51
|
Mong SK, Cochran FV, Yu H, Graziano Z, Lin YS, Cochran JR, Pentelute BL. Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 2017; 56:5720-5725. [PMID: 28952732 DOI: 10.1021/acs.biochem.7b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.
Collapse
Affiliation(s)
- Surin K Mong
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frank V Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Zachary Graziano
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
52
|
Lal S, Raffel C. Using Cystine Knot Proteins as a Novel Approach to Retarget Oncolytic Measles Virus. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:57-66. [PMID: 29367943 PMCID: PMC5771132 DOI: 10.1016/j.omto.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Modified measles virus (MV) has effective oncolytic activity preclinically and is currently being investigated in clinical trials for various types of cancer. We investigated the use of cystine knot proteins (CKPs) to direct MV activity. CKPs are short polypeptides that bind their targets with high affinity. We used a CKP that binds αvβ3, αvβ5, and α5β1 integrins with single-digit nanomolar affinity to retarget MV to the integrins (MV-CKPint). MV-CKPint infected, replicated in, and killed human glioblastoma, medulloblastoma, diffuse intrinsic pontine glioma (DIPG), and melanoma cancer cells in vitro, all of which express the target integrins. MV-CKPint activity was competitively blocked by echistatin, an integrin binding peptide. When the CKP was cleaved from the viral H protein at an included protease site, virus activity was abrogated. When delivered intravenously (i.v.), the retargeted virus reached a subcutaneous glioblastoma tumor bed and produced cytopathic effects similar to that shown by intratumoral injection of the virus. Because these target integrins are overexpressed by tumor vascular endothelium, MV-CKPint may allow for effective therapy with i.v. injection. These results indicate for the first time that CKPs can be used to retarget MV for a receptor of choice. In addition, MV-CKPint provides proof of principle for the use of a CKP of interest to retarget any enveloped virus for both oncolytic and gene therapy purposes.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Corey Raffel
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
53
|
Sankaran S, Cavatorta E, Huskens J, Jonkheijm P. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8813-8820. [PMID: 28514856 PMCID: PMC5588093 DOI: 10.1021/acs.langmuir.7b00702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV2+). The binding affinity of the knottins with CB[8] and MV2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Emanuela Cavatorta
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
54
|
Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol 2017; 102:630-641. [DOI: 10.1016/j.ijbiomac.2017.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
55
|
Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 2017; 26:2797-2806. [PMID: 28893601 DOI: 10.1016/j.bmc.2017.08.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Accounting for 16 million new cases and 9 million deaths annually, cancer leaves a great number of patients helpless. It is a complex disease and still a major challenge for the scientific and medical communities. The efficacy of conventional chemotherapies is often poor and patients suffer from off-target effects. Each neoplasm exhibits molecular signatures - sometimes in a patient specific manner - that may completely differ from the organ of origin, may be expressed in markedly higher amounts and/or in different location compared to the normal tissue. Although adding layers of complexity in the understanding of cancer biology, this cancer-specific signature provides an opportunity to develop targeting agents for early detection, diagnosis, and therapeutics. Chimeric antibodies, recombinant proteins or synthetic polypeptides have emerged as excellent candidates for specific homing to peripheral and central nervous system cancers. Specifically, peptide ligands benefit from their small size, easy and affordable production, high specificity, and remarkable flexibility regarding their sequence and conjugation possibilities. Coupled to imaging agents, chemotherapies and/or nanocarriers they have shown to increase the on-site delivery, thus allowing better tumor mass contouring in imaging and increased efficacy of the chemotherapies associated with reduced adverse effects. Therefore, some of the peptides alone or in combination have been tested in clinical trials to treat patients. Peptides have been well-tolerated and shown absence of toxicity. This review aims to offer a view on tumor targeting peptides that are either derived from natural peptide ligands or identified using phage display screening. We also include examples of peptides targeting the high-grade malignant tumors of the central nervous system as an example of the complex therapeutic management due to the tumor's location. Peptide vaccines are outside of the scope of this review.
Collapse
|
56
|
Bernhagen D, De Laporte L, Timmerman P. High-Affinity RGD-Knottin Peptide as a New Tool for Rapid Evaluation of the Binding Strength of Unlabeled RGD-Peptides to α vβ 3, α vβ 5, and α 5β 1 Integrin Receptors. Anal Chem 2017; 89:5991-5997. [PMID: 28492301 DOI: 10.1021/acs.analchem.7b00554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a highly sensitive competition ELISA to measure integrin-binding of RGD-peptides in high-throughput without using cells, ECM-proteins, or antibodies. The assay measures (nonlabeled) RGD-peptides' ability to inhibit binding of a biotinylated "knottin"-RGD peptide to surface-immobilized integrins and, thus, enables quantification of the binding strength of high-, medium-, and low-affinity RGD-binders. We introduced the biotinylated knottin-RGD peptide instead of biotinylated cyclo[RGDfK] (as reported by Piras et al.), as integrin-binding was much stronger and clearly detectable for all three integrins. In order to maximize sensitivity and cost-efficiency, we first optimized several parameters, such as integrin-immobilization levels, knottin-RGD concentration, buffer compositions, type of detection tag (biotin, His- or cMyc-tag), and spacer length. We thereby identified two key factors, that is, (i) the critical spacer length (longer than Gly) and (ii) the presence of Ca2+ and Mg2+ in all incubation and washing buffers. Binding of knottin-RGD peptide was strongest for αvβ3 but also detectable for both αvβ5 and α5β1, while binding of biotinylated cyclo[RGDfK] was very weak and only detectable for αvβ3. For assay validation, we finally determined IC50 values for three unlabeled peptides, that is: (i) linear GRGDS, (ii) cyclo[RGDfK], and (iii) the knottin-RGD itself for binding to three different integrin receptors (αvβ3, αvβ5, α5β1). Major benefits of the novel assay are (i) the extremely low consumption of integrin (50 ng/peptide), (ii) the fact that neither antibodies/ECM-proteins nor integrin-expressing cells are required for detection, and (iii) its suitability for high-throughput screening of (RGD-)peptide libraries.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Peter Timmerman
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam , Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Kwan BH, Zhu EF, Tzeng A, Sugito HR, Eltahir AA, Ma B, Delaney MK, Murphy PA, Kauke MJ, Angelini A, Momin N, Mehta NK, Maragh AM, Hynes RO, Dranoff G, Cochran JR, Wittrup KD. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med 2017; 214:1679-1690. [PMID: 28473400 PMCID: PMC5460993 DOI: 10.1084/jem.20160831] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/25/2016] [Accepted: 03/23/2017] [Indexed: 01/02/2023] Open
Abstract
Integrin targeting for cancer has primarily focused on antagonizing integrin function, which has been clinically ineffective to date. In this study, Kwan et al. repurpose integrins as a beacon for recruiting immune effector functions to bolster current cancer immunotherapy approaches. Certain RGD-binding integrins are required for cell adhesion, migration, and proliferation and are overexpressed in most tumors, making them attractive therapeutic targets. However, multiple integrin antagonist drug candidates have failed to show efficacy in cancer clinical trials. In this work, we instead exploit these integrins as a target for antibody Fc effector functions in the context of cancer immunotherapy. By combining administration of an engineered mouse serum albumin/IL-2 fusion with an Fc fusion to an integrin-binding peptide (2.5F-Fc), significant survival improvements are achieved in three syngeneic mouse tumor models, including complete responses with protective immunity. Functional integrin antagonism does not contribute significantly to efficacy; rather, this therapy recruits both an innate and adaptive immune response, as deficiencies in either arm result in reduced tumor control. Administration of this integrin-targeted immunotherapy together with an anti–PD-1 antibody further improves responses and predominantly results in cures. Overall, this well-tolerated therapy achieves tumor specificity by redirecting inflammation to a functional target fundamental to tumorigenic processes but expressed at significantly lower levels in healthy tissues, and it shows promise for translation.
