51
|
Tian Y, Nayak KS. Real-time water/fat imaging at 0.55T with spiral out-in-out-in sampling. Magn Reson Med 2024; 91:649-659. [PMID: 37815020 PMCID: PMC10841523 DOI: 10.1002/mrm.29885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To develop an efficient and flexible water/fat separated real-time MRI (RT-MRI) method using spiral out-in-out-in (OIOI) sampling and balanced SSFP (bSSFP) at 0.55T. METHODS A bSSFP sequence with golden-angle spiral OIOI readout was developed, capturing three echoes to allow water/fat separation. A low-latency reconstruction that combines all echoes was available for online visualization. An offline reconstruction provided water and fat RT-MRI in two steps: (1) image reconstruction with spatiotemporally constrained reconstruction (STCR) and (2) water/fat separation with hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (HIDEAL). In healthy volunteers, spiral OIOI was acquired in the wrist during a radial-to-ulnar deviation maneuver, in the heart without breath-hold and cardiac gating, and in the lower abdomen during free-breathing for visualizing small bowel motility. RESULTS We demonstrate successful water/fat separated RT-MRI for all tested applications. In the wrist, resulting images provided clear depiction of ligament gaps and their interactions during the radial-to-ulnar deviation maneuver. In the heart, water/fat RT-MRI depicted epicardial fat, provided improved delineation of epicardial coronary arteries, and provided high blood-myocardial contrast for ventricular function assessment. In the abdomen, water-only RT-MRI captured small bowel mobility clearly with improved water-fat contrast. CONCLUSIONS We have demonstrated a novel and flexible bSSFP spiral OIOI sequence at 0.55T that can provide water/fat separated RT-MRI with a variety of application-specific temporal resolution and spatial resolution requirements.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
52
|
Abstract
The non-invasive dynamic contrast-enhanced MRI (DCE-MRI) method provides valuable insights into tissue perfusion and vascularity. Primarily used in oncology, DCE-MRI is typically utilized to assess morphology and contrast agent (CA) kinetics in the tissue of interest. Interpretation of the temporal signatures of DCE-MRI data includes qualitative, semi-quantitative, and quantitative approaches. Recent advances in MRI technology allow simultaneous high spatial and temporal resolutions in DCE-MRI data acquisition on most vendor platforms, enabling the more desirable approach of quantitative data analysis using pharmacokinetic (PK) modeling. Many technical factors, including signal-to-noise ratio, temporal resolution, quantifications of arterial input function and native tissue T1, and PK model selection, need to be carefully considered when performing quantitative DCE-MRI. Standardization in data acquisition and analysis is especially important in multi-center studies.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - James H Holmes
- Radiology, Biomedical Engineering, and Holden Cancer Center, University of Iowa, 169 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
53
|
Pan J, Shao X, Liu H, Li Y, Wang Q. Image quality optimization: dynamic contrast-enhanced MRI of the abdomen at 3T using a continuously acquired radial golden-angle compressed sensing acquisition. Abdom Radiol (NY) 2024; 49:399-405. [PMID: 37792056 PMCID: PMC10830580 DOI: 10.1007/s00261-023-04035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION The image quality of continuously acquired free-breathing Dynamic Contrast-Enhanced (DCE) golden-angle radial Magnetic Resonance Imaging (MRI) of abdomen suffers from motion artifacts and motion-related blurring. We propose a scheme by minimizing patients' motion status from breathing as well as optimizing the acquiring parameters to improve image quality and diagnostic performance of DCE-MRI with Golden-Angle Radial Sparse Parallel (GRASP) sequence of abdomen. METHODS The optimization scheme follows two principles: (1) reduce the impact on images from unpredictable and irregulate motions during examination and (2) adjust the sequence parameters to increase the number of radial views in each partition. For the assessment of image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the severity of radial artifact, the degree of image sharpness, and a visual scoring of image quality with a 5-point scale were assessed. RESULTS A total of 64 patients were included in this study before (16 men, 14 women, age: 54.9 ± 17.0) and after (18 men, 16 women, age: 58.6 ± 12.6) the optimization scheme was performed. The results showed that the SNR values of right and left lobe of liver in both plain phase and arterial phase were significantly increased (All P < 0.001) after the GRASP sequence been optimized. Significant improvements in CNR values were observed in the arterial phase (All P < 0.05). The significant differences in scores at each phase for visual scoring of image quality, noise of the right and left lobe of liver, radial artifact, and sharpness indicating that the image quality was significantly improved after the optimization (All P < 0.001). CONCLUSION Our study demonstrated that the optimized scheme significantly improved the image quality of liver DCE-MRI with GRASP sequence both in plain and arterial phases. The optimized scheme of GRASP sequence could be a superior alternative to conventional approach for the assessment of liver.
Collapse
Affiliation(s)
- Jiangyang Pan
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xian Shao
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, China
| | - Hui Liu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Yang Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Qi Wang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
54
|
Fan L, Hong K, Allen BD, Paul R, Carr JC, Zhang S, Passman R, Robinson JD, Lee DC, Rigsby CK, Kim D. Ultra-rapid, Free-breathing, Real-time Cardiac Cine MRI Using GRASP Amplified with View Sharing and KWIC Filtering. Radiol Cardiothorac Imaging 2024; 6:e230107. [PMID: 38358330 PMCID: PMC10912880 DOI: 10.1148/ryct.230107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Purpose To achieve ultra-high temporal resolution (approximately 20 msec) in free-breathing, real-time cardiac cine MRI using golden-angle radial sparse parallel (GRASP) reconstruction amplified with view sharing (VS) and k-space-weighted image contrast (KWIC) filtering. Materials and Methods Fourteen pediatric patients with congenital heart disease (mean age [SD], 9 years ± 2; 13 male) and 10 adult patients with arrhythmia (mean age, 62 years ± 8; nine male) who underwent both standard breath-hold cine and free-breathing real-time cine using GRASP were retrospectively identified. To achieve high temporal resolution, each time frame was reconstructed using six radial spokes, corresponding to acceleration factors ranging from 24 to 32. To compensate for loss in spatial resolution resulting from over-regularization in GRASP, VS and KWIC filtering were incorporated. The blur metric, visual image quality scores, and biventricular parameters were compared between clinical and real-time cine images. Results In pediatric patients, the incorporation of VS and KWIC into GRASP (ie, GRASP + VS + KWIC) produced significantly (P < .05) sharper x-y-t (blur metric: 0.36 ± 0.03, 0.41 ± 0.03, 0.48 ± 0.03, respectively) and x-y-f (blur metric: 0.28 ± 0.02, 0.31 ± 0.03, 0.37 ± 0.03, respectively) component images compared with GRASP + VS and conventional GRASP. Only the noise score differed significantly between GRASP + VS + KWIC and clinical cine; all visual scores were above the clinically acceptable (3.0) cutoff point. Biventricular volumetric parameters strongly correlated (R2 > 0.85) between clinical and real-time cine images reconstructed with GRASP + VS + KWIC and were in good agreement (relative error < 6% for all parameters). In adult patients, the visual scores of all categories were significantly lower (P < .05) for clinical cine compared with real-time cine with GRASP + VS + KWIC, except for noise (P = .08). Conclusion Incorporating VS and KWIC filtering into GRASP reconstruction enables ultra-high temporal resolution (approximately 20 msec) without significant loss in spatial resolution. Keywords: Cine, View Sharing, k-Space-weighted Image Contrast Filtering, Radial k-Space, Pediatrics, Arrhythmia, GRASP, Compressed Sensing, Real-Time, Free-Breathing Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Lexiaozi Fan
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - KyungPyo Hong
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Bradley D. Allen
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Rupsa Paul
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - James C. Carr
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Sarah Zhang
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Rod Passman
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Joshua D. Robinson
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Daniel C. Lee
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Cynthia K. Rigsby
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Daniel Kim
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| |
Collapse
|
55
|
Murray V, Siddiq S, Crane C, El Homsi M, Kim TH, Wu C, Otazo R. Movienet: Deep space-time-coil reconstruction network without k-space data consistency for fast motion-resolved 4D MRI. Magn Reson Med 2024; 91:600-614. [PMID: 37849064 PMCID: PMC10842259 DOI: 10.1002/mrm.29892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.
Collapse
Affiliation(s)
- Victor Murray
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Syed Siddiq
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tae-Hyung Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
56
|
Goolaub DS, Macgowan CK. Reducing clustering of readouts in non-Cartesian cine magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101003. [PMID: 38290615 PMCID: PMC11211237 DOI: 10.1016/j.jocmr.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Non-Cartesian magnetic resonance imaging trajectories at golden angle increments have the advantage of allowing motion correction and gating using intermediate real-time reconstructions. However, when the acquired data are cardiac binned for cine imaging, trajectories can cluster together at certain heart rates (HR) causing image artifacts. Here, we demonstrate an approach to reduce clustering by inserting additional angular increments within the trajectory, and optimizing them while still allowing for intermediate reconstructions. METHODS Three acquisition models were simulated under constant and variable HR: golden angle (Mtrd), random additional angles (Mrnd), and optimized additional angles (Mopt). The standard deviations of trajectory angular differences (STAD) were compared through their interquartile ranges (IQR) and the Kolmogorov-Smirnov test (significance level: p = 0.05). Agreement between an image reconstructed with uniform sampling and images from Mtrd, Mrnd, and Mopt was analyzed using the structural similarity index measure (SSIM). Mtrd and Mopt were compared in three adults at high, low, and no HR variability. RESULTS STADs from Mtrd were significantly different (p < 0.05) from Mopt and Mrnd. STAD (IQR × 10-2 rad) showed that Mopt (0.5) and Mrnd (0.5) reduced clustering relative to Mtrd (1.9) at constant HR. For variable HR, Mopt (0.5) and Mrnd (0.5) outperformed Mtrd (0.9). The SSIM (IQR) showed that Mopt (0.011) produced the best image quality, followed by Mrnd (0.014), and Mtrd (0.030). Mopt outperformed Mtrd at reduced HR variability in in-vivo studies. At high HR variability, both models performed well. CONCLUSION This approach reduces clustering in k-space and improves image quality.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Christopher K Macgowan
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
57
|
Zhang K, Triphan SMF, Wielpütz MO, Ziener CH, Ladd ME, Schlemmer HP, Kauczor HU, Kurz FT, Sedlaczek O. Simultaneous T 1, T 2 and T 2⁎ mapping of the liver with multi-shot MI-SAGE. Magn Reson Imaging 2024; 105:75-81. [PMID: 37939972 DOI: 10.1016/j.mri.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE To apply multi-shot high-resolution multi inversion spin and gradient echo (MI-SAGE) acquisition for simultaneous liver T1, T2 and T2* mapping. METHODS Inversion prepared spin- and gradient-echo EPI was developed with ascending slice order across measurements for efficient acquisition with T1, T2, and T2⁎ weighting. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which were compared to T1 measured by modified Look-Locker (MOLLI), T1 measured by variable flip angle (VFA), T2 measured by multiple echo time-based Half Fourier Single-shot Turbo spin-Echo (HASTE), T2 measured by radial turbo-spin-echo (rTSE) and T2⁎ measured by multiple gradient echo (MGRE) sequences. RESULTS The multi-shot variant of the sequence achieved higher in-plane resolution of 1.7 × 1.7 mm2 with good image quality in 28 s. Derived quantitative maps showed comparable values to conventional mapping methods. As measured in phantom and in vivo, MOLLI, MESE and MGRE give closest values to MISAGE. VFA, HASTE and rTSE show obvious overestimation. CONCLUSIONS The proposed multi-shot inversion prepared spin- and gradient-echo EPI sequence allows for high-resolution quantitative T1, T2 and T2 liver tissue characterization in a single breath-hold scan.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Christian H Ziener
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Mark E Ladd
- Divison of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Divison of Radiology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
58
|
Mickevicius NJ. Magnetic resonance coherence pathway unraveling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 358:107613. [PMID: 38134509 DOI: 10.1016/j.jmr.2023.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Efficiently acquiring multi-contrast magnetic resonance imaging data is crucial for patient comfort and clinical throughput. Developing scan acceleration methods tailored for specific applications drastically improves the value of an MRI examination. Here, we propose a novel method to control the aliasing of simultaneously acquired images of multiple spin echo coherence pathways with the goal of producing high quality multi-contrast images from a single acquisition. Modulating the radiofrequency phase of several pulses applied in brief succession also uniquely modulates the phase of spin echo coherence pathways. A method, termed magnetic resonance coherence pathway unraveling (MR-CPU), to control the aliasing of simultaneously acquired coherence pathway images is developed here along with parallel imaging-based reconstruction methods to separate them. MR-CPU was validated in phantom experiments and tested in vivo. High levels of correlation between reference pathway images and MR-CPU-derived coherence pathway images were found from the phantom experiments. Minimal artifacts arising from the separation of the overlapped coherence pathway images were observed in vivo. MR-CPU provides a novel mechanism through which to acquire and separate multiple overlapped coherence pathway images, thus adding to the diagnostic potential of an MRI exam without the penalty of additional scan time.
