51
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2024:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
52
|
Khanppnavar B, Choo JPS, Hagedoorn PL, Smolentsev G, Štefanić S, Kumaran S, Tischler D, Winkler FK, Korkhov VM, Li Z, Kammerer RA, Li X. Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase. Nat Chem 2024; 16:1496-1504. [PMID: 38744914 PMCID: PMC11374702 DOI: 10.1038/s41557-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Membrane-bound styrene oxide isomerase (SOI) catalyses the Meinwald rearrangement-a Lewis-acid-catalysed isomerization of an epoxide to a carbonyl compound-and has been used in single and cascade reactions. However, the structural information that explains its reaction mechanism has remained elusive. Here we determine cryo-electron microscopy (cryo-EM) structures of SOI bound to a single-domain antibody with and without the competitive inhibitor benzylamine, and elucidate the catalytic mechanism using electron paramagnetic resonance spectroscopy, functional assays, biophysical methods and docking experiments. We find ferric haem b bound at the subunit interface of the trimeric enzyme through H58, where Fe(III) acts as the Lewis acid by binding to the epoxide oxygen. Y103 and N64 and a hydrophobic pocket binding the oxygen of the epoxide and the aryl group, respectively, position substrates in a manner that explains the high regio-selectivity and stereo-specificity of SOI. Our findings can support extending the range of epoxide substrates and be used to potentially repurpose SOI for the catalysis of new-to-nature Fe-based chemical reactions.
Collapse
Affiliation(s)
- Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Joel P S Choo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Saša Štefanić
- Nanobody Service Facility. AgroVet-Strickhof, University of Zurich, Lindau, Switzerland
| | | | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
53
|
Parrón‐Ballesteros J, Martín‐Pedraza L, Gordo RG, Mayorga C, Pastor‐Vargas C, Titaux‐Delgado GA, Villalba M, Batanero E, Pantoja‐Uceda D, Turnay J. Long-chain fatty acids block allergic reaction against lipid transfer protein Sola l 7 from tomato seeds. Protein Sci 2024; 33:e5154. [PMID: 39180496 PMCID: PMC11344279 DOI: 10.1002/pro.5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Due to the benefits of tomato as an antioxidant and vitamin source, allergy to this vegetable food is a clinically concerning problem. Sola l 7, a class I lipid transfer protein found in tomato seeds, has been identified as an allergen linked to severe anaphylaxis. However, the role of lipid binding in Sola l 7-induced allergy remains unclear. Here, the three-dimensional structure of recombinant Sola l 7 (rSola l 7) has been elucidated using nuclear magnetic resonance spectroscopy (NMR). Its interaction with free fatty acids has been deeply studied; fluorescence emission spectroscopy revealed that different long-chain fatty acids interact with the protein, affecting the only tyrosine residue present in Sola l 7. On the contrary, no changes in the overall secondary structure were observed after the analysis of the circular dichroism spectra in the presence of fatty acids. Unsaturated oleic and linoleic fatty acids presented higher affinity and promoted more significant changes than saturated or short-chain fatty acids. 1H-15N HSQC NMR spectra allowed to determine the regions of the protein that were modified when rSola l 7 interacts with the fatty acids, suggesting epitope modification after the interaction. For corroboration, IgG and IgE binding to rSola l 7 were assessed in the presence of free fatty acids, revealing that both IgE and IgG binding were significantly lower than in their absence, suggesting a potential protective role of unsaturated fatty acids in tomato allergy.
Collapse
Affiliation(s)
- Jorge Parrón‐Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Laura Martín‐Pedraza
- Infectious Diseases DepartmentHospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCISMadridSpain
- CIBERINFEC, Instituto de Salud Carlos IIIMadridSpain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Cristobalina Mayorga
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONANDMálagaSpain
- Allergy UnitHospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Carlos Pastor‐Vargas
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Gustavo A. Titaux‐Delgado
- Department Biological Physical Chemistry, “Blas Cabrera” Institute for Physical ChemistrySpanish National Research CouncilMadridSpain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - David Pantoja‐Uceda
- Department Biological Physical Chemistry, “Blas Cabrera” Institute for Physical ChemistrySpanish National Research CouncilMadridSpain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
54
|
Royet A, Ruedas R, Gargowitsch L, Gervais V, Habersetzer J, Pieri L, Ouldali M, Paternostre M, Hofmann I, Tubiana T, Fieulaine S, Bressanelli S. Nonstructural protein 4 of human norovirus self-assembles into various membrane-bridging multimers. J Biol Chem 2024; 300:107724. [PMID: 39214299 PMCID: PMC11439542 DOI: 10.1016/j.jbc.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Single-stranded, positive-sense RNA ((+)RNA) viruses replicate their genomes in virus-induced intracellular membrane compartments. (+)RNA viruses dedicate a significant part of their small genomes (a few thousands to a few tens of thousands of bases) to the generation of these compartments by encoding membrane-interacting proteins and/or protein domains. Noroviruses are a very diverse genus of (+)RNA viruses including human and animal pathogens. Human noroviruses are the major cause of acute gastroenteritis worldwide, with genogroup II genotype 4 (GII.4) noroviruses accounting for the vast majority of infections. Three viral proteins encoded in the N terminus of the viral replication polyprotein direct intracellular membrane rearrangements associated with norovirus replication. Of these three, nonstructural protein 4 (NS4) seems to be the most important, although its exact functions in replication organelle formation are unknown. Here, we produce, purify, and characterize GII.4 NS4. AlphaFold modeling combined with experimental data refines and corrects our previous crude structural model of NS4. Using simple artificial liposomes, we report an extensive characterization of the membrane properties of NS4. We find that NS4 self-assembles and thereby bridges liposomes together. Cryo-EM, NMR, and membrane flotation show formation of several distinct NS4 assemblies, at least two of them bridging pairs of membranes together in different fashions. Noroviruses belong to (+)RNA viruses whose replication compartment is extruded from the target endomembrane and generates double-membrane vesicles. Our data establish that the 21-kDa GII.4 human norovirus NS4 can, in the absence of any other factor, recapitulate in tubo several features, including membrane apposition, that occur in such processes.
