51
|
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
52
|
Qiao J, Fang CY, Chen SX, Wang XQ, Cui SJ, Liu XH, Jiang YH, Wang J, Zhang Y, Yang PY, Liu F. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget 2016; 6:29929-46. [PMID: 26338966 PMCID: PMC4745773 DOI: 10.18632/oncotarget.4966] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Sun-Xia Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiao-Hui Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Woo JK, Kang JH, Kim B, Park BH, Shin KJ, Song SW, Kim JJ, Kim HM, Lee SJ, Oh SH. Humanized anti-hepatocyte growth factor (HGF) antibody suppresses innate irinotecan (CPT-11) resistance induced by fibroblast-derived HGF. Oncotarget 2016; 6:24047-60. [PMID: 26090722 PMCID: PMC4695169 DOI: 10.18632/oncotarget.4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/30/2015] [Indexed: 12/19/2022] Open
Abstract
The growth factors derived from the microenvironment create an environment conducive to tumor growth and survival. HGF deprivation using neutralizing antibody enhanced chemosensitivity in colorectal cancer cells (CRC). We determined secreted HGF in fibroblast conditioned medium (CM). Combination treatment of anti-HGF antibody and irinotecan (CPT-11) directly enhanced CPT-11 sensitivity in CRC. We generated xenograft in NOD/SCID mice inoculating HCT-116 human colorectal cancer cells subcutaneously with or without fibroblast. We found that the combination of CPT-11 and anti-HGF antibody induced marked suppression of tumor development. These results suggest that HGF produced by fibroblast induce CPT-11 resistance, and that anti-HGF antibody abrogate such resistance in vivo. fibroblast-derived HGF is important determinant of chemoresistance. Anti-HGF monoclonal antibody treatment confirmed the importance of this growth factor for chemoresistance in CRC. These results present new options toward the early diagnosis of chemoresistance and suggest novel combinations of chemotherapy and anti-HGF agents to prevent or significantly delay the onset of therapy resistance.
Collapse
Affiliation(s)
- Jong Kyu Woo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang, Republic of Korea
| | - BoRa Kim
- National Cancer Center, Goyang, Republic of Korea
| | - Byung Hee Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | | | | | - Jung Ju Kim
- Yooyoung Pharmaceutical Co., Seoul, Republic of Korea
| | - Hwan-Mook Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center, Goyang, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
54
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
55
|
Kracht MJL, Zaldumbide A, Roep BO. Neoantigens and Microenvironment in Type 1 Diabetes: Lessons from Antitumor Immunity. Trends Endocrinol Metab 2016; 27:353-362. [PMID: 27094501 DOI: 10.1016/j.tem.2016.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the selective and progressive destruction of insulin-producing beta cells by the immune system. An incomplete thymic selection against self-reactive islet antigens partly explains how these T cells reach the periphery and become diabetogenic. Increasing evidence suggest that beta cells themselves also participate to their own demise by generating neoepitopes that could be recognized by the immune surveillance machinery. In this regard, these T cells eradicate self-tissue by mechanisms analogous to a classical antitumor response. Cancer immunotherapy has exploited mutations and transcriptional and translational errors to trigger a specific antitumor response. In this opinion article, we aim at merging insight in antitumor immunology and autoimmunity to reveal processes that had previously been ignored to create beta cell-specific neoantigens.
Collapse
Affiliation(s)
- Maria J L Kracht
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
56
|
Allaire JM, Roy SAB, Ouellet C, Lemieux É, Jones C, Paquet M, Boudreau F, Perreault N. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer 2016; 138:2700-12. [PMID: 26773796 DOI: 10.1002/ijc.30001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
In the colon, myofibroblasts are primary contributors in the establishment of the microenvironment involved in tissue homeostasis. Alterations in myofibroblast functions lead to changes resulting in a toxic microenvironment nurturing tumorigenesis. Bone morphogenetic proteins (Bmps) are morphogens known to play key roles in adult gut homeostasis. Studies in genetically-modified mice have shown that Bmp disruption in all cell layers leads to the development of gut polyposis. In contrast, our studies showed that loss of Bmp exclusively in the gastrointestinal epithelium resulted in increased epithelial proliferation without polyposis initiation, thus suggesting a key role for mesenchymal Bmp signaling in polyposis initiation. In order to identify the role of mesenchymal Bmp signaling on the microenvironment and its impact on colonic mucosa, a mouse model was generated with suppression of Bmp signaling exclusively in myofibroblasts (Bmpr1aΔMES). Bmpr1aΔMES mice exhibited increased subepithelial proliferation with changes in cellular composition leading to the development of a primed stroma with modulation of extracellular matrix proteins, immune cells and cytokines as early as 90 days of age. This microenvironmental deregulation was associated with increased polyposis initiation at one year of age. These results are the first to demonstrate that mesenchymal Bmpr1a inactivation alone is sufficient to prompt an expansion of myofibroblasts leading to the development of a reactive mesenchyme that contributes to polyposis initiation in the colon. These findings support the novel concept that inhibition of Bmp signaling in mesenchymal cells surrounding the normal epithelium leads to important changes instructing a toxic microenvironment sufficient to induce colonic polyposis.