Collapse
|
59
|
Chen C, Liu Y, Simonetti OP, Tong M, Jin N, Bacher M, Speier P, Ahmad R. Cardiac and respiratory motion extraction for MRI using pilot tone-a patient study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:93-105. [PMID: 37874445 PMCID: PMC10842141 DOI: 10.1007/s10554-023-02966-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
This study aims to evaluate the accuracy and reliability of the cardiac and respiratory signals extracted from Pilot Tone (PT) in patients clinically referred for cardiovascular MRI. Twenty-three patients were scanned under free-breathing conditions using a balanced steady-state free-precession real-time (RT) cine sequence on a 1.5T scanner. The PT signal was generated by a built-in PT transmitter integrated within the body array coil, and retrospectively processed to extract respiratory and cardiac signals. For comparison, ECG and BioMatrix (BM) respiratory sensor signals were also synchronously recorded. To assess the performances of PT, ECG, and BM, cardiac and respiratory signals extracted from the RT cine images were used as the ground truth. The respiratory motion extracted from PT correlated positively with the image-derived respiratory signal in all cases and showed a stronger correlation (absolute coefficient: 0.95 ± 0.09) than BM (0.72 ± 0.24). For the cardiac signal, PT trigger jitter (standard deviation of PT trigger locations relative to ECG triggers) ranged from 6.6 to 83.3 ms, with a median of 21.8 ms. The mean absolute difference between the PT and corresponding ECG cardiac cycle duration was less than 5% of the average ECG RR interval for 21 out of 23 patients. We did not observe a significant linear dependence (p > 0.28) of PT delay and PT jitter on the patients' BMI or cardiac cycle duration. This study demonstrates the potential of PT to monitor both respiratory and cardiac motion in patients clinically referred for cardiovascular MRI.
Collapse
Affiliation(s)
- Chong Chen
- Department of Biomedical Engineering, The Ohio State University, Columbus, US.
| | - Yingmin Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Orlando P Simonetti
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Matthew Tong
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Ning Jin
- Siemens Medical Solutions USA, Inc, Columbus, US
| | | | | | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, US
| |
Collapse
|
60
|
Qu B, Zhang J, Kang T, Lin J, Lin M, She H, Wu Q, Wang M, Zheng G. Radial magnetic resonance image reconstruction with a deep unrolled projected fast iterative soft-thresholding network. Comput Biol Med 2024; 168:107707. [PMID: 38000244 DOI: 10.1016/j.compbiomed.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Radially sampling of magnetic resonance imaging (MRI) is an effective way to accelerate the imaging. How to preserve the image details in reconstruction is always challenging. In this work, a deep unrolled neural network is designed to emulate the iterative sparse image reconstruction process of a projected fast soft-threshold algorithm (pFISTA). The proposed method, an unrolled pFISTA network for Deep Radial MRI (pFISTA-DR), include the preprocessing module to refine coil sensitivity maps and initial reconstructed image, the learnable convolution filters to extract image feature maps, and adaptive threshold to robustly remove image artifacts. Experimental results show that, among the compared methods, pFISTA-DR provides the best reconstruction and achieved the highest PSNR, the highest SSIM and the lowest reconstruction errors.
Collapse
Affiliation(s)
- Biao Qu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Jialue Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, China
| | - Taishan Kang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meijin Lin
- Department of Applied Marine Physics & Engineering, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxia Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
61
|
Chen X, Wu J, Yang Y, Chen H, Zhou Y, Lin L, Wei Z, Xu J, Chen Z, Chen L. Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial-spectral redundancy-based denoising method. NMR IN BIOMEDICINE 2024; 37:e5027. [PMID: 37644611 DOI: 10.1002/nbm.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
Collapse
Affiliation(s)
- Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
62
|
Armstrong M, Wilken E, Freppon F, Masthoff M, Faber C, Xiao D. Dynamic cell tracking using time-lapse MRI with variable temporal resolution Cartesian sampling. Magn Reson Med 2023; 90:2443-2453. [PMID: 37466029 DOI: 10.1002/mrm.29796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Temporal resolution of time-lapse MRI to track individual iron-labeled cells is limited by the required data-acquisition time to fill k-space and to reach sufficient SNR. Although motion of slowly patrolling monocytes can be resolved, detection of fast-moving immune cells requires improved acquisition and reconstruction strategies. THEORY AND METHODS For accelerated MRI cell tracking, a Cartesian sampling scheme was designed, in which the fully sampled and undersampled k-space data for different acceleration factors were acquired simultaneously, and multiple undersampling ratios could be chosen retrospectively. Compressed-sensing reconstruction was applied using dictionary learning and low-rank constraints. Detection of iron-labeled monocytes was evaluated with simulations, rotating phantom experiments and in vivo mouse brain measurements at 9.4 T. RESULTS Fully sampled and 2.4-times and 4.8-times accelerated images were reconstructed and had sufficient contrast-to-noise ratio (CNR) for single cells to be resolved and followed dynamically. The phantom experiments showed an improvement in CNR of 6.1% per μm/s in the 4.8-times undersampled images. Geometric distortion of cells caused by motion was visibly reduced in the accelerated images, which enabled detection of moving cells with velocities of up to 7.0 μm/s. In vivo, additional cells were resolved in the accelerated images due to the improved temporal resolution. CONCLUSION The easy-to-implement flexible Cartesian sampling scheme with compressed-sensing reconstruction permits simultaneous acquisition of both fully sampled and high temporal resolution images. The CNR of moving cells is effectively improved, enabling the recovery of high velocity cells with sufficient contrast at virtually no cost.
Collapse
Affiliation(s)
- Mark Armstrong
- Physics Department, University of Windsor, Windsor, Canada
| | - Enrica Wilken
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Felix Freppon
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Dan Xiao
- Physics Department, University of Windsor, Windsor, Canada
| |
Collapse
|
63
|
Wang Z, Feng X, Salerno M, Kramer CM, Meyer CH. Dynamic cardiac MRI with high spatiotemporal resolution using accelerated spiral-out and spiral-in/out bSSFP pulse sequences at 1.5 T. MAGMA (NEW YORK, N.Y.) 2023; 36:857-867. [PMID: 37665502 PMCID: PMC10667461 DOI: 10.1007/s10334-023-01116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE To develop two spiral-based bSSFP pulse sequences combined with L + S reconstruction for accelerated ungated, free-breathing dynamic cardiac imaging at 1.5 T. MATERIALS AND METHODS Tiny golden angle rotated spiral-out and spiral-in/out bSSFP sequences combined with view-sharing (VS), compressed sensing (CS), and low-rank plus sparse (L + S) reconstruction were evaluated and compared via simulation and in vivo dynamic cardiac imaging studies. The proposed methods were then validated against the standard cine, in terms of quantitative image assessment and qualitative quality rating. RESULTS The L + S method yielded the least residual artifacts and the best image sharpness among the three methods. Both spiral cine techniques showed clinically diagnostic images (score > 3). Compared to standard cine, there were significant differences in global image quality and edge sharpness for spiral cine techniques, while there was significant difference in image contrast for the spiral-out cine but no significant difference for the spiral-in/out cine. There was good agreement in left ventricular ejection fraction for both the spiral-out cine (- 1.6 [Formula: see text] 3.1%) and spiral-in/out cine (- 1.5 [Formula: see text] 2.8%) against standard cine. DISCUSSION Compared to the time-consuming standard cine (~ 5 min) which requires ECG-gating and breath-holds, the proposed spiral bSSFP sequences achieved ungated, free-breathing cardiac movies at a similar spatial (1.5 × 1.5 × 8 mm3) and temporal resolution (36 ms) per slice for whole heart coverage (10-15 slices) within 45 s, suggesting the clinical potential for improved patient comfort or for imaging patients with arrhythmias or who cannot hold their breath.