Collapse
Affiliation(s)
- Adrien Royet
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rémi Ruedas
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France; Sanofi, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France; Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johann Habersetzer
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Maïté Paternostre
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ilse Hofmann
- Core Facility Antibodies, German Cancer Research Center, Heidelberg, Germany
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
55
|
Sukla S, Dhakshinamoorthy DR, Ramesh AV, Lew S, Su M, Seetharaman J. Crystal structure of human Cep57 C-terminal domain reveals the presence of leucine zipper and the potential microtubule binding region. Proteins 2024; 92:1137-1143. [PMID: 38699879 DOI: 10.1002/prot.26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Cep57, a vital centrosome-associated protein, recruits essential regulatory enzymes for centriole duplication. Its dysfunction leads to anomalies, including reduced centrioles and mosaic-variegated aneuploidy syndrome. Despite functional investigations, understanding structural aspects and their correlation with functions is partial till date. We present the structure of human Cep57 C-terminal microtubule binding (MT-BD) domain, revealing conserved motifs ensuring functional preservation across evolution. A leucine zipper, with an adjacent possible microtubule-binding region, potentially forms a stabilizing scaffold for microtubule nucleation-accommodating pulling and tension from growing microtubules. This study highlights conserved structural features of Cep57 protein, compares them with other analogous proteins, and explores how protein function is maintained across diverse organisms.
Collapse
Affiliation(s)
- Sanskrita Sukla
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Arvind V Ramesh
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott Lew
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Min Su
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Jayaraman Seetharaman
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
56
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). eLife 2024; 13:RP93510. [PMID: 39196614 DOI: 10.7554/elife.93510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, United States
| | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, United States
| |
Collapse
|
57
|
Hong Y, Makarova KS, Xu R, Pfeiffer F, Pohlschroder M. Beyond bacterial paradigms: uncovering the functional significance and first biogenesis machinery of archaeal lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609747. [PMID: 39372745 PMCID: PMC11451621 DOI: 10.1101/2024.08.27.609747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lipoproteins are major constituents of prokaryotic cell surfaces. In bacteria, lipoprotein attachment to membrane lipids is catalyzed by prolipoprotein diacylglyceryl transferase (Lgt). However, no Lgt homologs have been identified in archaea, suggesting the unique archaeal membrane lipids require distinct enzymes for lipoprotein lipidation. Here, we performed in silico predictions for all major archaeal lineages and revealed a high prevalence of lipoproteins across the domain Archaea. Using comparative genomics, we identified the first set of candidates for archaeal lipoprotein biogenesis components (Ali). Genetic and biochemical characterization confirmed two paralogous genes, aliA and aliB , are important for lipoprotein lipidation in the archaeon Haloferax volcanii . Disruption of AliA- and AliB-mediated lipoprotein lipidation results in severe growth defects, decreased motility, and cell-shape alterations, underscoring the importance of lipoproteins in archaeal cell physiology. AliA and AliB also exhibit different enzymatic activities, including potential substrate selectivity, uncovering a new layer of regulation for prokaryotic lipoprotein lipidation.
Collapse
|
58
|
Busetto V, Pshanichnaya L, Lichtenberger R, Hann S, Ketting R, Falk S. MUT-7 exoribonuclease activity and localization are mediated by an ancient domain. Nucleic Acids Res 2024; 52:9076-9091. [PMID: 39188014 PMCID: PMC11347159 DOI: 10.1093/nar/gkae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.
Collapse
Affiliation(s)
- Virginia Busetto
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Lizaveta Pshanichnaya
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099Mainz, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
59
|
Zhang P, Gorman J, Tsybovsky Y, Lu M, Liu Q, Gopan V, Singh M, Lin Y, Miao H, Seo Y, Kwon A, Olia AS, Chuang GY, Geng H, Lai YT, Zhou T, Mascola JR, Mothes W, Kwong PD, Lusso P. Design of soluble HIV-1 envelope trimers free of covalent gp120-gp41 bonds with prevalent native-like conformation. Cell Rep 2024; 43:114518. [PMID: 39028623 PMCID: PMC11459465 DOI: 10.1016/j.celrep.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Soluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds. Stabilization was achieved by introducing an intrasubunit disulfide bond between the inner and outer domains of gp120, defined as interdomain lock (IDL). Correctly folded IDL trimers displaying a native-like antigenic profile were produced for HIV-1 Envs of different clades. Importantly, the IDL design abrogated CD4 binding while not affecting recognition by potent neutralizing antibodies to the CD4-binding site. By cryoelectron microscopy, IDL trimers were shown to adopt a closed prefusion configuration, while single-molecule fluorescence resonance energy transfer documented a high prevalence of native-like conformation. Thus, IDL trimers may be promising candidates as vaccine immunogens.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Vinay Gopan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mamta Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuna Seo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, 20 Riverside Road, Weston, MA 02493, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
60
|
Chen J, Ni D, Zhu Y, Xu W, Moussa TAA, Zhang W, Mu W. Discovery of a Thermostable Tagatose 4-Epimerase Powered by Structure- and Sequence-Based Protein Clustering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18585-18593. [PMID: 39133835 DOI: 10.1021/acs.jafc.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
d-Tagatose is a highly promising functional sweetener known for its various physiological functions. In this study, a novel tagatose 4-epimerase from Thermoprotei archaeon (Thar-T4Ease), with the ability to convert d-fructose to d-tagatose, was discovered through a combination of structure similarity search and sequence-based protein clustering. The recombinant Thar-T4Ease exhibited optimal activity at pH 8.5 and 85 °C, in the presence of 1 mM Ni2+. Its kcat and kcat/Km values toward d-fructose were measured to be 248.5 min-1 and 2.117 mM-1·min-1, respectively. Notably, Thar-T4Ease exhibited remarkable thermostability, with a t1/2 value of 198 h at 80 °C. Moreover, it achieved a conversion ratio of 18.9% using 100 g/L d-fructose as the substrate. Finally, based on sequence and structure analysis, crucial residues for the catalytic activity of Thar-T4Ease were identified by molecular docking and site-directed mutagenesis. This research expands the repertoire of enzymes with C4-epimerization activity and opens up new possibilities for the cost-effective production of d-tagatose from d-fructose.