Collapse
Affiliation(s)
- Joannie M Allaire
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien A B Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Camille Ouellet
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Lemieux
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Jones
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Francois Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
57
|
Bagordakis E, Sawazaki-Calone I, Macedo CCS, Carnielli CM, de Oliveira CE, Rodrigues PC, Rangel ALCA, Dos Santos JN, Risteli J, Graner E, Salo T, Paes Leme AF, Coletta RD. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumour Biol 2016; 37:9045-57. [PMID: 26762409 DOI: 10.1007/s13277-015-4629-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023] Open
Abstract
An important role has been attributed to cancer-associated fibroblasts (CAFs) in the tumorigenesis of oral squamous cell carcinoma (OSCC), the most common tumor of the oral cavity. Previous studies demonstrated that CAF-secreted molecules promote the proliferation and invasion of OSCC cells, inducing a more aggressive phenotype. In this study, we searched for differences in the secretome of CAFs and normal oral fibroblasts (NOF) using mass spectrometry-based proteomics and biological network analysis. Comparison of the secretome profiles revealed that upregulated proteins involved mainly in extracellular matrix organization and disassembly and collagen metabolism. Among the upregulated proteins were fibronectin type III domain-containing 1 (FNDC1), serpin peptidase inhibitor type 1 (SERPINE1), and stanniocalcin 2 (STC2), the upregulation of which was validated by quantitative PCR and ELISA in an independent set of CAF cell lines. The transition of transforming growth factor beta 1 (TGF-β1)-mediating NOFs into CAFs was accompanied by significant upregulation of FNDC1, SERPINE1, and STC2, confirming the participation of these proteins in the CAF-derived secretome. Type I collagen, the main constituent of the connective tissue, was also associated with several upregulated biological processes. The immunoexpression of type I collagen N-terminal propeptide (PINP) was significantly correlated in vivo with CAFs in the tumor front and was associated with significantly shortened survival of OSCC patients. Presence of CAFs in the tumor stroma was also an independent prognostic factor for OSCC disease-free survival. These results demonstrate the value of secretome profiling for evaluating the role of CAFs in the tumor microenvironment and identify potential novel therapeutic targets such as FNDC1, SERPINE1, and STC2. Furthermore, type I collagen expression by CAFs, represented by PINP levels, may be a prognostic marker of OSCC outcome.
Collapse
Affiliation(s)
- Elizabete Bagordakis
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil
| | - Iris Sawazaki-Calone
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, PR, Brazil
| | - Carolina Carneiro Soares Macedo
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil
| | - Carolina M Carnielli
- Brazilian Biociences National Laboratory-CNPEM, CEP 13083-970, Campinas, SP, Brazil
| | - Carine Ervolino de Oliveira
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil
| | - Priscila Campioni Rodrigues
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil
| | - Ana Lucia C A Rangel
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, PR, Brazil
| | - Jean Nunes Dos Santos
- Laboratory of Surgical Pathology, Dental School, Federal University of Bahia-UFBA, Salvador, BA, Brazil
| | - Juha Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial Diseases Unit, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | | | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba, SP, Brazil.
| |
Collapse
|
58
|
Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-42223-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 2015; 7:2443-58. [PMID: 26690480 PMCID: PMC4695902 DOI: 10.3390/cancers7040902] [Citation(s) in RCA: 572] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer tissues are composed of cancer cells and the surrounding stromal cells (e.g., fibroblasts, vascular endothelial cells, and immune cells), in addition to the extracellular matrix. Most studies investigating carcinogenesis and the progression, invasion, metastasis, and angiogenesis of cancer have focused on alterations in cancer cells, including genetic and epigenetic changes. Recently, interactions between cancer cells and the stroma have attracted considerable attention, and increasing evidence has accumulated on this. Several researchers have gradually clarified the origins, features, and roles of cancer-associated fibroblasts (CAFs), a major component of the cancer stroma. CAFs function in a similar manner to myofibroblasts during wound healing. We previously reported the relationship between CAFs and angiogenesis. Interleukin-6 (IL-6), a multifunctional cytokine, plays a central role in regulating inflammatory and immune responses, and important roles in the progression, including proliferation, migration, and angiogenesis, of several cancers. We showed that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions. Furthermore, CAFs contribute to drug-resistance acquisition in cancer cells. The interaction between cancer cells and the stroma could be a potential target for anti-cancer therapy.