Collapse
Affiliation(s)
- Byron H Kwan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric F Zhu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alice Tzeng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Harun R Sugito
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ahmed A Eltahir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Botong Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary K Delaney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patrick A Murphy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Monique J Kauke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alessandro Angelini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Noor Momin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Naveen K Mehta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alecia M Maragh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA 94305.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 .,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
58
|
Zheng Y, Li Z, Ren J, Liu W, Wu Y, Zhao Y, Wu C. Artificial disulfide-rich peptide scaffolds with precisely defined disulfide patterns and a minimized number of isomers. Chem Sci 2017; 8:2547-2552. [PMID: 28553486 PMCID: PMC5431680 DOI: 10.1039/c6sc05710a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich peptides are emerging as potential templates for drug design applications. However, the synthesis and reengineering of disulfide-rich peptides are challenging, owing to the complexity of the oxidative folding process involving a number of diverse isomeric structures. Novel disulfide-rich peptide scaffolds that are not besieged by their disulfide isomers are still greatly desired. In this work, we report the design and synthesis of a novel class of artificial disulfide-rich peptide scaffolds with precisely defined disulfide patterns and a minimized number of isomers. In theory, natural peptides with three disulfide bonds have 15 possible isomers. By rationally engineering the thiol-framework of a peptide containing six cysteines with penicillamines and a dithiol amino acid, we demonstrated, for the first time, that the total number of isomers formed after oxidative folding can be decreased to a minimum of two (i.e., from 15 to 2). As fewer isomeric folds are involved in the oxidative folding, the pathway of the folding becomes more concise and the yield of the artificial scaffolds is substantially increased compared to that of its six-cysteine-containing analogue, which makes the artificial disulfide-rich scaffolds (with only 2 predefined isomeric folds) extremely promising for being exploited as structurally complex templates for the design of peptide therapeutics and ligands.
Collapse
Affiliation(s)
- Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Jing Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Weidong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Yaqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P.R. China .
| |
Collapse
|
59
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
60
|
Molesini B, Treggiari D, Dalbeni A, Minuz P, Pandolfini T. Plant cystine-knot peptides: pharmacological perspectives. Br J Clin Pharmacol 2017; 83:63-70. [PMID: 26987851 PMCID: PMC5338163 DOI: 10.1111/bcp.12932] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/29/2022] Open
Abstract
Cystine-knot miniproteins are a class of 30-50 amino acid long peptides widespread in eukaryotic organisms. Due to their very peculiar three-dimensional structure, they exhibit high resistance to heat and peptidase attack. The cystine-knot peptides are well represented in several plant species including medicinal herbs and crops. The pharmacological interest in plant cystine-knot peptides derives from their broad biological activities, mainly cytotoxic, antimicrobial and peptidase inhibitory and in the possibility to engineer them to incorporate pharmacophoric information for oral delivery or disease biomonitoring. The mechanisms of action of plant cystine-knot peptides are still largely unknown, although the capacity to interfere with plasma membranes seems a feature common to several cystine-knot peptides. In some cases, such as potato carboxypetidase inhibitor (PCI) and tomato cystine-knot miniproteins (TCMPs), the cystine-knot peptides target human growth factor receptors either by acting as growth factor antagonist or by altering their signal transduction pathway. The possibility to identify specific molecular targets of plant cystine-knot peptides in human cells opens novel possibilities for the pharmacological use of these peptides besides their use as scaffold to develop stable disease molecular markers and therapeutic agents.
Collapse
Affiliation(s)
| | - Davide Treggiari
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | - Andrea Dalbeni
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | - Pietro Minuz
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | | |
Collapse
|
61
|
van Rosmalen M, Janssen BMG, Hendrikse NM, van der Linden AJ, Pieters PA, Wanders D, de Greef TFA, Merkx M. Affinity Maturation of a Cyclic Peptide Handle for Therapeutic Antibodies Using Deep Mutational Scanning. J Biol Chem 2016; 292:1477-1489. [PMID: 27974464 DOI: 10.1074/jbc.m116.764225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Indexed: 11/06/2022] Open
Abstract
Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging, and therapeutic drug monitoring. Here we show that the affinity of a recently reported meditope for cetuximab can be substantially enhanced using a combination of yeast display and deep mutational scanning. Deep sequencing was used to construct a fitness landscape of this protein-peptide interaction, and four mutations were identified that together improved the affinity for cetuximab 10-fold to 15 nm Importantly, the increased affinity translated into enhanced cetuximab-mediated recruitment to EGF receptor-overexpressing cancer cells. Although in silico Rosetta simulations correctly identified positions that were tolerant to mutation, modeling did not accurately predict the affinity-enhancing mutations. The experimental approach reported here should be generally applicable and could be used to develop meditope peptides with low nanomolar affinity for other therapeutic antibodies.
Collapse
Affiliation(s)
- Martijn van Rosmalen
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Brian M G Janssen
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Natalie M Hendrikse
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J van der Linden
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A Pieters
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Dave Wanders
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tom F A de Greef
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- From the Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
62
|
Bhardwaj G, Mulligan VK, Bahl CD, Gilmore JM, Harvey PJ, Cheneval O, Buchko GW, Pulavarti SV, Kaas Q, Eletsky A, Huang PS, Johnsen WA, Greisen P, Rocklin GJ, Song Y, Linsky TW, Watkins A, Rettie SA, Xu X, Carter LP, Bonneau R, Olson JM, Coutsias E, Correnti CE, Szyperski T, Craik DJ, Baker D. Accurate de novo design of hyperstable constrained peptides. Nature 2016; 538:329-335. [PMID: 27626386 PMCID: PMC5161715 DOI: 10.1038/nature19791] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.