Collapse
Affiliation(s)
- JiaJun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tarek A A Moussa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
61
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
62
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
63
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
64
|
Burgie ES, Basore K, Rau MJ, Summers B, Mickles AJ, Grigura V, Fitzpatrick JAJ, Vierstra RD. Signaling by a bacterial phytochrome histidine kinase involves a conformational cascade reorganizing the dimeric photoreceptor. Nat Commun 2024; 15:6853. [PMID: 39127720 DOI: 10.1038/s41467-024-50412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Katherine Basore
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Michael J Rau
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Brock Summers
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Alayna J Mickles
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Vadim Grigura
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - James A J Fitzpatrick
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Grenzacherstrasse, 124, 4070, Switzerland
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
65
|
Tan Y, Aravind L, Zhang D. Genomic Underpinnings of Cytoplasmic Incompatibility: CIF Gene-Neighborhood Diversification Through Extensive Lateral Transfers and Recombination in Wolbachia. Genome Biol Evol 2024; 16:evae171. [PMID: 39106433 PMCID: PMC11342252 DOI: 10.1093/gbe/evae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves the manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CI Factor (CIF) system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and interlocus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR (Crinkler-RHS-type) effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
66
|
Ghimire N, Kim S, Park HH, Oh TJ. Structure, dimeric conformation, and coenzyme versatility of p-hydroxybenzoate hydroxylase from Arthrobacter sp. PAMC25564. Int J Biol Macromol 2024; 274:133268. [PMID: 38944083 DOI: 10.1016/j.ijbiomac.2024.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
p-Hydroxybenzoate hydroxylase (PHBH) catalyzes the ortho-hydroxylation of 4-hydroxybenzoate (4-HB) to protocatechuate (PCA). PHBHs are commonly known as homodimers, and the prediction of pyridine nucleotide binding and specificity remains an ongoing focus in this field. Therefore, our study aimed to determine the dimerization interface in AspPHBH from Arthrobacter sp. PAMC25564 and identify the canonical pyridine nucleotide-binding residues, along with coenzyme specificity, through site-directed mutagenesis. The results confirm a functional dimeric assembly from a tetramer that appeared in the crystallographic asymmetric unit identical to that established in previous studies. Furthermore, AspPHBH exhibits coenzyme versatility, utilizing both NADH and NADPH, with a preference for NADH. Rational engineering experiments demonstrated that targeted mutations in coenzyme surrounding residues profoundly impact NADPH binding, leading to nearly abrogated enzymatic activity compared to that of NADH. R50, R273, and S166 emerged as significant residues for NAD(P)H binding, having a near-fatal impact on NADPH binding compared to NADH. Likewise, the E44 residue plays a critical role in determining coenzyme specificity. Overall, our findings contribute to the fundamental understanding of the determinants of PHBH's active dimeric conformation, coenzyme binding and specificity holding promise for biotechnological advancements.
Collapse
Affiliation(s)
- Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Subin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea.
| |
Collapse
|
67
|
Patil S, Borisov O, Scherer N, Wirth C, Schlosser P, Wuttke M, Ehret S, Hannibal L, Eckardt KU, Hunte C, Neubauer B, Köttgen A, Köttgen M. The membrane transporter SLC25A48 enables transport of choline into human mitochondria. Kidney Int 2024:S0085-2538(24)00526-X. [PMID: 39084256 DOI: 10.1016/j.kint.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Choline has important physiological functions as a precursor for essential cell components, signaling molecules, phospholipids, and the neurotransmitter acetylcholine. Choline is a water-soluble charged molecule requiring transport proteins to cross biological membranes. Although transporters continue to be identified, membrane transport of choline is incompletely understood and knowledge about choline transport into intracellular organelles such as mitochondria remains limited. Here we show that SLC25A48 imports choline into human mitochondria. Human loss-of-function mutations in SLC25A48 show impaired choline transport into mitochondria and are associated with elevated urine and plasma choline levels. Thus, our studies may have implications for understanding and treating conditions related to choline metabolism.
Collapse
Affiliation(s)
- Suraj Patil
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oleg Borisov
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Sandra Ehret
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Björn Neubauer
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Michael Köttgen
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
68
|
An L, Said M, Tran L, Majumder S, Goreshnik I, Lee GR, Juergens D, Dauparas J, Anishchenko I, Coventry B, Bera AK, Kang A, Levine PM, Alvarez V, Pillai A, Norn C, Feldman D, Zorine D, Hicks DR, Li X, Sanchez MG, Vafeados DK, Salveson PJ, Vorobieva AA, Baker D. Binding and sensing diverse small molecules using shape-complementary pseudocycles. Science 2024; 385:276-282. [PMID: 39024436 PMCID: PMC11542606 DOI: 10.1126/science.adn3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
We describe an approach for designing high-affinity small molecule-binding proteins poised for downstream sensing. We use deep learning-generated pseudocycles with repeating structural units surrounding central binding pockets with widely varying shapes that depend on the geometry and number of the repeat units. We dock small molecules of interest into the most shape complementary of these pseudocycles, design the interaction surfaces for high binding affinity, and experimentally screen to identify designs with the highest affinity. We obtain binders to four diverse molecules, including the polar and flexible methotrexate and thyroxine. Taking advantage of the modular repeat structure and central binding pockets, we construct chemically induced dimerization systems and low-noise nanopore sensors by splitting designs into domains that reassemble upon ligand addition.
