51
|
Yang C, Harrison C, Jin ES, Chuang DT, Sherry AD, Malloy CR, Merritt ME, DeBerardinis RJ. Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells. J Biol Chem 2014; 289:6212-6224. [PMID: 24415759 PMCID: PMC3937686 DOI: 10.1074/jbc.m113.543637] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 08/25/2023] Open
Abstract
Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable quantitative flux measurements in living tumors.
Collapse
Affiliation(s)
- Chendong Yang
- From the Children's Medical Center Research Institute
| | | | | | | | | | - Craig R. Malloy
- Advanced Imaging Research Center
- Veterans Affairs North Texas Healthcare System, Lancaster, Texas 75216
| | - Matthew E. Merritt
- Advanced Imaging Research Center
- Department of Molecular Biophysics, and
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texa 75390 and
| | - Ralph J. DeBerardinis
- From the Children's Medical Center Research Institute
- McDermott Center for Human Growth and Development
| |
Collapse
|
52
|
Ippolito JE, Piwnica-Worms D. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer. PLoS One 2014; 9:e88667. [PMID: 24551133 PMCID: PMC3923810 DOI: 10.1371/journal.pone.0088667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Joseph E. Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (JEI); (DP-W)
| | - David Piwnica-Worms
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JEI); (DP-W)
| |
Collapse
|
53
|
Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 2014; 20:93-7. [PMID: 24317119 PMCID: PMC3886895 DOI: 10.1038/nm.3416] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/23/2013] [Indexed: 02/08/2023]
Abstract
In this study, we monitored glycolysis in mouse lymphoma and lung tumors by measuring the conversion of hyperpolarized [U-2H, U-13C]glucose to lactate using 13C magnetic resonance spectroscopy and spectroscopic imaging. We observed labeled lactate only in tumors and not in surrounding normal tissue or other tissues in the body and found that it was markedly decreased at 24 h after treatment with a chemotherapeutic drug. We also detected an increase in a resonance assigned to 6-phosphogluconate in the pentose phosphate pathway. This technique could provide a new way of detecting early evidence of tumor treatment response in the clinic and of monitoring tumor pentose phosphate pathway activity.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Eva M. Serrao
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Brett W.C. Kennedy
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - De-en Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Kevin M. Brindle
- Corresponding author: Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK. Tel. +44 1223 333674 Fax. +44 1223 766002
| |
Collapse
|
54
|
Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013; 342:1242454. [PMID: 24115444 PMCID: PMC4486656 DOI: 10.1126/science.1242454] [Citation(s) in RCA: 995] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function.
Collapse
Affiliation(s)
- Erika L. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maya C. Poffenberger
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Chih-Hao Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Russell G. Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
55
|
Asghar W, Wan Y, Ilyas A, Bachoo R, Kim YT, Iqbal SM. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores. LAB ON A CHIP 2012; 12:2345-52. [PMID: 22549275 DOI: 10.1039/c2lc21012f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Solid-state micropores can provide direct information of ex vivo or in vitro cell populations. Micropores are used to detect and discriminate cancer cells based on the translocation behavior through micropores. The approach provides rapid detection of cell types based on their size and mechano-physical properties like elasticity, viscosity and stiffness. Use of a single micropore device enables detection of tumor cells from whole blood efficiently, at 70% CTC detection efficiency. The CTCs show characteristic electrical signals which easily distinguish these from other cell types. The approach provides a gentle and inexpensive instrument that can be used for specific blood analysis in a lab-on-a-chip setting. The device does not require any preprocessing of the blood sample, particles/beads attachment, surface functionalization or fluorescent tags and provides quantitative and objective detection of cancer cells.
Collapse
Affiliation(s)
- Waseem Asghar
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA
| | | | | | | | | | | |
Collapse
|
56
|
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Matés JM, Pascual JM, Maher EA, Malloy CR, Deberardinis RJ, Bachoo RM. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15:827-37. [PMID: 22682223 PMCID: PMC3372870 DOI: 10.1016/j.cmet.2012.05.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/26/2012] [Accepted: 05/01/2012] [Indexed: 12/21/2022]
Abstract
Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|