Collapse
|
60
|
Pallangyo CK, Ziegler PK, Greten FR. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med 2015; 212:2253-66. [PMID: 26621452 PMCID: PMC4689166 DOI: 10.1084/jem.20150576] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Pallangyo et al. report that fibroblast-specific IKKβ deletion in Col1a2Cre-ERT2 mice promotes AOM/DSS-induced intestinal tumorigenesis, suggesting a tumor suppressor role for this kinase. In contrast, a companion study by Koliaraki et al. based on IKKβ deletion in ColVI-expressing intestinal mesenchymal cells suggests a role for IKKβ in promoting intestinal tumorigenesis. The two studies raise the awareness that in the context of tumorigenesis, IKKβ/NF-κB may have distinct functions in different fibroblast subpopulations. Cancer-associated fibroblasts (CAFs) comprise one of the most important cell types in the tumor microenvironment. A proinflammatory NF-κB gene signature in CAFs has been suggested to promote tumorigenesis in models of pancreatic and mammary skin cancer. Using an autochthonous model of colitis-associated cancer (CAC) and sporadic cancer, we now provide evidence for a tumor-suppressive function of IKKβ/NF-κB in CAFs. Fibroblast-restricted deletion of Ikkβ stimulates intestinal epithelial cell proliferation, suppresses tumor cell death, enhances accumulation of CD4+Foxp3+ regulatory T cells, and induces angiogenesis, ultimately promoting colonic tumor growth. In Ikkβ-deficient fibroblasts, transcription of negative regulators of TGFβ signaling, including Smad7 and Smurf1, is impaired, causing up-regulation of a TGFβ gene signature and elevated hepatocyte growth factor (HGF) secretion. Overexpression of Smad7 in Ikkβ-deficient fibroblasts prevents HGF secretion, and pharmacological inhibition of Met during the CAC model confirms that enhanced tumor promotion is dependent on HGF–Met signaling in mucosa of Ikkβ-mutant animals. Collectively, these results highlight an unexpected tumor suppressive function of IKKβ/NF-κB in CAFs linked to HGF release and raise potential concerns about the use of IKK inhibitors in colorectal cancer patients.
Collapse
Affiliation(s)
- Charles K Pallangyo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Paul K Ziegler
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany German Cancer Consortium (DKTK), 69120 Heidelberg, Germany German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
61
|
Torres S, Garcia-Palmero I, Herrera M, Bartolomé RA, Peña C, Fernandez-Aceñero MJ, Padilla G, Peláez-García A, Lopez-Lucendo M, Rodriguez-Merlo R, García de Herreros A, Bonilla F, Casal JI. LOXL2 Is Highly Expressed in Cancer-Associated Fibroblasts and Associates to Poor Colon Cancer Survival. Clin Cancer Res 2015. [PMID: 26206869 DOI: 10.1158/1078-0432.ccr-14-3096] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Cancer-associated fibroblasts (CAF) are major mediators in tumor microenvironment. We investigated the changes in protein expression in colon cancer-associated fibroblasts compared with normal fibroblasts (NF) in the context of searching for prognostic biomarkers, particularly for stage II patients. EXPERIMENTAL DESIGN CAFs and NFs isolated from colon cancer patients were used to identify differentially expressed proteins using quantitative proteomics. Stromal expression of deregulated proteins was analyzed by IHC. Prognostic impact was studied using external gene-expression datasets for training, then quantitative PCR and IHC for validation in different cohorts of patients. Combined datasets were used for prediction of risk assessment at stages II and III. RESULTS A desmoplastic signature composed of 32 proteins, highly specific for stromal components in colon cancer, was identified. These proteins were enriched for extracellular matrix organization components, TGFβ signaling pathway, fibrosis, and wound-healing proteins. The expression in CAFs of 11 upregulated proteins and four downregulated proteins, selected for biomarker validation, was verified by orthogonal techniques. LOXL2 displayed a high prognostic impact by using external independent datasets and further validation in two different cohorts of patients. High expression of LOXL2 was associated with higher recurrence P = 0.001 HR, 5.38 [95% confidence interval (CI), 1.70-17.01] and overall survival P = 0.001 HR, 8.52 (95% CI, 1.90-38.29). IHC analysis revealed a prognostic value for LOXL2 in stage II patients. CONCLUSIONS We identified LOXL2 to be associated with the outcome of colon cancer patients. Furthermore, it can be used to stratify patients at stages II and III for further therapeutic decisions.
Collapse
Affiliation(s)
- Sofía Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Irene Garcia-Palmero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Mercedes Herrera
- Department of Medical Oncology, Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Cristina Peña
- Department of Medical Oncology, Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | - Alberto Peláez-García
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | | | | | - Félix Bonilla
- Department of Medical Oncology, Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
62
|
Mesenchymal Stem Cells Exhibit Regulated Exocytosis in Response to Chemerin and IGF. PLoS One 2015; 10:e0141331. [PMID: 26513261 PMCID: PMC4626093 DOI: 10.1371/journal.pone.0141331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play important roles in tissue repair and cancer progression. Our recent work suggests that some mesenchymal cells, notably myofibroblasts exhibit regulated exocytosis resembling that seen in neuroendocrine cells. We now report that MSCs also exhibit regulated exocytosis. Both a G-protein coupled receptor agonist, chemerin, and a receptor tyrosine kinase stimulant, IGF-II, evoked rapid increases in secretion of a marker protein, TGFβig-h3. The calcium ionophore, ionomycin, also rapidly increased secretion of TGFβig-h3 while inhibitors of translation (cycloheximide) or secretory protein transport (brefeldin A) had no effect, indicating secretion from preformed secretory vesicles. Inhibitors of the chemerin and IGF receptors specifically reduced the secretory response. Confocal microscopy of MSCs loaded with Fluo-4 revealed chemerin and IGF-II triggered intracellular Ca2+ oscillations requiring extracellular calcium. Immunocytochemistry showed co-localisation of TGFβig-h3 and MMP-2 to secretory vesicles, and transmission electron-microscopy showed dense-core secretory vesicles in proximity to the Golgi apparatus. Proteomic studies on the MSC secretome identified 64 proteins including TGFβig-h3 and MMP-2 that exhibited increased secretion in response to IGF-II treatment for 30min and western blot of selected proteins confirmed these data. Gene ontology analysis of proteins exhibiting regulated secretion indicated functions primarily associated with cell adhesion and in bioassays chemerin increased adhesion of MSCs and adhesion, proliferation and migration of myofibroblasts. Thus, MSCs exhibit regulated exocytosis that is compatible with an early role in tissue remodelling.