Collapse
Affiliation(s)
- Linna An
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Meerit Said
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Long Tran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul M. Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Dmitri Zorine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Derrick R. Hicks
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne K. Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Patrick J. Salveson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Anastassia A. Vorobieva
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
69
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567456. [PMID: 38014348 PMCID: PMC10680825 DOI: 10.1101/2023.11.16.567456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P. Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Sonia R. Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - Peter R. Weigele
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - John C. Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
70
|
Johannesman A, Carlson NA, LeRoux M. Phages carry orphan antitoxin-like enzymes to neutralize the DarTG1 toxin-antitoxin defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602962. [PMID: 39026772 PMCID: PMC11257639 DOI: 10.1101/2024.07.11.602962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The astounding number of anti-phage defenses encoded by bacteria is countered by an elaborate set of phage counter-defenses, though their evolutionary origins are often unknown. Here, we discover an orphan antitoxin counter-defense element in T4-like phages that can overcome the bacterial toxin-antitoxin phage defense system, DarTG1. The DarT1 toxin, an ADP-ribosyltransferase, modifies phage DNA to prevent replication while its cognate antitoxin, DarG1, is an ADP-ribosylglycohydrolase that reverses these modifications in uninfected bacteria. The orphan phage DarG1-like protein, which we term anti-DarT factor NADAR (AdfN), removes ADP-ribose modifications from phage DNA during infection thereby enabling replication in DarTG1-containing bacteria. AdfN, like DarG1, is in the NADAR superfamily of ADP-ribosylglycohydrolases found across domains of life. We find divergent NADAR proteins in unrelated phages that likewise exhibit anti-DarTG1 activity, underscoring the importance of ADP-ribosylation in bacterial-phage interactions, and revealing the function of a substantial subset of the NADAR superfamily.
Collapse
Affiliation(s)
- Anna Johannesman
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Nico A. Carlson
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Michele LeRoux
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
71
|
Hu S, Han P, Wang M, Cao X, Liu H, Zhang S, Zhang S, Liu J, Han Y, Xiao J, Chen Q, Miao K, Qi J, Tan S, Gao GF, Wang H. Structural basis for the immune recognition and selectivity of the immune receptor PVRIG for ligand Nectin-2. Structure 2024; 32:918-929.e4. [PMID: 38626767 DOI: 10.1016/j.str.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.
Collapse
Affiliation(s)
- Songtao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China; Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China; Beijing Life Science Academy, Beijing 102200, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Meiyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Hao Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Shuailong Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Jinhe Xiao
- Department of Prevention and Treatment of Breast Disease, Haidian District Maternal and Child Health Care Hospital, Beijing 100080, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Han Wang
- Beijing Life Science Academy, Beijing 102200, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100080, China.
| |
Collapse
|
72
|
Chong Qui E, Habtehyimer F, Germroth A, Grant J, Kosanovic L, Singh I, Hancock SP. Mycobacteriophage Alexphander Gene 94 Encodes an Essential dsDNA-Binding Protein during Lytic Infection. Int J Mol Sci 2024; 25:7466. [PMID: 39000573 PMCID: PMC11242194 DOI: 10.3390/ijms25137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen P. Hancock
- Department of Chemistry, Towson University, Towson, MD 21252, USA; (E.C.Q.); (F.H.); (A.G.); (J.G.); (L.K.); (I.S.)
| |
Collapse
|
73
|
Jamdar SN, Yadav P, Kulkarni BS, Sudesh, Kumar A, Makde RD. Crystal structure of a newly identified M61 family aminopeptidase with broad substrate specificity that is solely responsible for recycling acidic amino acids. FEBS J 2024; 291:3211-3232. [PMID: 38646733 DOI: 10.1111/febs.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/10/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases. However, in bacteria, a truly broad specificity enzyme, which can cleave off acidic, basic, Gly and hydrophobic amino acid residues, is extremely rare. Here, we report structure-function of a putative glycyl aminopeptidase (M61xc) from Xanthomonas campestris pv campestris (Xcc) belonging to the M61 peptidase family. The enzyme exhibits broad specificity and cleaves Ala, Leu, Asp, Glu, Met, Ser, Phe, Tyr, Gly, Arg, and Lys at the N terminus, optimally of peptides with a length of 3-7 amino acids. Further, we report the high-resolution crystal structure of M61xc in the apo form (2.1 Å) and bestatin-bound form (1.95 Å), detailing its catalytic and substrate preference mechanisms. Comparative analysis of enzyme activity in crude cell extracts from both wild-type and m61xc-knockout mutant strains of Xcc has elucidated the unique intracellular role of M61xc. This study suggests that M61xc is the exclusive enzyme in these bacteria that is responsible for liberating Asp/Glu residues from the N-termini of peptides. Also, in view of its broad specificity and peptide degradation ability, it could be considered equivalent to M1 or other oligomeric peptidases from families like M17, M18, M42 or S9, who have an important auxiliary role in post-proteasomal protein degradation in prokaryotes.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Pooja Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
74
|
Rolemberg Santana Travaglini Berti de Correia C, Torres C, Gomes E, Maffei Rodriguez G, Klaysson Pereira Regatieri W, Takamiya NT, Aparecida Rogerio L, Malavazi I, Damário Gomes M, Dener Damasceno J, Luiz da Silva V, Antonio Fernandes de Oliveira M, Santos da Silva M, Silva Nascimento A, Cappellazzo Coelho A, Regina Maruyama S, Teixeira FR. Functional characterization of Cullin-1-RING ubiquitin ligase (CRL1) complex in Leishmania infantum. PLoS Pathog 2024; 20:e1012336. [PMID: 39018347 DOI: 10.1371/journal.ppat.1012336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024] Open
Abstract
Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.