Collapse
Affiliation(s)
- Gaurav Bhardwaj
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Vikram Khipple Mulligan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Christopher D. Bahl
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jason M. Gilmore
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Peta J. Harvey
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Diseases, Earth, and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | - Quentin Kaas
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Alexander Eletsky
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - William A. Johnsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Per Greisen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Global Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Gabriel J. Rocklin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Cyrus Biotechnology, Seattle, Washington 98109, USA
| | - Thomas W. Linsky
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Andrew Watkins
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Stephen A. Rettie
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Xianzhong Xu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Lauren P. Carter
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Computational Biology, Simons Foundation, NY, NY 10010
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Evangelos Coutsias
- Applied Mathematics and Statistics and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Colin E. Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
63
|
Gao X, Stanger K, Kaluarachchi H, Maurer T, Ciepla P, Chalouni C, Franke Y, Hannoush RN. Cellular uptake of a cystine-knot peptide and modulation of its intracellular trafficking. Sci Rep 2016; 6:35179. [PMID: 27734922 PMCID: PMC5062073 DOI: 10.1038/srep35179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
Cyclotides or cyclic cystine-knot peptides have emerged as a promising class of pharmacological ligands that modulate protein function. Interestingly, very few cyclotides have been shown to enter into cells. Yet, it remains unknown whether backbone cyclization is required for their cellular internalization. In this report, we studied the cellular behavior of EETI-II, a model acyclic cystine-knot peptide. Even though synthetic methods have been used to generate EETI-II, recombinant methods that allow efficient large scale biosynthesis of EETI-II have been lagging. Here, we describe a novel protocol for recombinant generation of folded EETI-II in high yields and to near homogeneity. We also uncover that EETI-II is efficiently uptaken via an active endocytic pathway to early endosomes in mammalian cells, eventually accumulating in late endosomes and lysosomes. Notably, co-incubation with a cell-penetrating peptide enhanced the cellular uptake and altered the trafficking of EETI-II, leading to its evasion of lysosomes. Our results demonstrate the feasibility of modulating the subcellular distribution and intracellular targeting of cystine-knot peptides, and hence enable future exploration of their utility in drug discovery and delivery.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Karen Stanger
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Harini Kaluarachchi
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Till Maurer
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Paulina Ciepla
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Cecile Chalouni
- Department of Pathology, Genentech, South San Francisco, California
| | - Yvonne Franke
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| |
Collapse
|
64
|
Kintzing JR, Cochran JR. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol 2016; 34:143-150. [PMID: 27642714 DOI: 10.1016/j.cbpa.2016.08.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Inhibitor cystine-knots, also known as knottins, are a structural family of ultra-stable peptides with diverse functions. Knottins and related backbone-cyclized peptides called cyclotides contain three disulfide bonds connected in a particular arrangement that endows these peptides with high thermal, proteolytic, and chemical stability. Knottins have gained interest as candidates for non-invasive molecular imaging and for drug development as they can possess the pharmacological properties of small molecules and the target affinity and selectively of protein biologics. Naturally occurring knottins are clinically approved for treating chronic pain and GI disorders. Combinatorial methods are being used to engineer knottins that can bind to other clinically relevant targets in cancer, and inflammatory and cardiac disease. This review details recent examples of engineered knottin peptides; their use as molecular imaging agents, therapeutics, and drug delivery vehicles; modifications that can be introduced to improve peptide folding and bioactivity; and future perspectives and challenges in the field.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, United States; Department of Chemical Engineering, Stanford University, United States.
| |
Collapse
|
65
|
Levin VA, Tonge PJ, Gallo JM, Birtwistle MR, Dar AC, Iavarone A, Paddison PJ, Heffron TP, Elmquist WF, Lachowicz JE, Johnson TW, White FM, Sul J, Smith QR, Shen W, Sarkaria JN, Samala R, Wen PY, Berry DA, Petter RC. CNS Anticancer Drug Discovery and Development Conference White Paper. Neuro Oncol 2016; 17 Suppl 6:vi1-26. [PMID: 26403167 DOI: 10.1093/neuonc/nov169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.
Collapse
Affiliation(s)
- Victor A Levin
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Peter J Tonge
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - James M Gallo
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Marc R Birtwistle
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Arvin C Dar
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Antonio Iavarone
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick J Paddison
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Timothy P Heffron
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - William F Elmquist
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jean E Lachowicz
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ted W Johnson
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Forest M White
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Joohee Sul
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Quentin R Smith
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Wang Shen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jann N Sarkaria
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ramakrishna Samala
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick Y Wen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Donald A Berry
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Russell C Petter
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| |
Collapse
|
66
|
Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-Targeting Knottin Peptide-Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nick Cox
- Stanford ChEM-H Medicinal Chemistry Knowledge Center; Stanford University; Stanford CA 94305 USA
| | - James R. Kintzing
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | - Mark Smith
- Stanford ChEM-H Medicinal Chemistry Knowledge Center; Stanford University; Stanford CA 94305 USA
| | - Gerald A. Grant
- Department of Neurosurgery; Stanford University; Stanford CA 94305 USA
| | | |
Collapse
|
67
|
Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-Targeting Knottin Peptide-Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angew Chem Int Ed Engl 2016; 55:9894-7. [PMID: 27304709 DOI: 10.1002/anie.201603488] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Antibody-drug conjugates (ADCs) offer increased efficacy and reduced toxicity compared to systemic chemotherapy. Less attention has been paid to peptide-drug delivery, which has the potential for increased tumor penetration and facile synthesis. We report a knottin peptide-drug conjugate (KDC) and demonstrate that it can selectively deliver gemcitabine to malignant cells expressing tumor-associated integrins. This KDC binds to tumor cells with low-nanomolar affinity, is internalized by an integrin-mediated process, releases its payload intracellularly, and is a highly potent inhibitor of brain, breast, ovarian, and pancreatic cancer cell lines. Notably, these features enable this KDC to bypass a gemcitabine-resistance mechanism found in pancreatic cancer cells. This work expands the therapeutic relevance of knottin peptides to include targeted drug delivery, and further motivates efforts to expand the drug-conjugate toolkit to include non-antibody protein scaffolds.