Collapse
|
63
|
Kumar MM, Davuluri S, Poojar S, Mukherjee G, Bajpai AK, Bafna UD, Devi UK, Kallur PPR, Kshitish AK, Jayshree RS. Role of estrogen receptor alpha in human cervical cancer-associated fibroblasts: a transcriptomic study. Tumour Biol 2015; 37:4409-20. [DOI: 10.1007/s13277-015-4257-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
|
64
|
Strong AL, Burow ME, Gimble JM, Bunnell BA. Concise review: The obesity cancer paradigm: exploration of the interactions and crosstalk with adipose stem cells. Stem Cells 2015; 33:318-26. [PMID: 25267443 DOI: 10.1002/stem.1857] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023]
Abstract
With the recognition of obesity as a global health crisis, researchers have devoted greater effort to defining and understanding the pathophysiological molecular pathways regulating the biology of adipose tissue and obesity. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, has been linked to an increased incidence and aggressiveness of colon, hematological, prostate, and postmenopausal breast cancers. The increased morbidity and mortality of obesity-associated cancers have been attributed to higher levels of hormones, adipokines, and cytokines secreted by the adipose tissue. The increased amount of adipose tissue also results in higher numbers of adipose stromal/stem cells (ASCs). These ASCs have been shown to impact cancer progression directly through several mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biologic properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. This review will discuss the links between obesity and cancer tumor progression, including obesity-associated changes in adipose tissue, inflammation, adipokines, and chemokines. Novel topics will include a discussion of the contribution of ASCs to this complex system with an emphasis on their role in the tumor stroma. The reciprocal and circular feedback loop between obesity and ASCs as well as the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine
| | | | | | | |
Collapse
|
65
|
Klinke DJ. Enhancing the discovery and development of immunotherapies for cancer using quantitative and systems pharmacology: Interleukin-12 as a case study. J Immunother Cancer 2015; 3:27. [PMID: 26082838 PMCID: PMC4468964 DOI: 10.1186/s40425-015-0069-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
Recent clinical successes of immune checkpoint modulators have unleashed a wave of enthusiasm associated with cancer immunotherapy. However, this enthusiasm is dampened by persistent translational hurdles associated with cancer immunotherapy that mirror the broader pharmaceutical industry. Specifically, the challenges associated with drug discovery and development stem from an incomplete understanding of the biological mechanisms in humans that are targeted by a potential drug and the financial implications of clinical failures. Sustaining progress in expanding the clinical benefit provided by cancer immunotherapy requires reliably identifying new mechanisms of action. Along these lines, quantitative and systems pharmacology (QSP) has been proposed as a means to invigorate the drug discovery and development process. In this review, I discuss two central themes of QSP as applied in the context of cancer immunotherapy. The first theme focuses on a network-centric view of biology as a contrast to a "one-gene, one-receptor, one-mechanism" paradigm prevalent in contemporary drug discovery and development. This theme has been enabled by the advances in wet-lab capabilities to assay biological systems at increasing breadth and resolution. The second theme focuses on integrating mechanistic modeling and simulation with quantitative wet-lab studies. Drawing from recent QSP examples, large-scale mechanistic models that integrate phenotypic signaling-, cellular-, and tissue-level behaviors have the potential to lower many of the translational hurdles associated with cancer immunotherapy. These include prioritizing immunotherapies, developing mechanistic biomarkers that stratify patient populations and that reflect the underlying strength and dynamics of a protective host immune response, and facilitate explicit sharing of our understanding of the underlying biology using mechanistic models as vehicles for dialogue. However, creating such models require a modular approach that assumes that the biological networks remain similar in health and disease. As oncogenesis is associated with re-wiring of these biological networks, I also describe an approach that combines mechanistic modeling with quantitative wet-lab experiments to identify ways in which malignant cells alter these networks, using Interleukin-12 as an example. Collectively, QSP represents a new holistic approach that may have profound implications for how translational science is performed.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 25606 USA
| |
Collapse
|
66
|
De Vlieghere E, Gremonprez F, Verset L, Mariën L, Jones CJ, De Craene B, Berx G, Descamps B, Vanhove C, Remon JP, Ceelen W, Demetter P, Bracke M, De Geest BG, De Wever O. Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells. Biomaterials 2015; 54:148-57. [PMID: 25907048 DOI: 10.1016/j.biomaterials.2015.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Peritoneal metastasis is life threatening and is the result of an extensive communication between disseminated cancer cells, mesothelial cells and cancer-associated fibroblasts (CAF). CAFs secrete extracellular matrix (ECM) proteins creating a receptive environment for peritoneal implantation. Considering cancer as an ecosystem may provide opportunities to exploit CAFs to create biomimetic traps to deceive and redirect cancer cells. We have designed microparticles (MP) containing a CAF-derived ECM-surface that is intended to compete with natural niches. CAFs were encapsulated in alginate/gelatine beads (500-750 μm in diameter) functionalised with a polyelectrolyte coating (MP[CAF]). The encapsulated CAFs remain viable and metabolically active (≥35 days), when permanently encapsulated. CAF-derived ECM proteins are retained by the non-biodegradable coating. Adhesion experiments mimicking the environment of the peritoneal cavity show the selective capture of floating cancer cells from different tumor origins by MP[CAF] compared to control MP. MP[CAF] are distributed throughout the abdominal cavity without attachment to intestinal organs and without signs of inflammatory reaction. Intraperitoneal delivery of MP[CAF] and sequential removal redirects cancer cell adhesion from the surgical wound to the MP[CAF], delays peritoneal metastasis formation and prolongs animal survival. Our experiments suggest the use of a biomimetic trap based on tumor-environment interactions to delay peritoneal metastasis.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| | | | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Belgium