Collapse
Affiliation(s)
- Camila Rolemberg Santana Travaglini Berti de Correia
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline Torres
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Ellen Gomes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vitor Luiz da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Marcelo Santos da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
75
|
Xu S, Zhao J, Liu X, Yang X, Xu Z, Gao Y, Ma Y, Yang H. Structures of SenB and SenA enzymes from Variovorax paradoxus provide insights into carbon-selenium bond formation in selenoneine biosynthesis. Heliyon 2024; 10:e32888. [PMID: 38994077 PMCID: PMC11237966 DOI: 10.1016/j.heliyon.2024.e32888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Selenoneine, an ergothioneine analog, is important for antioxidation and detoxification. SenB and SenA are two crucial enzymes that form carbon-selenium bonds in the selenoneine biosynthetic pathway. To investigate their underlying catalytic mechanisms, we obtained complex structures of SenB with its substrate UDP-N-acetylglucosamine (UDP-GlcNAc) and SenA with N-α-trimethyl histidine (TMH). SenB adopts a type-B glycosyltransferase fold. Structural and functional analysis of the interaction network at the active center provide key information on substrate recognition and suggest a metal-ion-independent, inverting mechanism is utilized for SenB-mediated selenoglycoside formation. Moreover, the complex structure of SenA with TMH and enzymatic activity assays highlight vital residues that control substrate binding and specificity. Based on the conserved structure and substrate-binding pocket of the type I sulfoxide synthase EgtB in the ergothioneine biosynthetic pathway, a similar reaction mechanism was proposed for the formation of C-Se bonds by SenA. The structures provide knowledge on selenoneine synthesis and lay groundwork for further applications of this pathway.
Collapse
Affiliation(s)
- Sihan Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jinyi Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuanyuan Ma
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
76
|
Schwartz M, Petiot N, Chaloyard J, Senty-Segault V, Lirussi F, Senet P, Nicolai A, Heydel JM, Canon F, Sonkaria S, Khare V, Didierjean C, Neiers F. Structural and Thermodynamic Insights into Dimerization Interfaces of Drosophila Glutathione Transferases. Biomolecules 2024; 14:758. [PMID: 39062472 PMCID: PMC11274453 DOI: 10.3390/biom14070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
This study presents a comprehensive analysis of the dimerization interfaces of fly GSTs through sequence alignment. Our investigation revealed GSTE1 as a particularly intriguing target, providing valuable insights into the variations within Delta and Epsilon GST interfaces. The X-ray structure of GSTE1 was determined, unveiling remarkable thermal stability and a distinctive dimerization interface. Utilizing circular dichroism, we assessed the thermal stability of GSTE1 and other Drosophila GSTs with resolved X-ray structures. The subsequent examination of GST dimer stability correlated with the dimerization interface supported by findings from X-ray structural analysis and thermal stability measurements. Our discussion extends to the broader context of GST dimer interfaces, offering a generalized perspective on their stability. This research enhances our understanding of the structural and thermodynamic aspects of GST dimerization, contributing valuable insights to the field.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Nicolas Petiot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Jeanne Chaloyard
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Véronique Senty-Segault
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France;
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Jean-Marie Heydel
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | | | - Sanjiv Sonkaria
- Soft Foundry Institute, Seoul National University, Kwanak-gu, Seoul 39-131, Republic of Korea; (S.S.); (V.K.)
| | - Varsha Khare
- Soft Foundry Institute, Seoul National University, Kwanak-gu, Seoul 39-131, Republic of Korea; (S.S.); (V.K.)
| | | | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| |
Collapse
|
77
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
78
|
Chi H, White MF. RNA processing by the CRISPR-associated NYN ribonuclease. Biochem J 2024; 481:793-804. [PMID: 38785320 PMCID: PMC11346440 DOI: 10.1042/bcj20240151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
CRISPR-Cas systems confer adaptive immunity in prokaryotes, facilitating the recognition and destruction of invasive nucleic acids. Type III CRISPR systems comprise large, multisubunit ribonucleoprotein complexes with a catalytic Cas10 subunit. When activated by the detection of foreign RNA, Cas10 generates nucleotide signalling molecules that elicit an immune response by activating ancillary effector proteins. Among these systems, the Bacteroides fragilis type III CRISPR system was recently shown to produce a novel signal molecule, SAM-AMP, by conjugating ATP and SAM. SAM-AMP regulates a membrane effector of the CorA family to provide immunity. Here, we focus on NYN, a ribonuclease encoded within this system, probing its potential involvement in crRNA maturation. Structural modelling and in vitro ribonuclease assays reveal that NYN displays robust sequence-nonspecific, Mn2+-dependent ssRNA-cleavage activity. Our findings suggest a role for NYN in trimming crRNA intermediates into mature crRNAs, which is necessary for type III CRISPR antiviral defence. This study sheds light on the functional relevance of CRISPR-associated NYN proteins and highlights the complexity of CRISPR-mediated defence strategies in bacteria.
