adequate vitamin D status in individuals at risk.
Collapse
Affiliation(s)
- Armin Zittermann
- Department of Thoracic and Cardiovascular Surgery, NRW Heart and Diabetes Centre, Clinic for Thoracic and Cardiovascular Surgery, Ruhr University of Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| | - Stefan Pilz
- Department of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Harald Hoffmann
- Synlab MVZ Gauting, Institute of Microbiology and Laboratory Medicine, WHO Supranational Reference Laboratory of Tuberculosis, Gauting, Germany
| | - Winfried März
- Synlab Academy for Continuing Medical Education, Mannheim und Synlab Services GmbH, Augsburg, Germany.,Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Department of Medicine V (Nephrology, Hypertension, Rheumatology, Endocrinology, Diabetology) Mannheim Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
77
|
Segarra S, Martínez-Subiela S, Cerdà-Cuéllar M, Martínez-Puig D, Muñoz-Prieto A, Rodríguez-Franco F, Rodríguez-Bertos A, Allenspach K, Velasco A, Cerón J. Oral chondroitin sulfate and prebiotics for the treatment of canine Inflammatory Bowel Disease: a randomized, controlled clinical trial. BMC Vet Res 2016; 12:49. [PMID: 26965834 PMCID: PMC4785639 DOI: 10.1186/s12917-016-0676-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/07/2016] [Indexed: 01/29/2023] Open
Abstract
Background Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress. Results Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group. Conclusions The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI.
Collapse
Affiliation(s)
- Sergi Segarra
- R&D Bioiberica SA, Pça. Francesc Macià 7, 08029, Barcelona, Spain.
| | - Silvia Martínez-Subiela
- Interlab-UMU, Campus de Excelencia "Mare Nostrum", University of Murcia, Campus Espinardo, 30071, Murcia, Spain
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA), IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | | | - Alberto Muñoz-Prieto
- Interlab-UMU, Campus de Excelencia "Mare Nostrum", University of Murcia, Campus Espinardo, 30071, Murcia, Spain
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, and Health Surveillance Centre (VISAVET), Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, Hertfordshire, EN6 1NB, UK
| | - Alfonso Velasco
- R&D Bioiberica SA, Pça. Francesc Macià 7, 08029, Barcelona, Spain
| | - José Cerón
- Interlab-UMU, Campus de Excelencia "Mare Nostrum", University of Murcia, Campus Espinardo, 30071, Murcia, Spain
| |
Collapse
|
78
|
|
79
|
Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation. Nutr Res 2015; 35:1106-12. [PMID: 26500083 PMCID: PMC6205189 DOI: 10.1016/j.nutres.2015.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/21/2022]
Abstract
β-Glucans have beneficial health effects due to their immune modulatory properties. Oral administration of β-glucans affects tumour growth, microbial infection, sepsis, and wound healing. We hypothesized that pre-treatment with orally delivered soluble and particulate β-glucans could ameliorate the development of aggravate dextran sulfate sodium (DSS) induced intestinal inflammation. To study this, mice were orally pre-treated with β-glucans for 14 days. We tested curdlan (a particulate β-(1,3)-glucan), glucan phosphate (a soluble β-(1,3)-glucan), and zymosan (a particle made from Saccharomyces cerevisiae, which contains around 55% β-glucans). Weight loss, colon weight, and feces score did not differ between β-glucan and vehicle treated groups. However, histology scores indicated that β-glucan-treated mice had increased inflammation at a microscopic level suggesting that β-glucan treatment worsened intestinal inflammation. Furthermore, curdlan and zymosan treatment led to increased colonic levels of inflammatory cytokines and chemokines, compared to vehicle. Glucan phosphate treatment did not significantly affect cytokine and chemokine levels. These data suggest that particulate and soluble β-glucans differentially affect the intestinal immune responses. However, no significant differences in other clinical colitis scores between soluble and particulate β-glucans were found in this study. In summary, β-glucans aggravate the course of dextran sulfate sodium (DSS)-induced intestinal inflammation at the level of the mucosa.
Collapse
|
80
|
β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease. PLoS One 2015; 10:e0134742. [PMID: 26291983 PMCID: PMC4546386 DOI: 10.1371/journal.pone.0134742] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/13/2015] [Indexed: 12/01/2022] Open
Abstract
The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease.
Collapse
|
81
|
Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review. Clin Exp Gastroenterol 2015; 8:237-55. [PMID: 26316791 PMCID: PMC4542552 DOI: 10.2147/ceg.s85574] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler’s diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations. More studies are needed to explore the full potential of this versatile probiotic yeast.
Collapse
Affiliation(s)
| | - Alexander Swidsinski
- Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms, Department of Medicine, Gastroenterology, Charité Hospital, CCM, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
82
|
Yuan K, Mendonça L, Hulbert L, Mamedova L, Muckey M, Shen Y, Elrod C, Bradford B. Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows. J Dairy Sci 2015; 98:3236-46. [DOI: 10.3168/jds.2014-8469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022]
|
83
|
Vetvicka V, Garcia-Mina JM, Proctor M, Yvin JC. Humic acid and glucan: protection against liver injury induced by carbon tetrachloride. J Med Food 2015; 18:572-7. [PMID: 25590512 DOI: 10.1089/jmf.2014.0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humic acids (HAs) have a rather pleiotropic presence, however, their biological effects are still unclear. In this study, we focused on possible hepatoprotective effects of either HA alone or in combination with β-glucan. Using a model of experimental hepatotoxicity caused by carbon tetrachloride (CCL4), we showed that both HA and the glucan-HA combination offered significant protection against hepatotoxicity, with the combination offering superior effects. Our biochemical observations were confirmed by histological evaluation. Based on the experimental data, we conclude that whereas HA has significant effects, the synergy with glucan offers superior effects.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- 1 Department of Pathology, University of Louisville , Louisville, Kentucky, USA
| | | | | | | |
Collapse
|
84
|
Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
85
|
A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 2014; 33:25-33. [PMID: 25444808 DOI: 10.1016/j.vaccine.2014.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/15/2023]
Abstract
This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.
Collapse
|
86
|
De Smet R, Allais L, Cuvelier CA. Recent advances in oral vaccine development: yeast-derived β-glucan particles. Hum Vaccin Immunother 2014; 10:1309-18. [PMID: 24553259 DOI: 10.4161/hv.28166] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oral vaccination is the most challenging vaccination method due to the administration route. However, oral vaccination has socio-economic benefits and provides the possibility of stimulating both humoral and cellular immune responses at systemic and mucosal sites. Despite the advantages of oral vaccination, only a limited number of oral vaccines are currently approved for human use. During the last decade, extensive research regarding antigen-based oral vaccination methods have improved immunogenicity and induced desired immunological outcomes. Nevertheless, several factors such as the harsh gastro-intestinal environment and oral tolerance impede the clinical application of oral delivery systems. To date, human clinical trials investigating the efficacy of these systems are still lacking. This review addresses the rationale and key biological and physicochemical aspects of oral vaccine design and highlights the use of yeast-derived β-glucan microparticles as an oral vaccine delivery platform.
Collapse
|