Collapse
Affiliation(s)
- Zhixing Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michael Salerno
- School of Medicine, University Medical Line, Stanford University, Stanford, CA, USA
| | - Christopher M Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
64
|
Wang L, Li T, Cai J, Chang HC. Motion-resolved four-dimensional abdominal diffusion-weighted imaging using PROPELLER EPI (4D-DW-PROPELLER-EPI). Magn Reson Med 2023; 90:2454-2471. [PMID: 37486854 DOI: 10.1002/mrm.29802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE To develop a distortion-free motion-resolved four-dimensional diffusion-weighted PROPELLER EPI (4D-DW-PROPELLER-EPI) technique for benefiting clinical abdominal radiotherapy (RT). METHODS An improved abdominal 4D-DWI technique based on 2D diffusion-weighted PROPELLER-EPI (2D-DW-PROPELLER-EPI), termed 4D-DW-PROPELLER-EPI, was proposed to improve the frame rate of repeated data acquisition and produce distortion-free 4D-DWI images. Since the radial or PROPELLER sampling with golden-angle rotation can achieve an efficient k-space coverage with a flexible time-resolved acquisition, the golden-angle multi-blade acquisition was used in the proposed 4D-DW-PROPELLER-EPI to improve the performance of data sorting. A new k-space and blade (K-B) amplitude binning method was developed for the proposed 4D-DW-PROPELLER-EPI to optimize the number of blades and the k-space uniformity before performing conventional PROPELLER-EPI reconstruction, by using two metrics to evaluate the adequacy of the acquired data. The proposed 4D-DW-PROPELLER-EPI was preliminarily evaluated in both simulation experiments and in vivo experiments with varying frame rates and different numbers of repeated acquisition. RESULTS The feasibility of achieving distortion-free 4D-DWI images by using the proposed 4D-DW-PROPELLER-EPI technique was demonstrated in both digital phantom and healthy subjects. Evaluation of the 4D completeness metrics shows that the K-B amplitude binning method could simultaneously improve the acquisition efficiency and data reconstruction performance for 4D-DW-PROPELLER-EPI. CONCLUSION 4D-DW-PROPELLER-EPI with K-B amplitude binning is an advanced technique that can provide distortion-free 4D-DWI images for resolving respiratory motion, and may benefit the application of image-guided abdominal RT.
Collapse
Affiliation(s)
- Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Multi-Scale Medical Robotics Center, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
65
|
Menon RG, de Moura HL, Kijowski R, Regatte RR. Age and gender differences in lumbar intervertebral disk strain using mechanical loading magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4999. [PMID: 37409683 PMCID: PMC10876068 DOI: 10.1002/nbm.4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/07/2023]
Abstract
The objective of the current study was to investigate age- and gender-related differences in lumbar intervertebral disk (IVD) strain with the use of static mechanical loading and continuous three-dimensional (3D) golden-angle radial sparse parallel (GRASP) MRI. A continuous 3D-GRASP stack-of-stars trajectory of the lumbar spine was performed on a 3-T scanner with static mechanical loading. Compressed sensing reconstruction, motion deformation maps, and Lagrangian strain maps during loading and recovery in the X-, Y-, and Z-directions were calculated for segmented IVD segments from L1/L2 to L5/S1. Mean IVD height was measured at rest. Spearman coefficients were used to evaluate the associations between age and global IVD height and global IVD strain. Mann-Whitney tests were used to compare global IVD height and global IVD strain in males and females. The prospective study enrolled 20 healthy human volunteers (10 males, 10 females; age 34.6 ± 11.4 [mean ± SD], range 22-56 years). Significant increases in compressive strain were observed with age, as evidenced by negative correlations between age and global IVD strain during loading (ρ = -0.76, p = 0.0046) and recovery (ρ = -0.68, p = 0.0251) in the loading X-direction. There was no significant correlation between age and global IVD height, global IVD strain during loading and recovery in the Y-direction, and global IVD strain during loading and recovery in the Z-direction. There were no significant differences between males and females in global IVD height and global IVD strain during loading and recovery in the X-, Y-, and Z-directions. It was concluded that our study demonstrated the significant role aging plays in internal dynamic strains in the lumbar IVD during loading and recovery. Older healthy individuals have reduced IVD stiffness and greater IVD compression during static mechanical loading of the lumbar spine. The GRASP-MRI technique demonstrates the feasibility to identify changes in IVD mechanical properties with early IVD degeneration due to aging.
Collapse
Affiliation(s)
- Rajiv G. Menon
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine
| | - Hector L. de Moura
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine
| | - Richard Kijowski
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine
| | - Ravinder R. Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine
| |
Collapse
|
66
|
Chen S, Eldeniz C, Fraum TJ, Ludwig DR, Gan W, Liu J, Kamilov US, Yang D, Gach HM, An H. Respiratory motion management using a single rapid MRI scan for a 0.35 T MRI-Linac system. Med Phys 2023; 50:6163-6176. [PMID: 37184305 DOI: 10.1002/mp.16469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND MRI has a rapidly growing role in radiation therapy (RT) for treatment planning, real-time image guidance, and beam gating (e.g., MRI-Linac). Free-breathing 4D-MRI is desirable in respiratory motion management for therapy. Moreover, high-quality 3D-MRIs without motion artifacts are needed to delineate lesions. Existing MRI methods require multiple scans with lengthy acquisition times or are limited by low spatial resolution, contrast, and signal-to-noise ratio. PURPOSE We developed a novel method to obtain motion-resolved 4D-MRIs and motion-integrated 3D-MRI reconstruction using a single rapid (35-45 s scan on a 0.35 T MRI-Linac. METHODS Golden-angle radial stack-of-stars MRI scans were acquired from a respiratory motion phantom and 12 healthy volunteers (n = 12) on a 0.35 T MRI-Linac. A self-navigated method was employed to detect respiratory motion using 2000 (acquisition time = 5-7 min) and the first 200 spokes (acquisition time = 35-45 s). Multi-coil non-uniform fast Fourier transform (MCNUFFT), compressed sensing (CS), and deep-learning Phase2Phase (P2P) methods were employed to reconstruct motion-resolved 4D-MRI using 2000 spokes (MCNUFFT2000) and 200 spokes (CS200 and P2P200). Deformable motion vector fields (MVFs) were computed from the 4D-MRIs and used to reconstruct motion-corrected 3D-MRIs with the MOtion Transformation Integrated forward-Fourier (MOTIF) method. Image quality was evaluated quantitatively using the structural similarity index measure (SSIM) and the root mean square error (RMSE), and qualitatively in a blinded radiological review. RESULTS Evaluation using the respiratory motion phantom experiment showed that the proposed method reversed the effects of motion blurring and restored edge sharpness. In the human study, P2P200 had smaller inaccuracy in MVFs estimation than CS200. P2P200 had significantly greater SSIMs (p < 0.0001) and smaller RMSEs (p < 0.001) than CS200 in motion-resolved 4D-MRI and motion-corrected 3D-MRI. The radiological review found that MOTIF 3D-MRIs using MCNUFFT2000 exhibited the highest image quality (scoring > 8 out of 10), followed by P2P200 (scoring > 5 out of 10), and then motion-uncorrected (scoring < 3 out of 10) in sharpness, contrast, and artifact-freeness. CONCLUSIONS We have successfully demonstrated a method for respiratory motion management for MRI-guided RT. The method integrated self-navigated respiratory motion detection, deep-learning P2P 4D-MRI reconstruction, and a motion integrated reconstruction (MOTIF) for 3D-MRI using a single rapid MRI scan (35-45 s) on a 0.35 T MRI-Linac system.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weijie Gan
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jiaming Liu
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulugbek S Kamilov
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongyu An
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
67
|
Koori N, Kamekawa H, Higuchi M, Fuse H, Miyakawa S, Yasue K, Kurata K. Influence of half Fourier and elliptical scanning (radial scan) on magnetic resonance images. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107560. [PMID: 37748233 DOI: 10.1016/j.jmr.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to investigate the effect of using slice partial Fourier (SPF), phase partial Fourier (PPF), and radial scan (Elliptical scanning) methods on image quality. Changes in signal-to-noise ratio (SNR), effective slice thickness, and in-plane resolution were measured in 3D-gradient echo when SPF, PPF, and radial scan were used. Effective slice thickness increased and SNR increased when SPF was used; in-plane resolution decreased and SNR decreased when PPF was used; effective slice thickness did not change, in-plane resolution decreased, and SNR increased when the radial scan method was used. The radial scan method reduces image quality and imaging time compared to those in the SPF and PPF methods.
Collapse
Affiliation(s)
- Norikazu Koori
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-03, Japan; Division of Health Sciences, Kanazawa University Graduate School of Medical Sciences, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | - Hiroki Kamekawa
- Department of Radiology, Komaki City Hospital, 1-20 Jyoubushi, Komaki, Aichi 485-8520, Japan
| | - Maho Higuchi
- Department of Radiology, Komaki City Hospital, 1-20 Jyoubushi, Komaki, Aichi 485-8520, Japan
| | - Hiraku Fuse
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-03, Japan.
| | - Shin Miyakawa
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-03, Japan.
| | - Kenji Yasue
- School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-03, Japan.
| | - Kazuma Kurata
- Department of Radiology, Komaki City Hospital, 1-20 Jyoubushi, Komaki, Aichi 485-8520, Japan
| |
Collapse
|
68
|
Edelman RR, Walker M, Ankenbrandt WJ, Leloudas N, Pang J, Bailes J, Bobustuc G, Koktzoglou I. Improved Brain Tumor Conspicuity at 3 T Using Dark Blood, Fat-Suppressed, Dixon Unbalanced T1 Relaxation-Enhanced Steady-State MRI. Invest Radiol 2023; 58:641-648. [PMID: 36822675 PMCID: PMC10403379 DOI: 10.1097/rli.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Contrast-enhanced magnetic resonance imaging (MRI) is the cornerstone for brain tumor diagnosis and treatment planning. We have developed a novel dual-echo volumetric dark blood pulse sequence called Dixon unbalanced T1 relaxation-enhanced steady-state (uT 1 RESS) that improves the visibility of contrast-enhancing lesions while suppressing the tissue signals from blood vessels and fat. The purpose of this study was to test the hypothesis that Dixon uT 1 RESS would significantly improve the conspicuity of brain tumors compared with magnetization-prepared rapid gradient echo (MPRAGE), as well as to determine potential limitations of the technique. MATERIALS AND METHODS This retrospective study was approved by the hospital institutional review board. Forty-seven adult patients undergoing an MRI scan for a brain tumor indication were included. Contrast-enhanced MRI of the brain was performed at 3 T using both MPRAGE and Dixon uT 1 RESS. To control for any impact of contrast agent washout during the scan procedure, Dixon uT 1 RESS was acquired in approximately half the subjects immediately after MPRAGE, and in the other half immediately before MPRAGE. Image quality, artifacts, and lesion detection were scored by 3 readers, whereas lesion apparent signal-to-noise ratio and lesion-to-background Weber contrast were calculated from region-of-interest measurements. RESULTS Image quality was not rated significantly different between MPRAGE and Dixon uT 1 RESS, whereas motion artifacts were slightly worse with Dixon uT 1 RESS. Comparing Dixon uT 1 RESS with MPRAGE, the respective values for mean lesion apparent signal-to-noise ratio were not significantly different (199.31 ± 99.05 vs 203.81 ± 110.23). Compared with MPRAGE, Dixon uT 1 RESS significantly increased the tumor-to-brain contrast (1.60 ± 1.18 vs 0.61 ± 0.47 when Dixon uT1RESS was acquired before MPRAGE and 1.94 ± 0.97 vs 0.82 ± 0.55 when Dixon uT 1 RESS was acquired after MPRAGE). In patients with metastatic disease, Dixon uT 1 RESS detected at least 1 enhancing brain lesion that was missed by MPRAGE on average in 24.7% of patients, whereas Dixon uT 1 RESS did not miss any lesions that were demonstrated by MPRAGE. Dixon uT 1 RESS better detected vascular and dural invasion in a small number of patients. CONCLUSIONS In conclusion, brain tumors were significantly more conspicuous at 3 T using Dixon uT 1 RESS compared with MPRAGE, with an approximately 2.5-fold improvement in lesion-to-background contrast irrespective of sequence order. It outperformed MPRAGE for the detection of brain metastases, dural or vascular involvement. These results suggest that Dixon uT 1 RESS could prove to be a useful adjunct or alternative to existing neuroimaging techniques for the postcontrast evaluation of intracranial tumors.