| | - Lore Mariën
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| | | | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech, MEDISIP, INFINITY, Ghent University, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech, MEDISIP, INFINITY, Ghent University, Belgium
| | - Jean-Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - Wim Ceelen
- Department of Surgery, Ghent University Hospital, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| | - Bruno G De Geest
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium.
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Ghent University, Belgium.
| |
Collapse
|
67
|
Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 2015; 5:63. [PMID: 25853091 PMCID: PMC4369728 DOI: 10.3389/fonc.2015.00063] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) progression and eventually metastasis is directed in many aspects by a circuitous ecosystem consisting of an extracellular matrix scaffold populated by cancer-associated fibroblasts (CAFs), endothelial cells, and diverse immune cells. CAFs are recruited from local tissue-resident fibroblasts or pericryptal fibroblasts and distant fibroblast precursors. CAFs are highly abundant in CRC. In this review, we apply the metastasis-promoting communication of colorectal CAFs to 10 cancer hallmarks described by Hanahan and Weinberg. CAFs influence innate and adaptive tumor immune responses. Using datasets from previously published work, we re-explore the potential messages implicated in this process. Fibroblasts present in metastasis (metastasis-associated fibroblasts) from CRC may have other characteristics and functional roles than CAFs in the primary tumor. Since CAFs connect metastasis-promoting communication, CAF markers are potential prognostic biomarkers. CAFs and their products are possible targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| |
Collapse
|
68
|
Slany A, Meshcheryakova A, Beer A, Ankersmit HJ, Paulitschke V, Gerner C. Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling. Clin Proteomics 2014; 11:41. [PMID: 26029019 PMCID: PMC4448269 DOI: 10.1186/1559-0275-11-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Fibroblasts are mesenchymal stromal cells which occur in all tissue types. While their main function is related to ECM production and physical support, they are also important players in wound healing, and have further been recognized to be able to modulate inflammatory processes and support tumor growth. Fibroblasts can display distinct phenotypes, depending on their tissue origin, as well as on their functional state. Results In order to contribute to the proteomic characterization of fibroblasts, we have isolated primary human fibroblasts from human skin, lung and bone marrow and generated proteome profiles of these cells by LC-MS/MS. Comparative proteome profiling revealed characteristic differences therein, which seemed to be related to the cell’s tissue origin. Furthermore, the cells were treated in vitro with the pro-inflammatory cytokine IL-1beta. While all fibroblasts induced the secretion of Interleukins IL-6 and IL-8 and the chemokine GRO-alpha, other inflammation-related proteins were up-regulated in an apparently tissue-dependent manner. Investigating fibroblasts from tumorous tissues of skin, lung and bone marrow with respect to such inflammation-related proteins revealed hardly any conformity but rather individual and tumor type-related variations. However, apparent up-regulation of IGF-II, PAI-1 and PLOD2 was observed in melanoma-, lung adenocarcinoma- and multiple myeloma-associated fibroblasts, as well as in hepatocellular carcinoma-associated fibroblasts. Conclusions Inflammation-related proteome alterations of primary human fibroblasts were determined by the analysis of IL-1beta treated cells. Tumor-associated fibroblasts from different tissue types hardly showed signs of acute inflammation but displayed characteristic functional aberrations potentially related to chronic inflammation. The present data suggest that the state of the tumor microenvironment is relevant for tumor progression and targeted treatment of tumor-associated fibroblasts may support anti-cancer strategies. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-41) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Slany
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Agnes Beer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria ; Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria ; Christian Doppler Laboratory for the Diagnosis and Regeneration of Cardiac and Thoracic Diseases, Medical University Vienna, Vienna, Austria
| |
Collapse
|
69
|
Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion. Oncoscience 2014; 1:634-48. [PMID: 25593993 PMCID: PMC4278277 DOI: 10.18632/oncoscience.87] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer progression is characterized by a complex reciprocity between neoplastic epithelium and adjacent stromal cells. In ductal carcinoma in situ (DCIS) of the breast, both reduced stromal decorin expression and myxoid stroma are correlated with increased recurrence risk. In this study, we aimed to investigate paracrine regulation of expression of decorin and related extracellular matrix (ECM) proteins in cancer-associated fibroblasts (CAFs). Transforming growth factor-β1 (TGF-β1) was identified as a competent ECM modulator, as it reduced decorin and strongly enhanced versican, biglycan and type I collagen expression. Similar but less pronounced effects were observed when fibroblasts were treated with basic fibroblast growth factor (bFGF). Despite this concerted ECM modulation, TGF-β1 and bFGF differentially regulated alpha-smooth muscle actin (α-SMA) expression, which is often proposed as a CAF-marker. Cancer cell-derived secretomes induced versican and biglycan expression in fibroblasts. Immunohistochemistry on twenty DCIS specimens showed a trend toward periductal versican overexpression in DCIS with myxoid stroma. Cancer cell adhesion was inhibited by decorin, but not by CAF-derived matrices. Cancer cells presented significantly enhanced spreading when seeded on matrices derived from TGF-β1-treated CAF. Altogether these data indicate that preinvasive cancerous lesions might modulate the composition of surrounding stroma through TGF-β1 release to obtain an invasion-permissive microenvironment.