Collapse
Affiliation(s)
- Haotian Chi
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Malcolm F. White
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
79
|
Li J, Ma X, Wang X, Hu X, Fang S, Jin G, Liu K, Dong Z. Mutations found in cancer patients compromise DNA binding of the winged helix protein STK19. Sci Rep 2024; 14:14098. [PMID: 38890355 PMCID: PMC11189558 DOI: 10.1038/s41598-024-64840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Serine/threonine protein kinase 19 (STK19) has been reported to phosphorylate and activate oncogenic NRAS to promote melanomagenesis. However, concerns have been raised about whether STK19 is a kinase. STK19 has also been identified as a putative factor involved in the transcription-coupled nucleotide excision repair (TC-NER) pathway. In this study, we determined the 1.32 Å crystal structure of human STK19. The structure reveals that STK19 is a winged helix (WH) protein consisting of three tandem WH domains. STK19 binds more strongly to double-stranded DNA and RNA (dsDNA/dsRNA) than to ssDNA. A positively charged patch centered on helix WH3-H1 contributes to dsDNA binding, which is unusual because the WH domain typically uses helix H3 as the recognition helix. Importantly, mutations of the conserved residues in the basic patch, K186N, R200W, and R215W, are found in cancer patients, and these mutations compromise STK19 DNA binding. Other mutations have been predicted to produce a similar effect, including two mutations that disrupt the nuclear localization signal (NLS) motif. These mutations may indirectly impact the DNA binding capacity of STK19 by interfering with its nuclear localization.
Collapse
Affiliation(s)
- Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Xiaoyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaotong Hu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shaobo Fang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
80
|
Sastre DE, Sultana N, V A S Navarro M, Huliciak M, Du J, Cifuente JO, Flowers M, Liu X, Lollar P, Trastoy B, Guerin ME, Sundberg EJ. Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate. Nat Commun 2024; 15:5123. [PMID: 38879612 PMCID: PMC11180146 DOI: 10.1038/s41467-024-48802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research (NIDCR/NIH), Bethesda, MD, USA
| | - Marcos V A S Navarro
- Institute of Physics (IFSC-USP), University of São Paulo, São Carlos, SP, Brazil
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Javier O Cifuente
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, Barcelona, Catalonia, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
81
|
Thach T, Dhanabalan K, Nandekar PP, Stauffer S, Heisler I, Alvarado S, Snyder J, Subramanian R. A Second Drug Binding Site in P2X3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598171. [PMID: 38915546 PMCID: PMC11195084 DOI: 10.1101/2024.06.10.598171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Purinergic P2X3 receptors form trimeric cation-gated channels, which are activated by extracellular ATP. P2X3 plays a crucial role in chronic cough and affects over 10% of the population. Despite considerable efforts to develop drugs targeting P2X3, the highly conserved structure within the P2X receptor family presents obstacles for achieving selectivity. Camlipixant, a potent and selective P2X3 antagonist, is currently in phase III clinical trials. However, the mechanisms underlying receptor desensitization, ion permeation, principles governing antagonism, and the structure of P2X3 when bound to camlipixant remain elusive. In this study, we established a stable cell line expressing homotrimeric P2X3 and utilized a peptide scaffold to purify the complex and determine its structure using cryo-electron microscopy (cryo-EM). P2X3 binds to camlipixant at a previously unidentified drug-binding site and functions as an allosteric inhibitor. Structure-activity studies combined with modeling and simulations have shed light on the mechanisms underlying the selective targeting and inhibition of P2X3 by camlipixant, distinguishing it from other members of the P2X receptor family.
Collapse
Affiliation(s)
- Trung Thach
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
| | | | | | - Seth Stauffer
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Iring Heisler
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Sarah Alvarado
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Jonathan Snyder
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Ramaswamy Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
82
|
Liu G, Mei X, Zhang Y, Chen G, Li J, Tao W, Sun M, Zheng L, Chang Y, Xue C. Characterization and Structural Analysis of a Novel Carbohydrate-Binding Module from Family 96 with Chondroitin Sulfate-Specific Binding Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13196-13204. [PMID: 38805590 DOI: 10.1021/acs.jafc.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Chondroitin sulfate (CS) is the predominant glycosaminoglycan within the human body and is widely applied in various industries. Carbohydrate-binding modules (CBMs) possessing the capacity for carbohydrate recognition are verified to be important tools for polysaccharide investigation. Only one CS-specific CBM, PhCBM100, has hitherto been characterized. In the present study, two CBM96 domains present in the same putative PL8_3 chondroitin AC lyase were discovered and recombinantly expressed. The results of microtiter plate assays and affinity gel electrophoresis assays showed that the two corresponding proteins, DmCBM96-1 and DmCBM96-2, bind specifically to CSs. The crystal structure of DmCBM96-1 was determined at a 2.20 Å resolution. It adopts a β-sandwich fold comprising two antiparallel β-sheets, showing structural similarities to TM6-N4, which is the founding member of the CBM96 family. Site mutagenesis analysis revealed that the residues of Arg27, Lys45, Tyr51, Arg53, and Arg157 are critical for CS binding. The characterization of the two CBM96 proteins demonstrates the diverse ligand specificity of the CBM96 family and provides promising tools for CS investigation.