Collapse
Affiliation(s)
- Nick Cox
- Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, Stanford, CA, 94305, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark Smith
- Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, Stanford, CA, 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
68
|
Sankaran S, Stojanovic I, Barendregt A, Heck AJ, Schasfoort RB, Jonkheijm P. Scaffolding of Cystine-Stabilized Miniproteins. ChemistrySelect 2016. [DOI: 10.1002/slct.201600323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Bioinspired Molecular Engineering Laboratory; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Ivan Stojanovic
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Richard B.M. Schasfoort
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- IBIS Technologies; 7521 PR Enschede The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Bioinspired Molecular Engineering Laboratory; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
69
|
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Beyond the outer limits of nature by directed evolution. Biotechnol Adv 2016; 34:754-767. [PMID: 27064127 DOI: 10.1016/j.biotechadv.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Collapse
Affiliation(s)
- Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
70
|
Currier NV, Ackerman SE, Kintzing JR, Chen R, Filsinger Interrante M, Steiner A, Sato AK, Cochran JR. Targeted Drug Delivery with an Integrin-Binding Knottin-Fc-MMAF Conjugate Produced by Cell-Free Protein Synthesis. Mol Cancer Ther 2016; 15:1291-300. [PMID: 27197305 DOI: 10.1158/1535-7163.mct-15-0881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) have generated significant interest as targeted therapeutics for cancer treatment, demonstrating improved clinical efficacy and safety compared with systemic chemotherapy. To extend this concept to other tumor-targeting proteins, we conjugated the tubulin inhibitor monomethyl-auristatin-F (MMAF) to 2.5F-Fc, a fusion protein composed of a human Fc domain and a cystine knot (knottin) miniprotein engineered to bind with high affinity to tumor-associated integrin receptors. The broad expression of integrins (including αvβ3, αvβ5, and α5β1) on tumor cells and their vasculature makes 2.5F-Fc an attractive tumor-targeting protein for drug delivery. We show that 2.5F-Fc can be expressed by cell-free protein synthesis, during which a non-natural amino acid was introduced into the Fc domain and subsequently used for site-specific conjugation of MMAF through a noncleavable linker. The resulting knottin-Fc-drug conjugate (KFDC), termed 2.5F-Fc-MMAF, had approximately 2 drugs attached per KFDC. 2.5F-Fc-MMAF inhibited proliferation in human glioblastoma (U87MG), ovarian (A2780), and breast (MB-468) cancer cells to a greater extent than 2.5F-Fc or MMAF alone or added in combination. As a single agent, 2.5F-Fc-MMAF was effective at inducing regression and prolonged survival in U87MG tumor xenograft models when administered at 10 mg/kg two times per week. In comparison, tumors treated with 2.5F-Fc or MMAF were nonresponsive, and treatment with a nontargeted control, CTRL-Fc-MMAF, showed a modest but not significant therapeutic effect. These studies provide proof-of-concept for further development of KFDCs as alternatives to ADCs for tumor targeting and drug delivery applications. Mol Cancer Ther; 15(6); 1291-300. ©2016 AACR.
Collapse
Affiliation(s)
- Nicolas V Currier
- Division of Pediatric Hematology/Oncology, Stanford Medical School, Stanford, California
| | | | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California
| | - Rishard Chen
- Sutro Biopharma, Inc., South San Francisco, California
| | | | | | - Aaron K Sato
- Sutro Biopharma, Inc., South San Francisco, California
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California. Department of Chemical Engineering, Stanford University, Stanford, California.
| |
Collapse
|
71
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
72
|
Sankaran S, de Ruiter M, Cornelissen JJLM, Jonkheijm P. Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjug Chem 2015; 26:1972-80. [PMID: 26270829 DOI: 10.1021/acs.bioconjchem.5b00419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly synthesize a β-trypsin inhibitory knottin with supramolecular guest tags that enable it to adhere to self-assembled monolayers of the supramolecular host cucurbit[8]uril (CB[8]). We have described a strategy to easily express knottins in E. coli by conjugating them to a fluorescent protein after which they are cleaved and purified. Knottin constructs that varied in the number and position of the supramolecular tag at either the N- or C-termini or at both ends have been verified for their trypsin inhibitory function and CB[8]-binding properties in solution and on surfaces. All of the knottin constructs showed strong inhibition of trypsin with inhibition constants between 10 and 30 nM. Using microscale thermophoresis, we determined that the supramolecular guest tags on the knottins bind CB[8] with a Kd of ∼6 μM in solution. At the surface, strong divalent binding has been determined with a Kd of 0.75 μM in the case of the knottin with two supramolecular guest tags, whereas only weak monovalent binding occurred when only one guest tag was present. We also show successful supramolecular surface immobilization of the knottin using CB[8] and prove that they can be used to immobilize β-trypsin at the surface.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| | | | | | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| |
Collapse
|
73
|
Abstract
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.
Collapse
|
74
|
Kim JW, Cochran FV, Cochran JR. A chemically cross-linked knottin dimer binds integrins with picomolar affinity and inhibits tumor cell migration and proliferation. J Am Chem Soc 2014; 137:6-9. [PMID: 25486381 PMCID: PMC4304478 DOI: 10.1021/ja508416e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecules that target and inhibit
αvβ3, αvβ5, and α5β1 integrins have
generated great interest
because of the role of these receptors in mediating angiogenesis and
metastasis. Attempts to increase the binding affinity and hence the
efficacy of integrin inhibitors by dimerization have been marginally
effective. In the present work, we achieved this goal by using oxime-based
chemical conjugation to synthesize dimers of integrin-binding cystine
knot (knottin) miniproteins with low-picomolar binding affinity to
tumor cells. A non-natural amino acid containing an aminooxy side
chain was introduced at different locations within a knottin monomer
and reacted with dialdehyde-containing cross-linkers of different
lengths to create knottin dimers with varying molecular topologies.
Dimers cross-linked through an aminooxy functional group located near
the middle of the protein exhibited higher apparent binding affinity
to integrin-expressing tumor cells compared with dimers cross-linked
through an aminooxy group near the C-terminus. In contrast, the cross-linker
length had no effect on the integrin binding affinity. A chemical-based
dimerization strategy was critical, as knottin dimers created through
genetic fusion to a bivalent antibody domain exhibited only modest
improvement (less than 5-fold) in tumor cell binding relative to the
knottin monomer. The best oxime-conjugated knottin dimer achieved
an unprecedented 150-fold increase in apparent binding affinity over
the knottin monomer. Also, this dimer bound 3650-fold stronger and
inhibited tumor cell migration and proliferation compared with cilengitide,
an integrin-targeting peptidomimetic that performed poorly in recent
clinical trials, suggesting promise for further therapeutic development.
Collapse
Affiliation(s)
- Jun W Kim
- Departments of †Bioengineering and ‡Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
75
|
Holocyclotoxin-1, a cystine knot toxin from Ixodes holocyclus. Toxicon 2014; 90:308-17. [DOI: 10.1016/j.toxicon.2014.08.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/31/2023]
|
76
|
Ackerman SE, Wilson CM, Kahn SA, Kintzing JR, Jindal DA, Cheshier SH, Grant GA, Cochran JR. A Bioengineered Peptide that Localizes to and Illuminates Medulloblastoma: A New Tool with Potential for Fluorescence-Guided Surgical Resection. Cureus 2014; 6:e207. [PMID: 28729960 PMCID: PMC5515084 DOI: 10.7759/cureus.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tumors of the central nervous system are challenging to treat due to the limited effectiveness and associated toxicities of chemotherapy and radiation therapy. For tumors that can be removed surgically, extent of malignant tissue resection has been shown to correlate with disease progression, recurrence, and survival. Thus, improved technologies for real-time brain tumor imaging are critically needed as tools for guided surgical resection. We previously engineered a novel peptide that binds with high affinity and unique specificity to αVβ3, αVβ5, and α5β1 integrins, which are present on tumor cells, and the vasculature of many cancers, including brain tumors. In the current study, we conjugated this engineered peptide to a near infrared fluorescent dye (Alexa Fluor 680), and used the resulting molecular probe for non-invasive whole body imaging of patient-derived medulloblastoma xenograft tumors implanted in the cerebellum of mice. The engineered peptide exhibited robust targeting and illumination of intracranial medulloblastoma following both intravenous and intraperitoneal injection routes. In contrast, a variant of the engineered peptide containing a scrambled integrin-binding sequence did not localize to brain tumors, demonstrating that tumor-targeting is driven by specific integrin interactions. Ex vivo imaging was used to confirm the presence of tumor and molecular probe localization to the cerebellar region. These results warrant further clinical development of the engineered peptide as a tool for image-guided resection of central nervous system tumors.