Collapse
|
70
|
Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, Zhang Y, Yan HB, Zhang Q, Qiao J, Yang PY, Liu F. Data from a proteomic analysis of colonic fibroblasts secretomes. Data Brief 2014. [PMID: 26217680 PMCID: PMC4459868 DOI: 10.1016/j.dib.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tumor cell proliferation, migration and invasion were influenced by the interaction between the cancer cells and their microenvironment. In current study, we established two pairs of the primary fibroblast cultures from colorectal adenocarcinoma tissues and the normal counterparts and identified 227 proteins in the colonic fibroblast secretomes; half of these proteins were novel. The mass spectrometry data and analyzed results presented here provide novel insights into the molecular characteristics and modulatory role of colon cancer associated fibroblasts. The data is related to “Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation” by Chen et al. [1].
Collapse
Affiliation(s)
- Sun-Xia Chen
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-En Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-Qing Wang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Shu-Jian Cui
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Lei-Lei Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Ying-Hua Jiang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yang Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Hai-Bo Yan
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Qian Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Jie Qiao
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Feng Liu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
71
|
Kumar JD, Holmberg C, Kandola S, Steele I, Hegyi P, Tiszlavicz L, Jenkins R, Beynon RJ, Peeney D, Giger OT, Alqahtani A, Wang TC, Charvat TT, Penfold M, Dockray GJ, Varro A. Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells. PLoS One 2014; 9:e104877. [PMID: 25127029 PMCID: PMC4134237 DOI: 10.1371/journal.pone.0104877] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.
Collapse
Affiliation(s)
- J. Dinesh Kumar
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Chris Holmberg
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Sandhir Kandola
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Islay Steele
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Peter Hegyi
- Department of Medicine and Surgery, University of Szeged, Szeged, Hungary
| | | | - Rosalind Jenkins
- Department of Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David Peeney
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Olivier T. Giger
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Ahlam Alqahtani
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Timothy C. Wang
- Department of Medicine, Columbia University Medical Center, New York, United States of America
| | | | - Mark Penfold
- ChemoCentryx, California, United States of America
| | - Graham J. Dockray
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
72
|
Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, Zhang Y, Yan HB, Zhang Q, Qiao J, Yang PY, Liu F. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. J Proteomics 2014; 110:155-71. [PMID: 25118038 DOI: 10.1016/j.jprot.2014.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. BIOLOGICAL SIGNIFICANCE In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel insights into the molecular signatures and the modulatory role of colon cancer associated fibroblasts, and establish a valuable resource for the development of therapeutic agents or novel clinic biomarker.
Collapse
Affiliation(s)
- Sun-Xia Chen
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-En Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-Qing Wang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lei-Lei Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Ying-Hua Jiang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yang Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Hai-Bo Yan
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Qian Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Jie Qiao
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Feng Liu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
73
|
Peng Y, Li Z, Yang P, Newton IP, Ren H, Zhang L, Wu H, Li Z. Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated fibroblasts. Biochem Biophys Res Commun 2014; 451:68-73. [DOI: 10.1016/j.bbrc.2014.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
|
74
|
Unsworth A, Anderson R, Britt K. Stromal fibroblasts and the immune microenvironment: partners in mammary gland biology and pathology? J Mammary Gland Biol Neoplasia 2014; 19:169-82. [PMID: 24984900 DOI: 10.1007/s10911-014-9326-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of a tumor has emerged recently as a critical contributor to the development of cancer. Within this environment, fibroblasts and immune cells are the cell lineages that seem to be active mediators of tumour development. The activated fibroblasts that are also present during wound healing and chronic inflammation have been studied extensively. Their activation leads to altered gene expression profiles that markedly increase growth factor and cytokine secretion, leading to major alterations in the immune cell microenvironment. To better understand normal tissue development, wound healing and the chronic inflammation that leads to cancer, we review here information available on the role of fibroblasts and immune cells in normal breast development and in cancer. We also discuss the immunogenicity of breast cancer compared to other cancers and the contribution of the immune microenvironment to the initiation, progression and metastasis of tumors. Also reviewed is the limited knowledge on the role of immune cells and fibroblasts in normal development and whether the risk of cancer increases when their control is not tightly regulated.