Collapse
Affiliation(s)
- Robert R Edelman
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Feinberg School of Medicine, Northwestern
University, Chicago, Illinois, USA
| | - Matthew Walker
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| | - William J. Ankenbrandt
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| | - Nondas Leloudas
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
| | | | - Julian Bailes
- Neurosurgery, NorthShore University HealthSystem,
Evanston, Illinois, USA
| | - George Bobustuc
- Neurology, NorthShore University HealthSystem, Evanston,
Illinois, USA
| | - Ioannis Koktzoglou
- Radiology, NorthShore University HealthSystem, Evanston,
Illinois, USA
- Radiology, Pritzker School of Medicine, University of
Chicago, Chicago, Illinois, USA
| |
Collapse
|
69
|
Yu VY, Otazo R, Wu C, Subashi E, Baumann M, Koken P, Doneva M, Mazurkewitz P, Shasha D, Zelefsky M, Cervino L, Cohen O. Quantitative longitudinal mapping of radiation-treated prostate cancer using MR fingerprinting with radial acquisition and subspace reconstruction. Magn Reson Imaging 2023; 101:25-34. [PMID: 37015305 PMCID: PMC10623548 DOI: 10.1016/j.mri.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
MR fingerprinting (MRF) enables fast multiparametric quantitative imaging with a single acquisition and has been shown to improve diagnosis of prostate cancer. However, most prostate MRF studies were performed with spiral acquisitions that are sensitive to B0 inhomogeneities and consequent blurring. In this work, a radial MRF acquisition with a novel subspace reconstruction technique was developed to enable fast T1/T2 mapping in the prostate in under 4 min. The subspace reconstruction exploits the extensive temporal correlations in the MRF dictionary to pre-compute a low dimensional space for the solution and thus reduce the number of radial spokes to accelerate the acquisition. Iterative reconstruction with the subspace model and additional regularization of the signal representation in the subspace is performed to minimize the number of spokes and maintain matching quality and SNR. Reconstruction accuracy was assessed using the ISMRM NIST phantom. In-vivo validation was performed on two healthy subjects and two prostate cancer patients undergoing radiation therapy. The longitudinal repeatability was quantified using the concordance correlation coefficient (CCC) in one of the healthy subjects by repeated scans over 1 year. One prostate cancer patient was scanned at three time points, before initiating therapy and following brachytherapy and external beam radiation. Changes in the T1/T2 maps obtained with the proposed method were quantified. The prostate, peripheral and transitional zones, and visible dominant lesion were delineated for each study, and the statistics and distribution of the quantitative mapping values were analyzed. Significant image quality improvements compared with standard reconstruction methods were obtained with the proposed subspace reconstruction method. A notable decrease in the spread of the T1/T2 values without biasing the estimated mean values was observed with the subspace reconstruction and agreed with reported literature values. The subspace reconstruction enabled visualization of small differences in T1/T2 values in the tumor region within the peripheral zone. Longitudinal imaging of a volunteer subject yielded CCC of 0.89 for MRF T1, and 0.81 for MRF T2 in the prostate gland. Longitudinal imaging of the prostate patient confirmed the feasibility of capturing radiation treatment related changes. This work is a proof-of-concept for a high resolution and fast quantitative mapping using golden-angle radial MRF combined with a subspace reconstruction technique for longitudinal treatment response assessment in subjects undergoing radiation treatment.
Collapse
Affiliation(s)
- Victoria Y Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Peter Koken
- Philips Research, MR Research, Hamburg, Germany
| | | | | | - Daniel Shasha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Cervino
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
70
|
Bae J, Li C, Masurkar A, Ge Y, Kim SG. Improving measurement of blood-brain barrier permeability with reduced scan time using deep-learning-derived capillary input function. Neuroimage 2023; 278:120284. [PMID: 37507078 PMCID: PMC10475161 DOI: 10.1016/j.neuroimage.2023.120284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In Dynamic contrast-enhanced MRI (DCE-MRI), Arterial Input Function (AIF) has been shown to be a significant contributor to uncertainty in the estimation of kinetic parameters. This study is to assess the feasibility of using a deep learning network to estimate local Capillary Input Function (CIF) to estimate blood-brain barrier (BBB) permeability, while reducing the required scan time. MATERIALS AND METHOD A total of 13 healthy subjects (younger (<40 y/o): 8, older (> 67 y/o): 5) were recruited and underwent 25-min DCE-MRI scans. The 25 min data were retrospectively truncated to 10 min to simulate a reduced scan time of 10 min. A deep learning network was trained to predict the CIF using simulated tissue contrast dynamics with two vascular transport models. The BBB permeability (PS) was measured using 3 methods: (i) Ca-25min, using DCE-MRI data of 25 min with individually sampled AIF (Ca); (ii) Ca-10min, using truncated 10min data with AIF (Ca); and (iii) Cp-10min, using truncated 10 min data with CIF (Cp). The PS estimates from the Ca-25min method were used as reference standard values to assess the accuracy of the Ca-10min and Cp-10min methods in estimating the PS values. RESULTS When compared to the reference method(Ca-25min), the Ca-10min and Cp-10min methods resulted in an overestimation of PS by 217 ± 241 % and 48.0 ± 30.2 %, respectively. The Bland Altman analysis showed that the mean difference from the reference was 8.85 ± 1.78 (x10-4 min-1) with the Ca-10min, while it was reduced to 1.63 ± 2.25 (x10-4 min-1) with the Cp-10min, resulting in an average reduction of 81%. The limits of agreement also reduced by up to 39.2% with the Cp-10min. We found a 75% increase of BBB permeability in the gray matter and a 35% increase in the white matter, when comparing the older group to the younger group. CONCLUSIONS We demonstrated the feasibility of estimating the capillary-level input functions using a deep learning network. We also showed that this method can be used to estimate subtle age-related changes in BBB permeability with reduced scan time, without compromising accuracy. Moreover, the trained deep learning network can automatically select CIF, reducing the potential uncertainty resulting from manual user-intervention.
Collapse
Affiliation(s)
- Jonghyun Bae
- Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine; Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine; Department of Radiology, Weill Cornell Medical College.
| | - Chenyang Li
- Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine; Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine.
| | - Arjun Masurkar
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine; Department of Neuroscience & Physiology, New York University School of Medicine; Neuroscience Institute, New York University School of Medicine.
| | - Yulin Ge
- Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine.
| | | |
Collapse
|
71
|
Hamilton JI, Truesdell W, Galizia M, Burris N, Agarwal P, Seiberlich N. A low-rank deep image prior reconstruction for free-breathing ungated spiral functional CMR at 0.55 T and 1.5 T. MAGMA (NEW YORK, N.Y.) 2023; 36:451-464. [PMID: 37043121 PMCID: PMC11017470 DOI: 10.1007/s10334-023-01088-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE This study combines a deep image prior with low-rank subspace modeling to enable real-time (free-breathing and ungated) functional cardiac imaging on a commercial 0.55 T scanner. MATERIALS AND METHODS The proposed low-rank deep image prior (LR-DIP) uses two u-nets to generate spatial and temporal basis functions that are combined to yield dynamic images, with no need for additional training data. Simulations and scans in 13 healthy subjects were performed at 0.55 T and 1.5 T using a golden angle spiral bSSFP sequence with images reconstructed using [Formula: see text]-ESPIRiT, low-rank plus sparse (L + S) matrix completion, and LR-DIP. Cartesian breath-held ECG-gated cine images were acquired for reference at 1.5 T. Two cardiothoracic radiologists rated images on a 1-5 scale for various categories, and LV function measurements were compared. RESULTS LR-DIP yielded the lowest errors in simulations, especially at high acceleration factors (R [Formula: see text] 8). LR-DIP ejection fraction measurements agreed with 1.5 T reference values (mean bias - 0.3% at 0.55 T and - 0.2% at 1.5 T). Compared to reference images, LR-DIP images received similar ratings at 1.5 T (all categories above 3.9) and slightly lower at 0.55 T (above 3.4). CONCLUSION Feasibility of real-time functional cardiac imaging using a low-rank deep image prior reconstruction was demonstrated in healthy subjects on a commercial 0.55 T scanner.
Collapse
Affiliation(s)
- Jesse I Hamilton
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - William Truesdell
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Mauricio Galizia
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Nicholas Burris
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Prachi Agarwal
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
72
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
73
|
Curtis AD, Mertens AJ, Cheng HLM. A predictive signal model for dynamic cardiac magnetic resonance imaging. Sci Rep 2023; 13:10296. [PMID: 37357251 DOI: 10.1038/s41598-023-37475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/27/2023] Open
Abstract
Robust dynamic cardiac magnetic resonance imaging (MRI) has been a long-standing endeavor-as real-time imaging can provide information on the temporal signatures of disease we currently cannot assess-with the past decade seeing remarkable advances in acceleration using compressed sensing (CS) and artificial intelligence (AI). However, substantial limitations to real-time imaging remain and reconstruction quality is not always guaranteed. To improve reconstruction fidelity in dynamic cardiac MRI, we propose a novel predictive signal model that uses a priori statistics to adaptively predict temporal cardiac dynamics. By using a small training set obtained from the same patient, the new signal model can achieve robust dynamic cardiac MRI in the presence of irregular cardiac rhythm. Evaluation on simulated irregular cardiac dynamics and prospectively undersampled clinical cardiac MRI data demonstrate improved reconstruction quality for two reconstruction frameworks: Kalman filter and CS. The predictive model also works with different undersampling patterns (cartesian, radial, spiral) and can serve as a versatile foundation for robust dynamic cardiac MRI.
Collapse
Affiliation(s)
- Aaron D Curtis
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Alexander J Mertens
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada.