Collapse
Affiliation(s)
| | | | - Suzana A. Kahn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Samuel H. Cheshier
- Department of Neurosurgery and Neurology, Stanford University School of Medicine & Lucile Packard Children’s Hospital, Department of Neurosurgery and Neurology, Stanford University School of Medicine & Lucile Packard Children’s Hospital at Stanford
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine
| | - Jennifer R. Cochran
- Department of Bioengineering and (by courtesy) Chemical Engineering, Stanford University
| |
Collapse
|
77
|
Ackerman SE, Currier NV, Bergen JM, Cochran JR. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Rev Proteomics 2014; 11:561-72. [DOI: 10.1586/14789450.2014.932251] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Patent Highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development
Collapse
|
79
|
Jiang L, Kimura RH, Ma X, Tu Y, Miao Z, Shen B, Chin FT, Shi H, Gambhir SS, Cheng Z. A radiofluorinated divalent cystine knot peptide for tumor PET imaging. Mol Pharm 2014; 11:3885-92. [PMID: 24717098 PMCID: PMC4212002 DOI: 10.1021/mp500018s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A divalent
knottin containing two separate integrin binding epitopes
(RGD) in the adjacent loops, 3-4A, was recently developed and reported
in our previous publication. In the current study, 3-4A was radiofluorinated
with a 4-nitrophenyl 2-18F-fluoropropinate (18F-NFP) group and the resulting divalent positron emission tomography
(PET) probe, 18F-FP–3-4A, was evaluated as a novel
imaging probe to detect integrin αvβ3 positive tumors
in living animals. Knottin 3-4A was synthesized by solid phase peptide
synthesis, folded, and site-specifically conjugated with 18/19F-NFP to produce the fluorinated peptide 18/19F-fluoropropinate-3-4A
(18/19F-FP–3-4A). The stability of 18F-FP–3-4A was tested in both phosphate buffered saline (PBS)
buffer and mouse serum. Cell uptake assays of the radiolabeled peptides
were performed using U87MG cells. In addition, small animal PET imaging
and biodistribution studies of 18F-FP–3-4A were
performed in U87MG tumor-bearing mice. The receptor targeting specificity
of the radiolabeled peptide was also verified by coinjecting the probe
with a blocking peptide cyclo(RGDyK). Our study showed that 18F-FP–3-4A exhibited excellent stability in PBS buffer (pH
7.4) and mouse serum. Small animal PET imaging and biodistribution
data revealed that 18F-FP–3-4A exhibited rapid and
good tumor uptake (3.76 ± 0.59% ID/g and 2.22 ± 0.62% ID/g
at 0.5 and 1 h, respectively). 18F-FP–3-4A was rapidly
cleared from the normal tissues, resulting in excellent tumor-to-normal
tissue contrasts. For example, liver uptake was only 0.39 ± 0.07%
ID/g and the tumor to liver ratio was 5.69 at 1 h p.i. Furthermore,
coinjection of cyclo(RGDyK) with 18F-FP–3-4A significantly
inhibited tumor uptake (0.41 ± 0.12 vs 1.02 ± 0.19% ID/g
at 2.5 h) in U87MG xenograft models, demonstrating specific accumulation
of the probe in the tumor. In summary, the divalent probe 18F-FP–3-4A is characterized by rapid and high tumor uptake
and excellent tumor-to-normal tissue ratios. 18F-FP–3-4A
is a highly promising knottin based PET probe for translating into
clinical imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University , 180 Fenglin Road, Shanghai, China 200032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Brinkmann J, Cavatorta E, Sankaran S, Schmidt B, van Weerd J, Jonkheijm P. About supramolecular systems for dynamically probing cells. Chem Soc Rev 2014; 43:4449-69. [PMID: 24681633 DOI: 10.1039/c4cs00034j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the state of the art in the development of strategies for generating supramolecular systems for dynamic cell studies. Dynamic systems are crucial to further our understanding of cell biology and are consequently at the heart of many medical applications. Increasing interest has therefore been focused recently on rendering systems bioactive and dynamic that can subsequently be employed to engage with cells. Different approaches using supramolecular chemistry are reviewed with particular emphasis on their application in cell studies. We conclude with an outlook on future challenges for dynamic cell research and applications.
Collapse
Affiliation(s)
- Jenny Brinkmann
- MESA+ Institute for Nanotechnology and Department of Science and Technology, Laboratory Group of Bioinspired Molecular Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
81
|
Zhu X, Li J, Hong Y, Kimura RH, Ma X, Liu H, Qin C, Hu X, Hayes TR, Benny P, Gambhir SS, Cheng Z. 99mTc-labeled cystine knot peptide targeting integrin αvβ6 for tumor SPECT imaging. Mol Pharm 2014; 11:1208-17. [PMID: 24524409 PMCID: PMC3993876 DOI: 10.1021/mp400683q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Integrin
αvβ6 is overexpressed
in a variety of cancers, and its expression is often associated with
poor prognosis. Therefore, there is a need to develop affinity reagents
for noninvasive imaging of integrin αvβ6 expression since it may provide early cancer diagnosis, more
accurate prognosis, and better treatment planning. We recently engineered
and validated highly stable cystine knot peptides that selectively
bind integrin αvβ6 with no cross-reactivity
to integrins αvβ5, α5β1, or αvβ3, also
known to be overexpressed in many cancers. Here, we developed a single
photon emission computed tomography (SPECT) probe for imaging integrin
αvβ6 positive tumors. Cystine knot
peptide, S02, was first conjugated with a single amino
acid chelate (SAAC) and labeled with [99mTc(H2O)3(CO)3]+. The resulting probe, 99mTc-SAAC-S02, was then evaluated by in
vitro cell uptake studies using two αvβ6 positive cell lines (human lung adenocarcinoma cell line
HCC4006 and pancreatic cancer cell line BxPC-3) and two αvβ6 negative cell lines (human lung adenocarcinoma
cell line H838 and human embryonic kidney cell line 293T). Next, SPECT/CT
and biodistribution studies were performed in nude mice bearing HCC4006
and H838 tumor xenografts to evaluate the in vivo performance of 99mTc-SAAC-S02. Significant
differences in the uptake of 99mTc-SAAC-S02
were observed in αvβ6 positive vs
negative cells (P < 0.05). Biodistribution and
small animal SPECT/CT studies revealed that 99mTc-SAAC-S02 accumulated to moderate levels in antigen positive tumors
(∼2% ID/g at 1 and 6 h postinjection, n =
3 or 4/group). Moreover, the probe demonstrated tumor-to-background
tissue ratios of 6.81 ± 2.32 (tumor-to-muscle) and 1.63 ±
0.18 (tumor-to-blood) at 6 h postinjection in αvβ6 positive tumor xenografts. Co-incubation of the probe with
excess amount of unlabeled S02 as a blocking agent demonstrated
significantly reduced tumor uptake, which is consistent with specific
binding to the target. Renal filtration was the main route of clearance.