Collapse
Affiliation(s)
- Ashleigh Unsworth
- Peter MacCallum Cancer Centre, 7 St Andrews Place East, Melbourne, 3002, Australia
| | | | | |
Collapse
|
75
|
Kawahara R, Lima RN, Domingues RR, Pauletti BA, Meirelles GV, Assis M, Figueira ACM, Leme AFP. Deciphering the Role of the ADAM17-Dependent Secretome in Cell Signaling. J Proteome Res 2014; 13:2080-93. [DOI: 10.1021/pr401224u] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rebeca Kawahara
- Laboratório
Nacional de Biociências, LNBio, CNPEM, 13083-970 Campinas, Brazil
| | - Renato Niyama Lima
- Laboratório
Nacional de Biociências, LNBio, CNPEM, 13083-970 Campinas, Brazil
| | | | | | | | - Michelle Assis
- Laboratório
Nacional de Biociências, LNBio, CNPEM, 13083-970 Campinas, Brazil
| | | | | |
Collapse
|
76
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
77
|
Harper J, Sainson RCA. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol 2014; 25:69-77. [PMID: 24406209 DOI: 10.1016/j.semcancer.2013.12.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 02/07/2023]
Abstract
The microenvironment of established tumours is often immunosuppressed, and this allows tumours to grow and disseminate without being eliminated by the patient's immune system. The recent FDA approval of immunotherapies such as ipilimumab and sipuleucel-T that directly activate the adaptive and innate immune responses has triggered interest in developing other novel anti-cancer approaches that modulate the immune system. Understanding how the different constituents of the tumour microenvironment influence the immune system is thus crucial and is expected to generate a plethora of factors that can be targeted to boost immunity and trigger long lasting anti-tumour efficacy. Cancer associated fibroblasts (CAFs) are a crucial component of the tumour microenvironment. Through secretion of multiple growth factors, cytokines and proteases, CAFs are known to be key effectors for tumour progression and can promote cancer cell growth, invasiveness and angiogenesis. However, recent publications have also linked CAF biology to innate and adaptive immune cell recruitment and regulation. Here, we review recent findings on how CAFs can influence the immune status of tumours through direct and indirect interaction with immune cells and other key components of the tumour microenvironment.
Collapse
Affiliation(s)
- James Harper
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK.
| | | |
Collapse
|
78
|
Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, Hendrikx M, Hensen K, Rummens JL. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. J Mol Cell Cardiol 2013; 66:177-88. [PMID: 24326234 DOI: 10.1016/j.yjmcc.2013.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) modulate cardiac healing after myocardial injury through the release of paracrine factors, but the exact mechanisms are still unknown. One possible mechanism is through mobilization of endogenous cardiac stem cells (CSCs). This study aimed to test the pro-migratory effect of MSC conditioned medium (MSC-CM) on endogenous CSCs from human cardiac tissue. By using a three-dimensional collagen assay, we found that MSC-CM improved migration of cells from human cardiac tissue. Cell counts, perimeter and area measurements were utilized to quantify migration effects. To examine whether resident stem cells were among the migrating cells, specific stem cell properties were investigated. The migrating cells displayed strong similarities with resident Cardiac Atrial appendage Stem Cells (CASCs), including a clonogenic potential of ~21.5% and expression of pluripotency associated genes like Oct-4, Nanog, c-Myc and Klf-4. Similar to CASCs, migrating cells demonstrated high aldehyde dehydrogenase activity and were able to differentiate towards cardiomyocytes. Receptor tyrosine kinase analysis and collagen assays performed with recombinant platelet derived growth factor (PDGF)-AA and Imatinib Mesylate, a PDGF receptor inhibitor, suggested a role for the PDGF-AA/PDGF receptor α axis in enhancing the migration process of CASCs. In conclusion, our findings demonstrate that factors present in MSC-CM improve migration of resident stem cells from human cardiac tissue. These data open doors towards future therapies in which MSC secreted factors, like PDGF-AA, can be utilized to enhance the recruitment of CASCs towards the site of myocardial injury.