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, Room 1443, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
74
|
Zhang Y, Zu T, Liu R, Zhou J. Acquisition sequences and reconstruction methods for fast chemical exchange saturation transfer imaging. NMR IN BIOMEDICINE 2023; 36:e4699. [PMID: 35067987 DOI: 10.1002/nbm.4699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an emerging molecular magnetic resonance imaging (MRI) technique that has been developed and employed in numerous diseases. Based on the unique saturation transfer principle, a family of CEST-detectable biomolecules in vivo have been found capable of providing valuable diagnostic information. However, CEST MRI needs a relatively long scan time due to the common long saturation labeling module and typical acquisition of multiple frequency offsets and signal averages, limiting its widespread clinical applications. So far, a plethora of imaging schemes and techniques has been developed to accelerate CEST MRI. In this review, the key acquisition and reconstruction methods for fast CEST imaging are summarized from a practical and systematic point of view. The first acquisition sequence section describes the major development of saturation schemes, readout patterns, ultrafast z-spectroscopy, and saturation-editing techniques for rapid CEST imaging. The second reconstruction method section lists the important advances of parallel imaging, compressed sensing, sparsity in the z-spectrum, and algorithms beyond the Fourier transform for speeding up CEST MRI.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
75
|
Qu B, Zhang Z, Chen Y, Qian C, Kang T, Lin J, Chen L, Wu Z, Wang J, Zheng G, Qu X. A convergence analysis for projected fast iterative soft-thresholding algorithm under radial sampling MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107425. [PMID: 37060889 DOI: 10.1016/j.jmr.2023.107425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 05/29/2023]
Abstract
Radial sampling is a fast magnetic resonance imaging technique. Further imaging acceleration can be achieved with undersampling but how to reconstruct a clear image with fast algorithm is still challenging. Previous work has shown the advantage of removing undersampling image artifacts using the tight-frame sparse reconstruction model. This model was further solved with a projected fast iterative soft-thresholding algorithm (pFISTA). However, the convergence of this algorithm under radial sampling has not been clearly set up. In this work, the authors derived a theoretical convergence condition for this algorithm. This condition was approximated by estimating the maximal eigenvalue of reconstruction operators through the power iteration. Based on the condition, an optimal step size was further suggested to allow the fastest convergence. Verifications were made on the prospective in vivo data of static brain imaging and dynamic contrast-enhanced liver imaging, demonstrating that the recommended parameter allowed fast convergence in radial MRI.
Collapse
Affiliation(s)
- Biao Qu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
| | - Zuwen Zhang
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yewei Chen
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Chen Qian
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Taishan Kang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lihua Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | | | | | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China.
| | - Xiaobo Qu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| |
Collapse
|
76
|
Eisenmenger LB, Peret A, Roberts GS, Spahic A, Tang C, Kuner AD, Grayev AM, Field AS, Rowley HA, Kennedy TA. Focused Abbreviated Survey MRI Protocols for Brain and Spine Imaging. Radiographics 2023; 43:e220147. [PMID: 37167089 PMCID: PMC10262597 DOI: 10.1148/rg.220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 05/13/2023]
Abstract
There has been extensive growth in both the technical development and the clinical applications of MRI, establishing this modality as one of the most powerful diagnostic imaging tools. However, long examination and image interpretation times still limit the application of MRI, especially in emergent clinical settings. Rapid and abbreviated MRI protocols have been developed as alternatives to standard MRI, with reduced imaging times, and in some cases limited numbers of sequences, to more efficiently answer specific clinical questions. A group of rapid MRI protocols used at the authors' institution, referred to as FAST (focused abbreviated survey techniques), are designed to include or exclude emergent or urgent conditions or screen for specific entities. These FAST protocols provide adequate diagnostic image quality with use of accelerated approaches to produce imaging studies faster than traditional methods. FAST protocols have become critical diagnostic screening tools at the authors' institution, allowing confident and efficient confirmation or exclusion of actionable findings. The techniques commonly used to reduce imaging times, the imaging protocols used at the authors' institution, and future directions in FAST imaging are reviewed to provide a practical and comprehensive overview of FAST MRI for practicing neuroradiologists. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
| | | | - Grant S. Roberts
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Alma Spahic
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Chenwei Tang
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Anthony D. Kuner
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Allison M. Grayev
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Aaron S. Field
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Howard A. Rowley
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| | - Tabassum A. Kennedy
- From the Departments of Radiology (L.B.E., A.P., A.D.K., A.M.G.,
A.S.F., H.A.R., T.A.K.) and Medical Physics (G.S.R., A.S., C.T.), University of
Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI
53792-3252
| |
Collapse
|
77
|
Mahmud SZ, Denney TS, Bashir A. Feasibility of spinal cord imaging at 7 T using rosette trajectory with magnetization transfer preparation and compressed sensing. Sci Rep 2023; 13:8777. [PMID: 37258697 DOI: 10.1038/s41598-023-35853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
MRI is a valuable diagnostic tool to investigate spinal cord (SC) pathology. SC MRI can benefit from the increased signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at ultra-high fields such as 7 T. However, SC MRI acquisitions with routine Cartesian readouts are prone to image artifacts caused by physiological motion. MRI acquisition techniques with non-Cartesian readouts such as rosette can help reduce motion artifacts. The purpose of this study was to demonstrate the feasibility of high-resolution SC imaging using rosette trajectory with magnetization transfer preparation (MT-prep) and compressed sensing (CS) at 7 T. Five healthy volunteers participated in the study. Images acquired with rosette readouts demonstrated reduced motion artifacts compared to the standard Cartesian readouts. The combination of multi-echo rosette-readout images improved the CNR by approximately 50% between the gray matter (GM) and white matter (WM) compared to single-echo images. MT-prep images showed excellent contrast between the GM and WM with magnetization transfer ratio (MTR) and cerebrospinal fluid normalized MT signal (MTCSF) = 0.12 ± 0.017 and 0.74 ± 0.013, respectively, for the GM; and 0.18 ± 0.011 and 0.58 ± 0.009, respectively, for the WM. Under-sampled acquisition using rosette readout with CS reconstruction demonstrated up to 6 times faster scans with comparable image quality as the fully-sampled acquisition.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Auburn University MRI Research Center, Auburn University, Auburn, AL, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Auburn University MRI Research Center, Auburn University, Auburn, AL, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA.
- Auburn University MRI Research Center, Auburn University, Auburn, AL, USA.
| |
Collapse
|
78
|
Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact correction for MRI: A review. NMR IN BIOMEDICINE 2023; 36:e4867. [PMID: 36326709 PMCID: PMC10284460 DOI: 10.1002/nbm.4867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/25/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2023]
Abstract
In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used for imaging, referred to as off-resonance, can lead to image artifacts ranging from mild to severe depending on the application. Off-resonance artifacts, such as signal loss, geometric distortions, and blurring, can compromise the clinical and scientific utility of MR images. In this review, we describe sources of off-resonance in MRI, how off-resonance affects images, and strategies to prevent and correct for off-resonance. Given recent advances and the great potential of low-field and/or portable MRI, we also highlight the advantages and challenges of imaging at low field with respect to off-resonance.
Collapse
Affiliation(s)
- Melissa W Haskell
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
- Hyperfine Research, Guilford, Connecticut, USA
| | | | - Douglas C Noll
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
79
|
Tan Z, Unterberg-Buchwald C, Blumenthal M, Scholand N, Schaten P, Holme C, Wang X, Raddatz D, Uecker M. Free-Breathing Liver Fat, R₂* and B₀ Field Mapping Using Multi-Echo Radial FLASH and Regularized Model-Based Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1374-1387. [PMID: 37015368 PMCID: PMC10368089 DOI: 10.1109/tmi.2022.3228075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work introduced a stack-of-radial multi-echo asymmetric-echo MRI sequence for free-breathing liver volumetric acquisition. Regularized model-based reconstruction was implemented in Berkeley Advanced Reconstruction Toolbox (BART) to jointly estimate all physical parameter maps (water, fat, R2∗ , and B0 field inhomogeneity maps) and coil sensitivity maps from self-gated k -space data. Specifically, locally low rank and temporal total variation regularization were employed directly on physical parameter maps. The proposed free-breathing radial technique was tested on a water/fat & iron phantom, a young volunteer, and obesity/diabetes/hepatic steatosis patients. Quantitative fat fraction and R2∗ accuracy were confirmed by comparing our technique with the reference breath-hold Cartesian scan. The multi-echo radial sampling sequence achieves fast k -space coverage and is robust to motion. Moreover, the proposed motion-resolved model-based reconstruction allows for free-breathing liver fat and R2∗ quantification in multiple motion states. Overall, our proposed technique offers a convenient tool for non-invasive liver assessment with no breath holding requirement.
Collapse
|
80
|
Eraky AM. Radiological Biomarkers for Brain Metastases Prognosis: Quantitative Magnetic Resonance Imaging (MRI) Modalities As Non-invasive Biomarkers for the Effect of Radiotherapy. Cureus 2023; 15:e38353. [PMID: 37266043 PMCID: PMC10229388 DOI: 10.7759/cureus.38353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Radiotherapy effect is achieved by its ability to cause DNA damage and induce apoptosis. In contrast, radiation can induce tumor cells' proliferation, invasiveness, and epithelial-mesenchymal transition (EMT). Besides developing radioresistance, this paradoxical effect of radiotherapy is considered a challenging problem in the field of radiotherapy. This highlights the importance of developing new modalities to diagnose radioresistance early to avoid any unnecessary exposure to radiation and differentiate between metastases recurrence versus post-radiation changes. Quantitative magnetic resonance imaging (MRI) techniques including diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast-enhanced (DCE) represent potential biomarkers to diagnose metastases recurrence and radioresistance. In this review, we will focus on recent studies discussing the possibility of using DWI, DSC, ASL, and DCE to diagnose radioresistance and recurrence in patients with brain metastases.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurological Surgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
81
|
Bie C, van Zijl PCM, Mao D, Yadav NN. Ultrafast Z-spectroscopic imaging in vivo at 3T using through-slice spectral encoding (TS-UFZ). Magn Reson Med 2023; 89:1429-1440. [PMID: 36373181 PMCID: PMC9892239 DOI: 10.1002/mrm.29532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Acquisition of high-resolution Z-spectra for CEST or magnetization transfer contrast (MTC) MRI requires excessive scan times. Ultrafast Z-spectroscopy (UFZ) has been proposed to address this; however, the quality of in vivo UFZ spectra has been insufficient. Here, we present a simple approach to improve this. THEORY AND METHODS UFZ imaging acquires full Z-spectra by encoding the spectral dimension spatially via a gradient applied concurrently with the RF saturation pulse. Different from previous implementations, both this saturation gradient and its readout were applied in the slice direction, resulting in a relatively uniform voxel composition. Phase-encoding was applied in both in-plane directions, allowing additional under-sampling and acceleration. RESULTS In phantoms, UFZ imaging with through-slice Z-spectral encoding (TS-UFZ) provided Z-spectra of salicylic acid and egg white in excellent agreement with conventional acquisitions. In vivo brain Z-spectra were influenced by flow through the imaging slice which affected the Z-spectral baseline. Still, CEST signals could be quantified after baseline fitting and mapping the residual CEST signal. Amide proton transfer (APT) contrast intensities obtained by TS-UFZ were on the same order of magnitude as conventional CEST but with different contrast across slice which likely is a result of different tissue regions contributing. CONCLUSION TS-UFZ approach improves signal stability and spectral uniformity over previous implementations and allows high spectral-resolution imaging of saturation transfer effects in the human brain at 3T. This implementation allows for further acceleration by reducing phase encoding steps and thus opens up the possibility of mapping dynamic CEST signals in vivo with a practical temporal resolution.