In conclusion, knottin peptides are excellent scaffolds for which
to develop highly stable imaging probes for a variety of oncological
targets. 99mTc-SAAC-S02 demonstrates promise
for use as a SPECT agent to image integrin αvβ6 expression in living systems.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305-5344, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kryshtafovych A, Moult J, Bales P, Bazan JF, Biasini M, Burgin A, Chen C, Cochran FV, Craig TK, Das R, Fass D, Garcia-Doval C, Herzberg O, Lorimer D, Luecke H, Ma X, Nelson DC, van Raaij MJ, Rohwer F, Segall A, Seguritan V, Zeth K, Schwede T. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10. Proteins 2014; 82 Suppl 2:26-42. [PMID: 24318984 PMCID: PMC4072496 DOI: 10.1002/prot.24489] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 11/12/2022]
Abstract
For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this article, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict transmembrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin (IL)-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fiber protein gene product 17 from bacteriophage T7; the bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally, an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616,
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA;
| | - Patrick Bales
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA;
| | - J. Fernando Bazan
- (1) Departments of Protein Engineering and (2) Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, (3) Present address: 44th & Aspen Life Sciences, 924 4th St. N., Stillwater, MN 55082,
| | - Marco Biasini
- (1) Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (2) SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, 4056 Basel, Switzerland;
| | - Alex Burgin
- Broad Institute, 5 Cambridge Center, Cambridge, MA 02142, USA;
| | - Chen Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA;
| | - Frank V. Cochran
- Department of Biochemistry, Stanford University, Stanford, California, 94305, USA;
| | | | - Rhiju Das
- (1) Department of Biochemistry, Stanford University, Stanford, California, 94305, USA; (2) Department of Physics, Stanford University, Stanford, California, 94305, USA,
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100 Israel, Tel: +972-8-934-3214; Fax: +972-8-934-4136;
| | - Carmela Garcia-Doval
- Centro Nactional de Biotecnologia (CNB-CSIC), calle Darwin 3, E-28049 Madrid, Spain.
| | - Osnat Herzberg
- (1) Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA; (2) Department of Chemistry and Biochemistry, University of Maryland, College Park;
| | - Donald Lorimer
- Emerald Bio, 7869 NE Day Rd W, Bainbridge Isle, WA 98110, USA;
| | - Hartmut Luecke
- Center for Biomembrane Systems and Depts. of Biochemistry, Biophysics & Computer Science, 3205 McGaugh Hall, University of California, Irvine, CA 92697-3900, USA;
| | - Xiaolei Ma
- (1) Departments of Protein Engineering and (2) Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080 (3) Present address: Novartis Institutes for Biomedical Research, 4560 Horton St., Emeryville, CA 94608, USA;
| | - Daniel C. Nelson
- (1) Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA; (2) Department of Veterinary Medicine, University of Maryland, College Park,
| | - Mark J. van Raaij
- Centro Nactional de Biotecnologia (CNB-CSIC), calle Darwin 3, E-28049 Madrid, Spain.
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182, USA;
| | - Anca Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, USA;
| | - Victor Seguritan
- Department of Biology, San Diego State University, San Diego, CA 9218
| | - Kornelius Zeth
- Unidad de Biofisica (CSIC-UPV/EHU), Barrio Sarriena s/n 48940, Leioa, Vizcaya, SPAIN, and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain;
| | - Torsten Schwede
- (1) Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (2) SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, 4056 Basel, Switzerland;
| |
Collapse
|
83
|
Knottins: disulfide-bonded therapeutic and diagnostic peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 9:e1-e70. [PMID: 24064239 DOI: 10.1016/j.ddtec.2011.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
84
|
von Recum HA, Pokorski JK. Peptide and protein-based inhibitors of HIV-1 co-receptors. Exp Biol Med (Maywood) 2013; 238:442-9. [PMID: 23856897 DOI: 10.1177/1535370213480696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) afflicts an estimated 30 million people globally, making it a continuing pandemic. Despite major research efforts, the rate of new infections has remained relatively static over time. This article reviews an emerging strategy for the treatment of HIV, the inhibition of the co-receptors necessary for HIV entry, CCR5 and CXCR4. The aim of this article is to highlight potential therapeutics derived from peptides and proteins that show particular promise in HIV treatment. Molecules that act on CCR5, CXCR4 or on both receptors will be discussed herein.
Collapse
Affiliation(s)
- Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
85
|
Moore SJ, Hayden Gephart MG, Bergen JM, Su YS, Rayburn H, Scott MP, Cochran JR. Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma. Proc Natl Acad Sci U S A 2013; 110:14598-603. [PMID: 23950221 PMCID: PMC3767496 DOI: 10.1073/pnas.1311333110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Departments of Bioengineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - Melanie G. Hayden Gephart
- Departments of Bioengineering
- Neurosurgery
- Developmental Biology
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - Jamie M. Bergen
- Departments of Bioengineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - YouRong S. Su
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Helen Rayburn
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Center for Children’s Brain Tumors
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Matthew P. Scott
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Jennifer R. Cochran
- Departments of Bioengineering
- Chemical Engineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| |
Collapse
|
86
|
Moore SJ, Leung CL, Norton HK, Cochran JR. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 2013; 8:e60498. [PMID: 23573262 PMCID: PMC3616073 DOI: 10.1371/journal.pone.0060498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. METHODOLOGY/PRINCIPAL FINDINGS We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. CONCLUSIONS/SIGNIFICANCE In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor-targeting knottins as probes for in vivo molecular imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Cheuk Lun Leung
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Heidi K. Norton
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Stanford Cancer Institute and Bio-X Program, Stanford, California, United States of America
| |
Collapse
|
87
|
|
88
|
Goswami S. Importance of integrin receptors in the field of pharmaceutical & medical science. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.32028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
89
|
A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids 2012; 44:673-81. [PMID: 22945905 DOI: 10.1007/s00726-012-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
A novel protein scaffold based on the cystine knot domain of the agouti-related protein (AgRP) has been used to engineer mutants that can bind to the α(v)β(3) integrin receptor with high affinity and specificity. In the current study, an (18)F-labeled AgRP mutant (7C) was prepared and evaluated as a positron emission tomography (PET) probe for imaging tumor angiogenesis. AgRP-7C was synthesized by solid phase peptide synthesis and site-specifically conjugated with 4-nitrophenyl 2-(18/19)F-fluoropropionate ((18/19)F-NFP) to produce the fluorinated peptide, (18/19)F-FP-AgRP-7C. Competition binding assays were used to measure the relative affinities of AgRP-7C and (19)F-FP-AgRP-7C to human glioblastoma U87MG cells that overexpress α(v)β(3) integrin. In addition, biodistribution, metabolic stability, and small animal PET imaging studies were conducted with (18)F-FP-AgRP-7C using U87MG tumor-bearing mice. Both AgRP-7C and (19)F-FP-AgRP-7C specifically competed with (125)I-echistatin for binding to U87MG cells with half maximal inhibitory concentration (IC(50)) values of 9.40 and 8.37 nM, respectively. Non-invasive small animal PET imaging revealed that (18)F-FP-AgRP-7C exhibited rapid and good tumor uptake (3.24 percentage injected dose per gram [% ID/g] at 0.5 h post injection [p.i.]). The probe was rapidly cleared from the blood and from most organs, resulting in excellent tumor-to-normal tissue contrasts. Tumor uptake and rapid clearance were further confirmed with biodistribution studies. Furthermore, co-injection of (18)F-FP-AgRP-7C with a large molar excess of blocking peptide c(RGDyK) significantly inhibited tumor uptake in U87MG xenograft models, demonstrating the integrin-targeting specificity of the probe. Metabolite assays showed that the probe had high stability, making it suitable for in vivo applications. (18)F-FP-AgRP-7C exhibits promising in vivo properties such as rapid tumor targeting, good tumor uptake, and excellent tumor-to-normal tissue ratios, and warrants further investigation as a novel PET probe for imaging tumor angiogenesis.