Collapse
Affiliation(s)
- Severina Windmolders
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Astrid De Boeck
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Remco Koninckx
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Annick Daniëls
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium.
| | - Olivier De Wever
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Marc Bracke
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium; Department of Cardiothoracic Surgery, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium.
| | - Karen Hensen
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Jean-Luc Rummens
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
79
|
Clapéron A, Mergey M, Aoudjehane L, Ho-Bouldoires THN, Wendum D, Prignon A, Merabtene F, Firrincieli D, Desbois-Mouthon C, Scatton O, Conti F, Housset C, Fouassier L. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology 2013; 58:2001-11. [PMID: 23787814 DOI: 10.1002/hep.26585] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (CCA) is characterized by an abundant desmoplastic environment. Poor prognosis of CCA has been associated with the presence of alpha-smooth muscle actin (α-SMA)-positive myofibroblasts (MFs) in the stroma and with the sustained activation of the epidermal growth factor receptor (EGFR) in tumor cells. Among EGFR ligands, heparin-binding epidermal growth factor (HB-EGF) has emerged as a paracrine factor that contributes to intercellular communications between MFs and tumor cells in several cancers. This study was designed to test whether hepatic MFs contributed to CCA progression through EGFR signaling. The interplay between CCA cells and hepatic MFs was examined first in vivo, using subcutaneous xenografts into immunocompromised mice. In these experiments, cotransplantation of CCA cells with human liver myofibroblasts (HLMFs) increased tumor incidence, size, and metastatic dissemination of tumors. These effects were abolished by gefitinib, an EGFR tyrosine kinase inhibitor. Immunohistochemical analyses of human CCA tissues showed that stromal MFs expressed HB-EGF, whereas EGFR was detected in cancer cells. In vitro, HLMFs produced HB-EGF and their conditioned media induced EGFR activation and promoted disruption of adherens junctions, migratory and invasive properties in CCA cells. These effects were abolished in the presence of gefitinib or HB-EGF-neutralizing antibody. We also showed that CCA cells produced transforming growth factor beta 1, which, in turn, induced HB-EGF expression in HLMFs. CONCLUSION A reciprocal cross-talk between CCA cells and myofibroblasts through the HB-EGF/EGFR axis contributes to CCA progression.
Collapse
Affiliation(s)
- Audrey Clapéron
- Inserm, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France; UPMC, Univ Paris 06, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Amsterdam A. Reply to the letter to the editor of Nicholas Wright. Acta Histochem 2013; 115:772-3. [PMID: 23522103 DOI: 10.1016/j.acthis.2013.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
81
|
Holmberg C, Ghesquière B, Impens F, Gevaert K, Kumar JD, Cash N, Kandola S, Hegyi P, Wang TC, Dockray GJ, Varro A. Mapping proteolytic processing in the secretome of gastric cancer-associated myofibroblasts reveals activation of MMP-1, MMP-2, and MMP-3. J Proteome Res 2013; 12:3413-22. [PMID: 23705892 PMCID: PMC3709265 DOI: 10.1021/pr400270q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer progression involves changes in extracellular proteolysis, but the contribution of stromal cell secretomes to the cancer degradome remains uncertain. We have now defined the secretome of a specific stromal cell type, the myofibroblast, in gastric cancer and its modification by proteolysis. SILAC labeling and COFRADIC isolation of methionine containing peptides allowed us to quantify differences in gastric cancer-derived myofibroblasts compared with myofibroblasts from adjacent tissue, revealing increased abundance of several proteases in cancer myofibroblasts including matrix metalloproteinases (MMP)-1 and -3. Moreover, N-terminal COFRADIC analysis identified cancer-restricted proteolytic cleavages, including liberation of the active forms of MMP-1, -2, and -3 from their inactive precursors. In vivo imaging confirmed increased MMP activity when gastric cancer cells were xenografted in mice together with gastric cancer myofibroblasts. Western blot and enzyme activity assays confirmed increased MMP-1, -2, and -3 activity in cancer myofibroblasts, and cancer cell migration assays indicated stimulation by MMP-1, -2, and -3 in cancer-associated myofibroblast media. Thus, cancer-derived myofibroblasts differ from their normal counterparts by increased production and activation of MMP-1, -2, and -3, and this may contribute to the remodelling of the cancer cell microenvironment.
Collapse
|
82
|
Lin Q, Tan HT, Lim HSR, Chung MCM. Sieving through the cancer secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2360-71. [PMID: 23376431 DOI: 10.1016/j.bbapap.2013.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/03/2013] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Cancer is among the most prevalent and serious health problems worldwide. Therefore, there is an urgent need for novel cancer biomarkers with high sensitivity and specificity for early detection and management of the disease. The cancer secretome, encompassing all the proteins that are secreted by cancer cells, is a promising source of biomarkers as the secreted proteins are most likely to enter the blood circulation. Moreover, since secreted proteins are responsible for signaling and communication with the tumor microenvironment, studying the cancer secretome would further the understanding of cancer biology. Latest developments in proteomics technologies have significantly advanced the study of the cancer secretome. In this review, we will present an overview of the secretome sample preparation process and summarize the data from recent secretome studies of six common cancers with high mortality (breast, colorectal, gastric, liver, lung and prostate cancers). In particular, we will focus on the various platforms that were employed and discuss the clinical applicability of the key findings in these studies. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Qifeng Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | | | | | | |
Collapse
|