Collapse
Affiliation(s)
- Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- Department of Information Science and Technology, Northwest University, Xi’an, Shaanxi (China)
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Deng Mao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD (USA)
- Philips Healthcare, Baltimore, MD (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore MD (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| |
Collapse
|
82
|
Li Z, Huang C, Tong A, Chandarana H, Feng L. Kz-accelerated variable-density stack-of-stars MRI. Magn Reson Imaging 2023; 97:56-67. [PMID: 36577458 PMCID: PMC10072203 DOI: 10.1016/j.mri.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
This work aimed to develop a modified stack-of-stars golden-angle radial sampling scheme with variable-density acceleration along the slice (kz) dimension (referred to as VD-stack-of-stars) and to test this new sampling trajectory with multi-coil compressed sensing reconstruction for rapid motion-robust 3D liver MRI. VD-stack-of-stars sampling implements additional variable-density undersampling along the kz dimension, so that slice resolution (or volumetric coverage) can be increased without prolonging scan time. The new sampling trajectory (with increased slice resolution) was compared with standard stack-of-stars sampling with fully sampled kz (with standard slice resolution) in both non-contrast-enhanced free-breathing liver MRI and dynamic contrast-enhanced MRI (DCE-MRI) of the liver in volunteers. For both sampling trajectories, respiratory motion was extracted from the acquired radial data, and images were reconstructed using motion-compensated (respiratory-resolved or respiratory-weighted) dynamic radial compressed sensing reconstruction techniques. Qualitative image quality assessment (visual assessment by experienced radiologists) and quantitative analysis (as a metric of image sharpness) were performed to compare images acquired using the new and standard stack-of-stars sampling trajectories. Compared to standard stack-of-stars sampling, both non-contrast-enhanced and DCE liver MR images acquired with VD-stack-of-stars sampling presented improved overall image quality, sharper liver edges and increased hepatic vessel clarity in all image planes. The results have suggested that the proposed VD-stack-of-stars sampling scheme can achieve improved performance (increased slice resolution or volumetric coverage with better image quality) over standard stack-of-stars sampling in free-breathing DCE-MRI without increasing scan time. The reformatted coronal and sagittal images with better slice resolution may provide added clinical value.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Chenchan Huang
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Angela Tong
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Hersh Chandarana
- Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| | - Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
83
|
Jafari R, Do RKG, LaGratta MD, Fung M, Bayram E, Cashen T, Otazo R. GRASPNET: Fast spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4861. [PMID: 36305619 PMCID: PMC9898111 DOI: 10.1002/nbm.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the current study was to develop a deep learning technique called Golden-angle RAdial Sparse Parallel Network (GRASPnet) for fast reconstruction of dynamic contrast-enhanced 4D MRI acquired with golden-angle radial k-space trajectories. GRASPnet operates in the image-time space and does not use explicit data consistency to minimize the reconstruction time. Three different network architectures were developed: (1) GRASPnet-2D: 2D convolutional kernels (x,y) and coil and contrast dimensions collapsed into a single combined dimension; (2) GRASPnet-3D: 3D kernels (x,y,t); and (3) GRASPnet-2D + time: two 3D kernels to first exploit spatial correlations (x,y,1) followed by temporal correlations (1,1,t). The networks were trained using iterative GRASP reconstruction as the reference. Free-breathing 3D abdominal imaging with contrast injection was performed on 33 patients with liver lesions using a T1-weighted golden-angle stack-of-stars pulse sequence. Ten datasets were used for testing. The three GRASPnet architectures were compared with iterative GRASP results using quantitative and qualitative analysis, including impressions from two body radiologists. The three GRASPnet techniques reduced the reconstruction time to about 13 s with similar results with respect to iterative GRASP. Among the GRASPnet techniques, GRASPnet-2D + time compared favorably in the quantitative analysis. Spatiotemporal deep learning enables reconstruction of dynamic 4D contrast-enhanced images in a few seconds, which would facilitate translation to clinical practice of compressed sensing methods that are currently limited by long reconstruction times.
Collapse
Affiliation(s)
- Ramin Jafari
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
84
|
Berger A, Lee MD, Lotan E, Block KT, Fatterpekar G, Kondziolka D. Distinguishing Brain Metastasis Progression From Radiation Effects After Stereotactic Radiosurgery Using Longitudinal GRASP Dynamic Contrast-Enhanced MRI. Neurosurgery 2023; 92:497-506. [PMID: 36700674 DOI: 10.1227/neu.0000000000002228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Differentiating brain metastasis progression from radiation effects or radiation necrosis (RN) remains challenging. Golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced MRI provides high spatial and temporal resolution to analyze tissue enhancement, which may differ between tumor progression (TP) and RN. OBJECTIVE To investigate the utility of longitudinal GRASP MRI in distinguishing TP from RN after gamma knife stereotactic radiosurgery (SRS). METHODS We retrospectively evaluated 48 patients with brain metastasis managed with SRS at our institution from 2013 to 2020 who had GRASP MRI before and at least once after SRS. TP (n = 16) was pathologically confirmed. RN (n = 16) was diagnosed on either resected tissue without evidence of tumor or on lesion resolution on follow-up. As a reference, we included a separate group of patients with non-small-cell lung cancer that showed favorable response with tumor control and without RN on subsequent imaging (n = 16). Mean contrast washin and washout slopes normalized to the superior sagittal sinus were compared between groups. Receiver operating characteristic analysis was performed to determine diagnostic performance. RESULTS After SRS, progression showed a significantly steeper washin slope than RN on all 3 follow-up scans (scan 1: 0.29 ± 0.16 vs 0.18 ± 0.08, P = .021; scan 2: 0.35 ± 0.19 vs 0.18 ± 0.09, P = .004; scan 3: 0.32 ± 0.12 vs 0.17 ± 0.07, P = .002). No significant differences were found in the post-SRS washout slope. Post-SRS washin slope differentiated progression and RN with an area under the curve (AUC) of 0.74, a sensitivity of 75%, and a specificity of 69% on scan 1; an AUC of 0.85, a sensitivity of 92%, and a specificity of 69% on scan 2; and an AUC of 0.87, a sensitivity of 63%, and a specificity of 100% on scan 3. CONCLUSION Longitudinal GRASP MRI may help to differentiate metastasis progression from RN.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Matthew D Lee
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Eyal Lotan
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| |
Collapse
|
85
|
Rastogi A, Dutta A, Yalavarthy PK. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data. Med Phys 2023; 50:1560-1572. [PMID: 36354289 DOI: 10.1002/mp.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To propose a robust time and space invariant deep learning (DL) method to directly estimate the pharmacokinetic/tracer kinetic (PK/TK) parameters from undersampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data. METHODS DCE-MRI consists of 4D (3D-spatial + temporal) data and has been utilized to estimate 3D (spatial) tracer kinetic maps. Existing DL architecture for this task needs retraining for variation in temporal and/or spatial dimensions. This work proposes a DL algorithm that is invariant to training and testing in both temporal and spatial dimensions. The proposed network was based on a 2.5-dimensional Unet architecture, where the encoder consists of a 3D convolutional layer and the decoder consists of a 2D convolutional layer. The proposed VTDCE-Net was evaluated for solving the ill-posed inverse problem of directly estimating TK parameters from undersampled k - t $k-t$ space data of breast cancer patients, and the results were systematically compared with a total variation (TV) regularization based direct parameter estimation scheme. In the breast dataset, the training was performed on patients with 32 time samples, and testing was carried out on patients with 26 and 32 time samples. Translation of the proposed VTDCE-Net for brain dataset to show the generalizability was also carried out. Undersampling rates (R) of 8× , 12× , and 20× were utilized with PSNR and SSIM as the figures of merit in this evaluation. TK parameter maps estimated from fully sampled data were utilized as ground truth. RESULTS Experiments carried out in this work demonstrate that the proposed VTDCE-Net outperforms the TV scheme on both breast and brain datasets across all undersampling rates. For K trans $\mathbf {K_{trans}}$ and V p $\mathbf {V_{p}}$ maps, the improvement over TV is as high as 2 and 5 dB, respectively, using the proposed VTDCE-Net. CONCLUSION Temporal points invariant DL network that was proposed in this work to estimate the TK-parameters using DCE-MRI data has provided state-of-the-art performance compared to standard image reconstruction methods and is shown to work across all undersampling rates.
Collapse
Affiliation(s)
- Aditya Rastogi
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Arindam Dutta
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
86
|
Zhang Q, Luo X, Zhou L, Nguyen TD, Prince MR, Spincemaille P, Wang Y. Fluid Mechanics Approach to Perfusion Quantification: Vasculature Computational Fluid Dynamics Simulation, Quantitative Transport Mapping (QTM) Analysis of Dynamics Contrast Enhanced MRI, and Application in Nonalcoholic Fatty Liver Disease Classification. IEEE Trans Biomed Eng 2023; 70:980-990. [PMID: 36107908 DOI: 10.1109/tbme.2022.3207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We quantify liver perfusion using quantitative transport mapping (QTM) method that is free of arterial input function (AIF). QTM method is validated in a vasculature computational fluid dynamics (CFD) simulation and is applied for processing dynamic contrast enhanced (DCE) MRI images in differentiating liver with nonalcoholic fatty liver disease (NAFLD) from healthy controls using pathology reference in a preclinical rabbit model. METHODS QTM method was validated on a liver perfusion simulation based on fluid dynamics using a rat liver vasculature model and the mass transport equation. In the NAFLD grading task, DCE MRI images of 7 adult rabbits with methionine choline-deficient diet-induced nonalcoholic steatohepatitis (NASH), 8 adult rabbits with simple steatosis (SS) were acquired and processed using QTM method and dual-input two compartment Kety's method respectively. Statistical analysis was performed on six perfusion parameters: velocity magnitude | u | derived from QTM, liver arterial blood flow LBFa, liver venous blood flow LBFv, permeability Ktrans, blood volume Vp and extravascular space volume Ve averaged in liver ROI. RESULTS In the simulation, QTM method successfully reconstructed blood flow, reduced error by 48% compared to Kety's method. In the preclinical study, only QTM |u| showed significant difference between high grade NAFLD group and low grade NAFLD group. CONCLUSION QTM postprocesses DCE-MRI automatically through deconvolution in space and time to solve the inverse problem of the transport equation. Comparing with Kety's method, QTM method showed higher accuracy and better differentiation in NAFLD classification task. SIGNIFICANCE We propose to apply QTM method in liver DCE MRI perfusion quantification.