Collapse
|
90
|
Fabritz S, Hörner S, Könning D, Empting M, Reinwarth M, Dietz C, Glotzbach B, Frauendorf H, Kolmar H, Avrutina O. From pico to nano: biofunctionalization of cube-octameric silsesquioxanes by peptides and miniproteins. Org Biomol Chem 2012; 10:6287-93. [PMID: 22733169 DOI: 10.1039/c2ob25728a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhedral silsesquioxanes are considered valuable conjugation scaffolds. Nevertheless, only a few examples of silsesquioxane-assembled peptide oligomers have been reported to date. We developed a new bioorthogonal cube-octameric silsesquioxane (COSS) scaffold bearing eight aminooxy coupling sites allowing for the conjugation of diverse peptides via oxime ligation. We found that the coupling efficacy depends on the ligand in view of steric hindrance and electrostatic repulsion. For the first time scaffold-based conjugation of cystine-knot miniproteins having a backbone of about thirty amino acids was successfully accomplished without loss of bioactivity. Atomic force microscopy (AFM) provided further knowledge on the size of COSS verifying them as picoscaffolds growing upon bioconjugation to nano-dimension.
Collapse
Affiliation(s)
- Sebastian Fabritz
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Shetty D, Jeong JM, Shim H. Stroma targeting nuclear imaging and radiopharmaceuticals. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2012; 2012:817682. [PMID: 22685650 PMCID: PMC3364577 DOI: 10.1155/2012/817682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/29/2012] [Indexed: 01/27/2023]
Abstract
Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [(18)F]fluorodeoxyglucose ([(18)F]FDG)-PET is particularly useful. However, [(18)F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy.
Collapse
Affiliation(s)
- Dinesh Shetty
- Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive, C5008, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Jae-Min Jeong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 110744, Republic of Korea
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive, C5008, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
92
|
Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods 2012; 60:15-26. [PMID: 22465794 DOI: 10.1016/j.ymeth.2012.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
93
|
Abstract
Cystine-knot miniproteins, also known as knottins, contain a conserved core of three tightly woven disulfide bonds which impart extraordinary thermal and proteolytic stability. Interspersed between their conserved cysteine residues are constrained loops that possess high levels of sequence diversity among knottin family members. Together these attributes make knottins promising molecular scaffolds for protein engineering and translational applications. While naturally occurring knottins have shown potential as both diagnostic agents and therapeutics, protein engineering is playing an important and increasing role in creating designer molecules that bind to a myriad of biomedical targets. Toward this goal, rational and combinatorial approaches have been used to engineer knottins with novel molecular recognition properties. Here, methods are described for creating and screening knottin libraries using yeast surface display and fluorescence-activated cell sorting. Protocols are also provided for producing knottins by synthetic and recombinant methods, and for measuring the binding affinity of knottins to target proteins expressed on the cell surface.
Collapse
Affiliation(s)
- Sarah J Moore
- Department of Bioengineering, Cancer Institute, and Bio-X Program, Stanford University, Stanford, California, USA
| | | |
Collapse
|
94
|
Zoller F, Schwaebel T, Markert A, Haberkorn U, Mier W. Engineering and functionalization of the disulfide-constrained miniprotein min-23 as a scaffold for diagnostic application. ChemMedChem 2011; 7:237-47. [PMID: 22213706 DOI: 10.1002/cmdc.201100497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/25/2011] [Indexed: 11/06/2022]
Abstract
Miniproteins are scaffolds for the development of alternative non-immunoglobin binding agents for medical applications. This peptide format features high tolerance to sequence mutagenesis, excellent proteolytic stability, and fast blood pool clearance. Herein we present the total chemical synthesis of the disulfide-constrained scaffold Min-23 and its functionalization for in vitro and in vivo application. Optimized solid-phase peptide chemistry and oxidative folding strategies were developed to engineer this miniprotein with native-like disulfide configuration. High levels of serum stability and proteolytic resistance, as well as a beneficial pharmacokinetic profile for diagnostic imaging, were determined by using radiolabeling techniques such as positron emission tomography. The reported achievements highlight Min-23 as a promising scaffold for the development of novel recognition molecules for medical application.
Collapse
Affiliation(s)
- Frederic Zoller
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, INF 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
95
|
Liu S, Liu H, Ren G, Kimura RH, Cochran JR, Cheng Z. PET Imaging of Integrin Positive Tumors Using F Labeled Knottin Peptides. Am J Cancer Res 2011; 1:403-12. [PMID: 22211146 PMCID: PMC3248644 DOI: 10.7150/thno/v01p0403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/17/2011] [Indexed: 12/03/2022] Open
Abstract
Purpose: Cystine knot (knottin) peptides, engineered to bind with high affinity to integrin receptors, have shown promise as molecular imaging agents in living subjects. The aim of the current study was to evaluate tumor uptake and in vivo biodistribution of 18F-labeled knottins in a U87MG glioblastoma model. Procedures: Engineered knottin mutants 2.5D and 2.5F were synthesized using solid phase peptide synthesis and were folded in vitro, followed by radiolabeling with 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP). The resulting probes, 18F-FP-2.5D and 18F-FP-2.5F, were evaluated in nude mice bearing U87MG tumor xenografts using microPET and biodistribution studies. Results: MicroPET imaging studies with 18F-FP-2.5D and 18F-FP-2.5F demonstrated high tumor uptake in U87MG xenograft mouse models. The probes exhibited rapid clearance from the blood and kidneys, thus leading to excellent tumor-to-normal tissue contrast. Specificity studies confirmed that 18F-FP-2.5D and 18F-FP-2.5F had reduced tumor uptake when co-injected with a large excess of the peptidomimetic c(RGDyK) as a blocking agent. Conclusions: 18F-FP-2.5D and 18F-FP-2.5F showed reduced gallbladder uptake compared with previously published 18F-FB-2.5D. 18F-FP-2.5D and 18F-FP-2.5F enabled integrin-specific PET imaging of U87MG tumors with good imaging contrasts. 18F-FP-2.5D demonstrated more desirable pharmacokinetics compared to 18F-FP-2.5F, and thus has greater potential for clinical translation.