Collapse
Affiliation(s)
- Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiajing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Wenwen Tao
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Menghui Sun
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Long Zheng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
83
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
84
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563672. [PMID: 37961489 PMCID: PMC10634761 DOI: 10.1101/2023.10.23.563672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of a-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-a-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal a-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in HGSNAT catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
85
|
Raghunandanan S, Zhang K, Zhang Y, Sze CW, Priya R, Luo Y, Lynch MJ, Crane BR, Li C, Yang XF. MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598185. [PMID: 38915556 PMCID: PMC11195095 DOI: 10.1101/2024.06.10.598185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen, adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well established as essential for its enzootic cycle, the function of methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear. In this study, we demonstrate that MCP5, one of the most abundant MCPs in B. burgdorferi, is differentially expressed in response to environmental signals as well as at different stages of the pathogen's enzootic cycle. Specifically, the expression of mcp5 is regulated by the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, which are critical for the spirochete's colonization of the tick vector and mammalian host, respectively. Infection experiments with an mcp5 mutant revealed that spirochetes lacking MCP5 could not establish infections in either C3H/HeN mice or Severe Combined Immunodeficiency (SCID) mice, which are defective in adaptive immunity, indicating the essential role of MCP5 in mammalian infection. However, the mcp5 mutant could establish infection and disseminate in NOD SCID Gamma (NSG) mice, which are deficient in both adaptive and most innate immune responses, suggesting a crucial role of MCP5 in evading host innate immunity. In the tick vector, the mcp5 mutants survived feeding but failed to transmit to mice, highlighting the importance of MCP5 in transmission. Our findings reveal that MCP5, regulated by the Rrp1 and Rrp2 pathways, is critical for the establishment of infection in mammalian hosts by evading host innate immunity and is important for the transmission of spirochetes from ticks to mammalian hosts, underscoring its potential as a target for intervention strategies.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Yan Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Luo
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
86
|
Bittrich S, Segura J, Duarte JM, Burley SK, Rose Y. RCSB protein Data Bank: exploring protein 3D similarities via comprehensive structural alignments. Bioinformatics 2024; 40:btae370. [PMID: 38870521 PMCID: PMC11212067 DOI: 10.1093/bioinformatics/btae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
MOTIVATION Tools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. RESULTS We introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith-Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. AVAILABILITY AND IMPLEMENTATION The alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d).
Collapse
Affiliation(s)
- Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, United States
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, United States
| | - Jose M Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, United States
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, United States
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, United States
| |
Collapse
|
87
|
Kita A, Ishida Y, Shimosaka T, Michimori Y, Makarova K, Koonin E, Atomi H, Miki K. Crystal structure of GTP-dependent dephospho-coenzyme A kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis. Proteins 2024; 92:768-775. [PMID: 38235908 DOI: 10.1002/prot.26666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Yuna Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Shimosaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kira Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, USA
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, USA
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
88
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
89
|
Wang M, Li WW, Cao Z, Sun J, Xiong J, Tao SQ, Lv T, Gao K, Luo S, Dong SH. Genome mining of sulfonated lanthipeptides reveals unique cyclic peptide sulfotransferases. Acta Pharm Sin B 2024; 14:2773-2785. [PMID: 38828142 PMCID: PMC11143521 DOI: 10.1016/j.apsb.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 06/05/2024] Open
Abstract
Although sulfonation plays crucial roles in various biological processes and is frequently utilized in medicinal chemistry to improve water solubility and chemical diversity of drug leads, it is rare and underexplored in ribosomally synthesized and post-translationally modified peptides (RiPPs). Biosynthesis of RiPPs typically entails modification of hydrophilic residues, which substantially increases their chemical stability and bioactivity, albeit at the expense of reducing water solubility. To explore sulfonated RiPPs that may have improved solubility, we conducted co-occurrence analysis of RiPP class-defining enzymes and sulfotransferase (ST), and discovered two distinctive biosynthetic gene clusters (BGCs) encoding both lanthipeptide synthetase (LanM) and ST. Upon expressing these BGCs, we characterized the structures of novel sulfonated lanthipeptides and determined the catalytic details of LanM and ST. We demonstrate that SslST-catalyzed sulfonation is leader-independent but relies on the presence of A ring formed by LanM. Both LanM and ST are promiscuous towards residues in the A ring, but ST displays strict regioselectivity toward Tyr5. The recognition of cyclic peptide by ST was further discussed. Bioactivity evaluation underscores the significance of the ST-catalyzed sulfonation. This study sets up the starting point to engineering the novel lanthipeptide STs as biocatalysts for hydrophobic lanthipeptides improvement.
Collapse
Affiliation(s)
| | | | - Zhe Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Si-Qin Tao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
90
|
Aguirre-Sampieri S, Casañal A, Emsley P, Garza-Ramos G. Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis. J Struct Biol 2024; 216:108093. [PMID: 38615726 PMCID: PMC7616060 DOI: 10.1016/j.jsb.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.
Collapse
Affiliation(s)
- Sergio Aguirre-Sampieri
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico
| | - Ana Casañal
- Human Technopole, Palazzo Italia, Viale Rita Levi‑Montalcini, 1, 20157 Milan, Italy
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Structural Studies Division, Francis Crick Avenue, CB2 0QH Cambridge, England
| | - Georgina Garza-Ramos
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico.