Collapse
|
87
|
Choi M, Yoon S, Lee Y, Han D. Evaluation of Perfusion Change According to Pancreatic Cancer and Pancreatic Duct Dilatation Using Free-Breathing Golden-Angle Radial Sparse Parallel (GRASP) Magnetic Resonance Imaging. Diagnostics (Basel) 2023; 13:diagnostics13040731. [PMID: 36832219 PMCID: PMC9955363 DOI: 10.3390/diagnostics13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
PURPOSE To evaluate perfusion changes in the pancreas with pancreatic cancer and pancreatic duct dilatation using dynamic contrast-enhanced MRI (DCE-MRI). METHOD We evaluate the pancreas DCE-MRI of 75 patients. The qualitative analysis includes pancreas edge sharpness, motion artifacts, streak artifacts, noise, and overall image quality. The quantitative analysis includes measuring the pancreatic duct diameter and drawing six regions of interest (ROIs) in the three areas of the pancreas (head, body, and tail) and three vessels (aorta, celiac axis, and superior mesenteric artery) to measure the peak-enhancement time, delay time, and peak concentration. We evaluate the differences in three quantitative parameters among the ROIs and between patients with and without pancreatic cancer. The correlations between pancreatic duct diameter and delay time are also analyzed. RESULTS The pancreas DCE-MRI demonstrates good image quality, and respiratory motion artifacts show the highest score. The peak-enhancement time does not differ among the three vessels or among the three pancreas areas. The peak-enhancement time and concentrations in the pancreas body and tail and the delay time in the three pancreas areas are significantly longer (p < 0.05) in patients with pancreatic cancer than in those without pancreatic cancer. The delay time was significantly correlated with the pancreatic duct diameters in the head (p < 0.02) and body (p < 0.001). CONCLUSION DCE-MRI can display the perfusion change in the pancreas with pancreatic cancer. A perfusion parameter in the pancreas is correlated with the pancreatic duct diameter reflecting a morphological change in the pancreas.
Collapse
Affiliation(s)
- Moonhyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seungbae Yoon
- Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Correspondence: ; Tel.: +82-2-2030-4317
| | - Youngjoon Lee
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd., Seoul 06620, Republic of Korea
| |
Collapse
|
88
|
Solomon E, Lotan E, Zan E, Sodickson DK, Block KT, Chandarana H. MP-RAVE: IR-Prepared T 1 -Weighted Radial Stack-of-Stars 3D GRE imaging with retrospective motion correction. Magn Reson Med 2023; 90:202-210. [PMID: 36763847 DOI: 10.1002/mrm.29614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE To describe an inversion-recovery T1 -weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.
Collapse
Affiliation(s)
- Eddy Solomon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| | - Eyal Lotan
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| | - Elcin Zan
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
89
|
Schulze-Zachau V, Winkel DJ, Kaul F, Demerath T, Potthast S, Heye TJ, Boll DT. Estimation of differential renal function on routine abdominal imaging employing compressed-sensed contrast-enhanced MR: a feasibility study referenced against dynamic renal scintigraphy in patients with deteriorating renal retention parameters. Abdom Radiol (NY) 2023; 48:1329-1339. [PMID: 36732406 PMCID: PMC10115688 DOI: 10.1007/s00261-023-03823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE To assess whether high temporal/spatial resolution GRASP MRI acquired during routine clinical imaging can identify several degrees of renal function impairment referenced against renal dynamic scintigraphy. METHODS This retrospective study consists of method development and method verification parts. During method development, patients subject to renal imaging using gadoterate meglumine and GRASP post-contrast MRI technique (TR/TE 3.3/1.6 ms; FoV320 × 320 mm; FA12°; Voxel1.1 × 1.1x2.5 mm) were matched into four equally-sized renal function groups (no-mild-moderate-severe impairment) according to their laboratory-determined estimated glomerular filtration rates (eGFR); 60|120 patients|kidneys were included. Regions-of-interest (ROIs) were placed on cortices, medullary pyramids and collecting systems of bilateral kidneys. Cortical perfusion, tubular concentration and collecting system excretion were determined as TimeCortex=Pyramid(sec), SlopeTubuli (sec-1), and TimeCollecting System (sec), respectively, and were measured by a combination of extraction of time intensity curves and respective quantitative parameters. For method verification, patients subject to GRASP MRI and renal dynamic scintigraphy (99mTc-MAG3, 100 MBq/patient) were matched into three renal function groups (no-mild/moderate-severe impairment). Split renal function parameters post 1.5-2.5 min as well as MAG3 TER were correlated with time intensity parameters retrieved using GRASP technique; 15|30 patients|kidneys were included. RESULTS Method development showed differing values for TimeCortex=Pyramid(71|75|93|122 s), SlopeTubuli(2.6|2.1|1.3|0.5 s-1) and TimeCollecting System(90|111|129|139 s) for the four renal function groups with partial significant tendencies (several p-values < 0.001). In method verification, 29/30 kidneys (96.7%) were assigned to the correct renal function group. CONCLUSION High temporal and spatial resolution GRASP MR imaging allows to identify several degrees of renal function impairment using routine clinical imaging with a high degree of accuracy.
Collapse
Affiliation(s)
| | - David J Winkel
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland.
| | - Felix Kaul
- Department of Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Theo Demerath
- Neuroradiology Clinic, University Medical Center Freiburg, Freiburg, Germany
| | - Silke Potthast
- Department of Radiology, Spital Limmattal, Schlieren, Switzerland
| | - Tobias J Heye
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland
| | - Daniel T Boll
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland
| |
Collapse
|
90
|
Munoz C, Fotaki A, Botnar RM, Prieto C. Latest Advances in Image Acceleration: All Dimensions are Fair Game. J Magn Reson Imaging 2023; 57:387-402. [PMID: 36205716 PMCID: PMC10092100 DOI: 10.1002/jmri.28462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| |
Collapse
|
91
|
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S, Herrmann J, Almansour H, Männlin S, Othman AE, Gassenmaier S. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn Interv Imaging 2023; 104:53-59. [PMID: 35843839 DOI: 10.1016/j.diii.2022.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the impact of a deep learning-based super-resolution technique on T1-weighted gradient-echo acquisitions (volumetric interpolated breath-hold examination; VIBE) on the assessment of pancreatic MRI at 1.5 T compared to standard VIBE imaging (VIBESTD). MATERIALS AND METHODS This retrospective single-center study was conducted between April 2021 and October 2021. Fifty patients with a total of 50 detectable pancreatic lesion entities were included in this study. There were 27 men and 23 women, with a mean age of 69 ± 13 (standard deviation [SD]) years (age range: 33-89 years). VIBESTD (precontrast, dynamic, postcontrast) was retrospectively processed with a deep learning-based super-resolution algorithm including a more aggressive partial Fourier setting leading to a simulated acquisition time reduction (VIBESR). Image analysis was performed by two radiologists regarding lesion detectability, noise levels, sharpness and contrast of pancreatic edges, as well as regarding diagnostic confidence using a 5-point Likert-scale with 5 being the best. RESULTS VIBESR was rated better than VIBESTD by both readers regarding lesion detectability (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5], for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5]) for reader 2; both P <0.001), noise levels (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), sharpness and contrast of pancreatic edges (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), as well as regarding diagnostic confidence (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001). There were no significant differences between lesion sizes as measured by the two readers on VIBESR and VIBESTD images (P > 0.05). The mean acquisition time for VIBESTD (15 ± 1 [SD] s; range: 11-16 s) was longer than that for VIBESR (13 ± 1 [SD] s; range: 11-14 s) (P < 0.001). CONCLUSION Our results indicate that the newly developed deep learning-based super-resolution algorithm adapted to partial Fourier acquisitions has a positive influence not only on shortening the examination time but also on improvement of image quality in pancreatic MRI.
Collapse
Affiliation(s)
- Maryanna Chaika
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Daniel Wessling
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Carmen Afat
- Department of Internal Medicine I, Otfried-Müller-Straße 10, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Stephan Kannengiesser
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Simon Männlin
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; Department of Neuroradiology, University Medical Center, 55131, Mainz, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
92
|
Feng L. 4D Golden-Angle Radial MRI at Subsecond Temporal Resolution. NMR IN BIOMEDICINE 2023; 36:e4844. [PMID: 36259951 PMCID: PMC9845193 DOI: 10.1002/nbm.4844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 05/14/2023]
Abstract
Intraframe motion blurring, as a major challenge in free-breathing dynamic MRI, can be reduced if high temporal resolution can be achieved. To address this challenge, this work proposes a highly accelerated 4D (3D + time) dynamic MRI framework with subsecond temporal resolution that does not require explicit motion compensation. The method combines standard stack-of-stars golden-angle radial sampling and tailored GRASP-Pro (Golden-angle RAdial Sparse Parallel imaging with imProved performance) reconstruction. Specifically, 4D dynamic MRI acquisition is performed continuously without motion gating or sorting. The k-space centers in stack-of-stars radial data are organized to guide estimation of a temporal basis, with which GRASP-Pro reconstruction is employed to enforce joint low-rank subspace and sparsity constraints. This new basis estimation strategy is the new feature proposed for subspace-based reconstruction in this work to achieve high temporal resolution (e.g., subsecond/3D volume). It does not require sequence modification to acquire additional navigation data, it is compatible with commercially available stack-of-stars sequences, and it does not need an intermediate reconstruction step. The proposed 4D dynamic MRI approach was tested in abdominal motion phantom, free-breathing abdominal MRI, and dynamic contrast-enhanced MRI (DCE-MRI). Our results have shown that GRASP-Pro reconstruction with the new basis estimation strategy enables highly-accelerated 4D dynamic imaging at subsecond temporal resolution (with five spokes or less for each dynamic frame per image slice) for both free-breathing non-DCE-MRI and DCE-MRI. In the abdominal phantom, better image quality with lower root mean square error and higher structural similarity index was achieved using GRASP-Pro compared with standard GRASP. With the ability to acquire each 3D image in less than 1 s, intraframe respiratory blurring can be intrinsically reduced for body applications with our approach, which eliminates the need for explicit motion detection and motion compensation.
Collapse
Affiliation(s)
- Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
93
|
Piek M, Ryd D, Töger J, Testud F, Hedström E, Aletras AH. Fetal 3D cardiovascular cine image acquisition using radial sampling and compressed sensing. Magn Reson Med 2023; 89:594-604. [PMID: 36156292 PMCID: PMC10087603 DOI: 10.1002/mrm.29467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.