Collapse
|
96
|
Kimura RH, Teed R, Hackel BJ, Pysz MA, Chuang CZ, Sathirachinda A, Willmann JK, Gambhir SS. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin Cancer Res 2011; 18:839-49. [PMID: 22173551 DOI: 10.1158/1078-0432.ccr-11-1116] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Detection of pancreatic cancer remains a high priority and effective diagnostic tools are needed for clinical applications. Many cancer cells overexpress integrin α(v)β(6), a cell surface receptor being evaluated as a novel clinical biomarker. EXPERIMENTAL DESIGN To validate this molecular target, several highly stable cystine knot peptides were engineered by directed evolution to bind specifically and with high affinity (3-6 nmol/L) to integrin α(v)β(6). The binders do not cross-react with related integrin α(v)β(5), integrin α(5)β(1), or tumor-angiogenesis-associated integrin, α(v)β(3). RESULTS Positron emission tomography showed that these disulfide-stabilized peptides rapidly accumulate at tumors expressing integrin α(v)β(6). Clinically relevant tumor-to-muscle ratios of 7.7 ± 2.4 to 11.3 ± 3.0 were achieved within 1 hour after radiotracer injection. Minimization of off-target dosing was achieved by reformatting α(v)β(6)-binding activities across various natural and pharmacokinetically stabilized cystine knot scaffolds with different amino acid content. We show that the primary sequence of a peptide scaffold directs its pharmacokinetics. Scaffolds with high arginine or glutamic acid content suffered high renal retention of more than 75% injected dose per gram (%ID/g). Substitution of these amino acids with renally cleared amino acids, notably serine, led to significant decreases in renal accumulation of less than 20%ID/g 1 hour postinjection (P < 0.05, n = 3). CONCLUSIONS We have engineered highly stable cystine knot peptides with potent and specific integrin α(v)β(6)-binding activities for cancer detection. Pharmacokinetic engineering of scaffold primary sequence led to significant decreases in off-target radiotracer accumulation. Optimization of binding affinity, specificity, stability, and pharmacokinetics will facilitate translation of cystine knots for cancer molecular imaging.
Collapse
Affiliation(s)
- Richard H Kimura
- Canary Center for Cancer, Early Detection, Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Miao Z, Levi J, Cheng Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 2011; 41:1037-47. [PMID: 20174842 PMCID: PMC2914822 DOI: 10.1007/s00726-010-0503-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/25/2010] [Indexed: 01/18/2023]
Abstract
Protein scaffold molecules are powerful reagents for targeting various cell signal receptors, enzymes, cytokines and other cancer-related molecules. They belong to the peptide and small protein platform with distinct properties. For the purpose of development of new generation molecular probes, various protein scaffold molecules have been labeled with imaging moieties and evaluated both in vitro and in vivo. Among the evaluated probes Affibody molecules and analogs, cystine knot peptides, and nanobodies have shown especially good characteristics as protein scaffold platforms for development of in vivo molecular probes. Quantitative data obtained from positron emission tomography, single photon emission computed tomography/CT, and optical imaging together with biodistribution studies have shown high tumor uptakes and high tumor-to-blood ratios for these probes. High tumor contrast imaging has been obtained within 1 h after injection. The success of those molecular probes demonstrates the adequacy of protein scaffold strategy as a general approach in molecular probe development.
Collapse
Affiliation(s)
- Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA 94305-5344, USA
| | | | | |
Collapse
|
98
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
99
|
A novel 18F-labeled two-helix scaffold protein for PET imaging of HER2-positive tumor. Eur J Nucl Med Mol Imaging 2011; 38:1977-84. [PMID: 21761266 DOI: 10.1007/s00259-011-1879-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/28/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE Two-helix scaffold proteins (~ 5 kDa) against human epidermal growth factor receptor type 2 (HER2) have been discovered in our previous work. In this research we aimed to develop an (18)F-labeled two-helix scaffold protein for positron emission tomography (PET) imaging of HER2-positive tumors. METHODS An aminooxy-functionalized two-helix peptide (AO-MUT-DS) with high HER2 binding affinity was synthesized through conventional solid phase peptide synthesis. The purified linear peptide was cyclized by I(2) oxidation to form a disulfide bridge. The cyclic peptide was then conjugated with a radiofluorination synthon, 4-(18)F-fluorobenzyl aldehyde ((18)F-FBA), through the aminooxy functional group at the peptide N terminus (30% yield, non-decay corrected). The binding affinities of the peptides were analyzed by Biacore analysis. Cell uptake assay of the resulting PET probe, (18)F-FBO-MUT-DS, was performed at 37°C. (18)F-FBO-MUT-DS with high specific activity (20-32 MBq/nmol, 88-140 μCi/μg, end of synthesis) was injected into mice xenograft model bearing SKOV3 tumor. MicroPET and biodistribution and metabolic stability studies were then conducted. RESULTS Cell uptake assays showed high and specific cell uptake (~12% applied activity at 1 h) by incubation of (18)F-FBO-MUT-DS with HER2 high-expressing SKOV3 ovarian cancer cells. The affinities (K(D)) of AO-MUT-DS and FBO-MUT-DS as tested by Biacore analysis were 2 and 1 nM, respectively. In vivo small animal PET demonstrated fast tumor targeting, high tumor accumulation, and good tumor to normal tissue contrast of (18)F-FBO-MUT-DS. Biodistribution studies further revealed that the probe had excellent tumor uptake (6.9%ID/g at 1 h post-injection) and was cleared through both liver and kidneys. Co-injection of the probe with 500 μg of HER2 Affibody protein reduced the tumor uptake (6.9 vs 1.8%ID/g, p < 0.05). CONCLUSION F-FBO-MUT-DS displays excellent HER2 targeting ability and tumor PET imaging quality. The two-helix scaffold proteins are suitable for development of (18)F-based PET probes.
Collapse
|
100
|
Löfblom J, Frejd FY, Ståhl S. Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol 2011; 22:843-8. [PMID: 21726995 DOI: 10.1016/j.copbio.2011.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Non-immunoglobulin based protein scaffolds have been reported as promising alternatives to traditional monoclonal antibodies for over a decade and are often mentioned as part of the next-generation immunotherapeutics. Today, this class of biologics is beginning to demonstrate its potential for therapeutic applications and several are currently in preclinical or clinical development. A common denominator for most of these new scaffolds is the attractive properties that differentiate them from monoclonal antibodies including small size, cysteine-free sequence, flexible pharmacokinetic properties, and ease of generating multispecific molecules. In addition to therapeutic applications, substantial evidence point to superior performance of several of these scaffolds in molecular imaging compared to full-length antibodies. Here we review the most recent progress using alternative protein scaffolds for therapy and medical imaging.
Collapse
Affiliation(s)
- John Löfblom
- Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|