| |
Collapse
|
91
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
92
|
Yan Y, Xiao J, Huang F, Xian W, Yu B, Cheng R, Wu H, Lu X, Wang X, Huang W, Li J, Oyejobi GK, Robinson CV, Wu H, Wu D, Liu X, Wang L, Zhu B. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway. Nat Microbiol 2024; 9:1566-1578. [PMID: 38649411 DOI: 10.1038/s41564-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The cyclic-oligonucleotide-based anti-phage signalling system (CBASS) is a type of innate prokaryotic immune system. Composed of a cyclic GMP-AMP synthase (cGAS) and CBASS-associated proteins, CBASS uses cyclic oligonucleotides to activate antiviral immunity. One major class of CBASS contains a homologue of eukaryotic ubiquitin-conjugating enzymes, which is either an E1-E2 fusion or a single E2. However, the functions of single E2s in CBASS remain elusive. Here, using biochemical, genetic, cryo-electron microscopy and mass spectrometry investigations, we discover that the E2 enzyme from Serratia marcescens regulates cGAS by imitating the ubiquitination cascade. This includes the processing of the cGAS C terminus, conjugation of cGAS to a cysteine residue, ligation of cGAS to a lysine residue, cleavage of the isopeptide bond and poly-cGASylation. The poly-cGASylation activates cGAS to produce cGAMP, which acts as an antiviral signal and leads to cell death. Thus, our findings reveal a unique regulatory role of E2 in CBASS.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| | - Wei Xian
- Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Huang
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Greater Kayode Oyejobi
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Xiaoyun Liu
- Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Longfei Wang
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| |
Collapse
|
93
|
Pramanik A, Datta S. Structural and functional insights of itaconyl-CoA hydratase from Pseudomonas aeruginosa highlight a novel N-terminal hotdog fold. FEBS Lett 2024; 598:1387-1401. [PMID: 38575551 DOI: 10.1002/1873-3468.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Itaconyl-CoA hydratase in Pseudomonas aeruginosa (PaIch) converts itaconyl-CoA to (S)-citramalyl-CoA upon addition of a water molecule, a part of an itaconate catabolic pathway in virulent organisms required for their survival in humans host cells. Crystal structure analysis of PaIch showed that a unique N-terminal hotdog fold containing a 4-residue short helical segment α3-, named as an "eaten sausage", followed by a flexible loop region slipped away from the conserved β-sheet scaffold, whereas the C-terminal hotdog fold is similar to all MaoC. A conserved hydratase motif with catalytic residues provides mechanistic insights into catalysis, and existence of a longer substrate binding tunnel may suggest the binding of longer CoA derivatives.
Collapse
Affiliation(s)
- Atanu Pramanik
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Saumen Datta
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
94
|
Amorim VMDF, Soares EP, Ferrari ASDA, Merighi DGS, de Souza RF, Guzzo CR, de Souza AS. 3-Chymotrypsin-like Protease (3CLpro) of SARS-CoV-2: Validation as a Molecular Target, Proposal of a Novel Catalytic Mechanism, and Inhibitors in Preclinical and Clinical Trials. Viruses 2024; 16:844. [PMID: 38932137 PMCID: PMC11209289 DOI: 10.3390/v16060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| |
Collapse
|
95
|
Moore CJ, Bornemann TLV, Figueroa-Gonzalez PA, Esser SP, Moraru C, Soares AR, Hinzke T, Trautwein-Schult A, Maaß S, Becher D, Starke J, Plewka J, Rothe L, Probst AJ. Time-series metaproteogenomics of a high-CO 2 aquifer reveals active viruses with fluctuating abundances and broad host ranges. MICROLIFE 2024; 5:uqae011. [PMID: 38855384 PMCID: PMC11162154 DOI: 10.1093/femsml/uqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.
Collapse
Affiliation(s)
- Carrie Julia Moore
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Cristina Moraru
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - André Rodrigues Soares
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Tjorven Hinzke
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489 Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Lousia Rothe
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
96
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A 2024; 121:e2321190121. [PMID: 38687783 PMCID: PMC11087766 DOI: 10.1073/pnas.2321190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.
Collapse
Affiliation(s)
- Chase J. Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Eray Enustun
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Emily G. Armbruster
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Erica A. Birkholz
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Amy Prichard
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Taylor Forman
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Ann Aindow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Wichanan Wannasrichan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Sela Peters
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Koe Inlow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Isabelle L. Shepherd
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Alma Razavilar
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Kit Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Elizabeth Villa
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California San Diego, La Jolla, CA92093
| | - Kevin D. Corbett
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Joe Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
97
|
Wu Y, Ding C, Sharif B, Weinreb A, Swaim G, Hao H, Yogev S, Watanabe S, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. J Cell Biol 2024; 223:e202305105. [PMID: 38470363 PMCID: PMC10932739 DOI: 10.1083/jcb.202305105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Mitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 binding to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1, and metaxin2. We conclude that transport complexes containing kinesin-1 and RIC-7 polarize at the leading edge of mitochondria and are required for anterograde axonal transport in C. elegans.
Collapse
Affiliation(s)
- Youjun Wu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Chen Ding
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Behrang Sharif
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Weinreb
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Grace Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Hao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
98
|
Bang J, Park J, Lee SH, Jang J, Hwang J, Kamarov O, Park HJ, Lee SJ, Seo MD, Won HS, Seok SH, Kim JH. Nontraditional Roles of Magnesium Ions in Modulating Sav2152: Insight from a Haloacid Dehalogenase-like Superfamily Phosphatase from Staphylococcus aureus. Int J Mol Sci 2024; 25:5021. [PMID: 38732240 PMCID: PMC11084212 DOI: 10.3390/ijms25095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.
Collapse
Affiliation(s)
- Jaeseok Bang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Sung-Hee Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jinhwa Jang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Junwoo Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Otabek Kamarov
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Hae-Joon Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 632433, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| |
Collapse
|
99
|
Vargas JA, Sculaccio SA, Pinto APA, Pereira HD, Mendes LFS, Flores JF, Cobos M, Castro JC, Garratt RC, Leonardo DA. Structural insights into the Smirnoff-Wheeler pathway for vitamin C production in the Amazon fruit camu-camu. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2754-2771. [PMID: 38224521 DOI: 10.1093/jxb/erae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.
Collapse
Affiliation(s)
- Jhon A Vargas
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Susana A Sculaccio
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Humberto D'Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Luis F S Mendes
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Jhoao F Flores
- Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, Campinas, SP 13083-862, Brazil
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
100
|
Bhoobalan-Chitty Y, Xu S, Martinez-Alvarez L, Karamycheva S, Makarova KS, Koonin EV, Peng X. Regulatory sequence-based discovery of anti-defense genes in archaeal viruses. Nat Commun 2024; 15:3699. [PMID: 38698035 PMCID: PMC11065993 DOI: 10.1038/s41467-024-48074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.
Collapse
Affiliation(s)
| | - Shuanshuan Xu
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|