Collapse
Affiliation(s)
- Marjolein Piek
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
94
|
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med 2023; 89:177-191. [PMID: 36063502 PMCID: PMC9617768 DOI: 10.1002/mrm.29440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS GuanCEST can be extracted with the PLOF method at 3 T, and the optimumB 1 = 0.6 μ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 μT in gray matter (GM). The optimum B1 = 0.8-1 μT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
95
|
Ariyurek C, Wallace TE, Kober T, Kurugol S, Afacan O. Prospective motion correction in kidney MRI using FID navigators. Magn Reson Med 2023; 89:276-285. [PMID: 36063497 PMCID: PMC9670860 DOI: 10.1002/mrm.29424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Abdominal MRI scans may require breath-holding to prevent image quality degradation, which can be challenging for patients, especially children. In this study, we evaluate whether FID navigators can be used to measure and correct for motion prospectively, in real-time. METHODS FID navigators were inserted into a 3D radial sequence with stack-of-stars sampling. MRI experiments were conducted on 6 healthy volunteers. A calibration scan was first acquired to create a linear motion model that estimates the kidney displacement due to respiration from the FID navigator signal. This model was then applied to predict and prospectively correct for motion in real time during deep and continuous deep breathing scans. Resultant images acquired with the proposed technique were compared with those acquired without motion correction. Dice scores were calculated between inhale/exhale motion states. Furthermore, images acquired using the proposed technique were compared with images from extra-dimensional golden-angle radial sparse parallel, a retrospective motion state binning technique. RESULTS Images reconstructed for each motion state show that the kidneys' position could be accurately tracked and corrected with the proposed method. The mean of Dice scores computed between the motion states were improved from 0.93 to 0.96 using the proposed technique. Depiction of the kidneys was improved in the combined images of all motion states. Comparing results of the proposed technique and extra-dimensional golden-angle radial sparse parallel, high-quality images can be reconstructed from a fraction of spokes using the proposed method. CONCLUSION The proposed technique reduces blurriness and motion artifacts in kidney imaging by prospectively correcting their position both in-plane and through-slice.
Collapse
Affiliation(s)
- Cemre Ariyurek
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sila Kurugol
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
96
|
Gao C, Ghodrati V, Shih SF, Wu HH, Liu Y, Nickel MD, Vahle T, Dale B, Sai V, Felker E, Surawech C, Miao Q, Finn JP, Zhong X, Hu P. Undersampling artifact reduction for free-breathing 3D stack-of-radial MRI based on a deep adversarial learning network. Magn Reson Imaging 2023; 95:70-79. [PMID: 36270417 PMCID: PMC10163826 DOI: 10.1016/j.mri.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Stack-of-radial MRI allows free-breathing abdominal scans, however, it requires relatively long acquisition time. Undersampling reduces scan time but can cause streaking artifacts and degrade image quality. This study developed deep learning networks with adversarial loss and evaluated the performance of reducing streaking artifacts and preserving perceptual image sharpness. METHODS A 3D generative adversarial network (GAN) was developed for reducing streaking artifacts in stack-of-radial abdominal scans. Training and validation datasets were self-gated to 5 respiratory states to reduce motion artifacts and to effectively augment the data. The network used a combination of three loss functions to constrain the anatomy and preserve image quality: adversarial loss, mean-squared-error loss and structural similarity index loss. The performance of the network was investigated for 3-5 times undersampled data from 2 institutions. The performance of the GAN for 5 times accelerated images was compared with a 3D U-Net and evaluated using quantitative NMSE, SSIM and region of interest (ROI) measurements as well as qualitative scores of radiologists. RESULTS The 3D GAN showed similar NMSE (0.0657 vs. 0.0559, p = 0.5217) and significantly higher SSIM (0.841 vs. 0.798, p < 0.0001) compared to U-Net. ROI analysis showed GAN removed streaks in both the background air and the tissue and was not significantly different from the reference mean and variations. Radiologists' scores showed GAN had a significant improvement of 1.6 point (p = 0.004) on a 4-point scale in streaking score while no significant difference in sharpness score compared to the input. CONCLUSION 3D GAN removes streaking artifacts and preserves perceptual image details.
Collapse
Affiliation(s)
- Chang Gao
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Vahid Ghodrati
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Yongkai Liu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | | - Thomas Vahle
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Brian Dale
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cary, NC, United States
| | - Victor Sai
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Ely Felker
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Chuthaporn Surawech
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Department of Radiology, Division of Diagnostic Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Qi Miao
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - J Paul Finn
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Los Angeles, CA, United States
| | - Peng Hu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; Inter-Departmental Graduate Program of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
97
|
Subashi E, Feng L, Liu Y, Robertson S, Segars P, Driehuys B, Kelsey CR, Yin FF, Otazo R, Cai J. View-sharing for 4D magnetic resonance imaging with randomized projection-encoding enables improvements of respiratory motion imaging for treatment planning in abdominothoracic radiotherapy. Phys Imaging Radiat Oncol 2023; 25:100409. [PMID: 36655213 PMCID: PMC9841273 DOI: 10.1016/j.phro.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background and Purpose The accuracy and precision of radiation therapy are dependent on the characterization of organ-at-risk and target motion. This work aims to demonstrate a 4D magnetic resonance imaging (MRI) method for improving spatial and temporal resolution in respiratory motion imaging for treatment planning in abdominothoracic radiotherapy. Materials and Methods The spatial and temporal resolution of phase-resolved respiratory imaging is improved by considering a novel sampling function based on quasi-random projection-encoding and peripheral k-space view-sharing. The respiratory signal is determined directly from k-space, obviating the need for an external surrogate marker. The average breathing curve is used to optimize spatial resolution and temporal blurring by limiting the extent of data sharing in the Fourier domain. Improvements in image quality are characterized by evaluating changes in signal-to-noise ratio (SNR), resolution, target detection, and level of artifact. The method is validated in simulations, in a dynamic phantom, and in-vivo imaging. Results Sharing of high-frequency k-space data, driven by the average breathing curve, improves spatial resolution and reduces artifacts. Although equal sharing of k-space data improves resolution and SNR in stationary features, phases with large temporal changes accumulate significant artifacts due to averaging of high frequency features. In the absence of view-sharing, no averaging and detection artifacts are observed while spatial resolution is degraded. Conclusions The use of a quasi-random sampling function, with view-sharing driven by the average breathing curve, provides a feasible method for self-navigated 4D-MRI at improved spatial resolution.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Li Feng
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yilin Liu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott Robertson
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, United States
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Paul Segars
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, United States
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Bastiaan Driehuys
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, United States
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Christopher R Kelsey
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
98
|
Velikina JV, Jung Y, Field AS, Samsonov AA. High-resolution dynamic susceptibility contrast perfusion imaging using higher-order temporal smoothness regularization. Magn Reson Med 2023; 89:112-127. [PMID: 36198002 PMCID: PMC9617779 DOI: 10.1002/mrm.29425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE To improve image quality and resolution of dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI) by developing acquisition and reconstruction methods exploiting the temporal regularity property of DSC-PWI signal. THEORY AND METHODS A novel regularized reconstruction is proposed that recovers DSC-PWI series from interleaved segmented spiral k-space acquisition using higher order temporal smoothness (HOTS) properties of the DSC-PWI signal. The HOTS regularization is designed to tackle representational insufficiency of the standard first-order temporal regularizations for supporting higher accelerations. The higher accelerations allow for k-space coverage with shorter spiral interleaves resulting in improved acquisition point spread function, and acquisition of images at multiple TEs for more accurate DSC-PWI analysis. RESULTS The methods were evaluated in simulated and in-vivo studies. HOTS regularization provided increasingly more accurate models for DSC-PWI than the standard first-order methods with either quadratic or robust norms at the expense of increased noise. HOTS DSC-PWI optimized for noise and accuracy demonstrated significant advantages over both spiral DSC-PWI without temporal regularization and traditional echo-planar DSC-PWI, improving resolution and mitigating image artifacts associated with long readout, including blurring and geometric distortions. In context of multi-echo DSC-PWI, the novel methods allowed ∼4.3× decrease of voxel volume, providing 2× number of TEs compared to the previously published results. CONCLUSIONS Proposed HOTS reconstruction combined with dynamic spiral sampling represents a valid mechanism for improving image quality and resolution of DSC-PWI significantly beyond those available with established fast imaging techniques.
Collapse
Affiliation(s)
- Julia V. Velikina
- Department of RadiologyUniversity of Wisconsin‐Madison
MadisonWisconsinUSA
| | - Youngkyoo Jung
- Department of RadiologyUniversity of California‐DavisDavisCaliforniaUSA
| | - Aaron S. Field
- Department of RadiologyUniversity of Wisconsin‐Madison
MadisonWisconsinUSA
| | - Alexey A. Samsonov
- Department of RadiologyUniversity of Wisconsin‐Madison
MadisonWisconsinUSA
| |
Collapse
|
99
|
Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest. LA RADIOLOGIA MEDICA 2023; 128:184-190. [PMID: 36609662 PMCID: PMC9938811 DOI: 10.1007/s11547-022-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES A deep learning-based super-resolution for postcontrast volume-interpolated breath-hold examination (VIBE) of the chest was investigated in this study. Aim was to improve image quality, noise, artifacts and diagnostic confidence without change of acquisition parameters. MATERIALS AND METHODS Fifty patients who received VIBE postcontrast imaging of the chest at 1.5 T were included in this retrospective study. After acquisition of the standard VIBE (VIBES), a novel deep learning-based algorithm and a denoising algorithm were applied, resulting in enhanced images (VIBEDL). Two radiologists qualitatively evaluated both datasets independently, rating sharpness of soft tissue, vessels, bronchial structures, lymph nodes, artifacts, cardiac motion artifacts, noise levels and overall diagnostic confidence, using a Likert scale ranging from 1 to 4. In the presence of lung lesions, the largest lesion was rated regarding sharpness and diagnostic confidence using the same Likert scale as mentioned above. Additionally, the largest diameter of the lesion was measured. RESULTS The sharpness of soft tissue, vessels, bronchial structures and lymph nodes as well as the diagnostic confidence, the extent of artifacts, the extent of cardiac motion artifacts and noise levels were rated superior in VIBEDL (all P < 0.001). There was no significant difference in the diameter or the localization of the largest lung lesion in VIBEDL compared to VIBES. Lesion sharpness as well as detectability was rated significantly better by both readers with VIBEDL (both P < 0.001). CONCLUSION The application of a novel deep learning-based super-resolution approach in T1-weighted VIBE postcontrast imaging resulted in an improvement in image quality, noise levels and diagnostic confidence as well as in a shortened acquisition time.
Collapse
|
100
|
Zou Q, Ahmed AH, Nagpal P, Priya S, Schulte RF, Jacob M. Variational Manifold Learning From Incomplete Data: Application to Multislice Dynamic MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3552-3561. [PMID: 35816534 PMCID: PMC10210580 DOI: 10.1109/tmi.2022.3189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Current deep learning-based manifold learning algorithms such as the variational autoencoder (VAE) require fully sampled data to learn the probability density of real-world datasets. However, fully sampled data is often unavailable in a variety of problems, including the recovery of dynamic and high-resolution magnetic resonance imaging (MRI). We introduce a novel variational approach to learn a manifold from undersampled data. The VAE uses a decoder fed by latent vectors, drawn from a conditional density estimated from the fully sampled images using an encoder. Since fully sampled images are not available in our setting, we approximate the conditional density of the latent vectors by a parametric model whose parameters are estimated from the undersampled measurements using back-propagation. We use the framework for the joint alignment and recovery of multi-slice free breathing and ungated cardiac MRI data from highly undersampled measurements. Experimental results demonstrate the utility of the proposed scheme in dynamic imaging alignment and reconstructions.
Collapse
|