51
|
Veronica CS, Ivan GM, Francisco GG. Evolutionary consequences of pesticide exposure include transgenerational plasticity and potential terminal investment transgenerational effects. Evolution 2022; 76:2649-2668. [PMID: 36117275 DOI: 10.1111/evo.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Transgenerational plasticity, the influence of the environment experienced by parents on the phenotype and fitness of subsequent generations, is being increasingly recognized. Human-altered environments, such as those resulting from the increasing use of pesticides, may be major drivers of such cross-generational influences, which in turn may have profound evolutionary and ecological repercussions. Most of these consequences are, however, unknown. Whether transgenerational plasticity elicited by pesticide exposure is common, and the consequences of its potential carryover effects on fitness and population dynamics, remains to be determined. Here, we investigate whether exposure of parents to a common pesticide elicits intra-, inter-, and transgenerational responses (in F0, F1, and F2 generations) in life history (fecundity, longevity, and lifetime reproductive success), in an insect model system, the seed beetle Callosobruchus maculatus. We also assessed sex specificity of the effects. We found sex-specific and hormetic intergenerational and transgenerational effects on longevity and lifetime reproductive success, manifested both in the form of maternal and paternal effects. In addition, the transgenerational effects via mothers detected in this study are consistent with a new concept: terminal investment transgenerational effects. Such effects could underlie cross-generational responses to environmental perturbation. Our results indicate that pesticide exposure leads to unanticipated effects on population dynamics and have far-reaching ecological and evolutionary implications.
Collapse
Affiliation(s)
- Castano-Sanz Veronica
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Gomez-Mestre Ivan
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Garcia-Gonzalez Francisco
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
52
|
Vimal N, Angmo N, Sengupta M, Seth RK. Radiation Hormesis to Improve the Quality of Adult Spodoptera litura (Fabr.). INSECTS 2022; 13:933. [PMID: 36292881 PMCID: PMC9604102 DOI: 10.3390/insects13100933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mass rearing of insects of high biological quality is a crucial attribute for the successful implementation of sterile insect release programs. Various ontogenetic stages of Spodoptera litura (Fabr.) were treated with a range of low doses of ionizing radiation (0.25-1.25 Gy) to assess whether these gamma doses could elicit a stimulating effect on the growth and viability of developing moths. Doses in the range of 0.75 Gy to 1.0 Gy administered to eggs positively influenced pupal weight, adult emergence, and growth index, with a faster developmental period. The enhanced longevity of adults derived from eggs treated with 0.75 Gy and 1.0 Gy, and for larvae and pupae treated with 1.0 Gy, indicated a hormetic effect on these life stages. Furthermore, the use of these hormetic doses upregulated the relative mRNA expression of genes associated with longevity (foxo, sirtuin 2 like/sirt1, atg8) and viability/antioxidative function (cat and sod), suggesting a positive hormetic effect at the transcriptional level. These results indicated the potential use of low dose irradiation (0.75-1 Gy) on preimaginal stages as hormetic doses to improve the quality of the reared moths. This might increase the efficiency of the inherited sterility technique for the management of these lepidopteran pests.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kumar Seth
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
53
|
Zhang DW, Dai CC, Ali A, Liu YQ, Pan Y, Desneux N, Lu YH. Lethal and sublethal effects of chlorantraniliprole on the migratory moths Agrotis ipsilon and A. segetum: New perspectives for pest management strategies. PEST MANAGEMENT SCIENCE 2022; 78:4105-4113. [PMID: 35655426 DOI: 10.1002/ps.7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Agrotis ipsilon and A. segetum are major migratory pests of many crops in China, and frequent regional outbreaks cause severe yield losses. Use of food attractants is one of the most promising control methods against adult lepidoptera, notably through the attract-and-kill strategy. Chlorantraniliprole's acute toxicity and sublethal effects on both moths were evaluated. RESULTS Chlorantraniliprole showed high activity against both adults of both species, with LC20 and LC50 values of 0.08 and 0.21 mg L-1 (A. ipsilon), and 0.14 and 0.51 mg L-1 (A. segetum). The fecundity, effective oviposition rate, and egg hatching rate of both species in dual-sex exposure treatments were all significantly reduced compared with the control, and the population growth coefficients in the LC50 ♀ × LC50 ♂ treatments were only 0.32% (A. ipsilon) and 3.35% (A. segetum) that of the control. Furthermore, the flight distance was significantly suppressed from 6.67 km (control) to 0.01 km (LC50 ) for A. ipsilon, and from 7.39 km (control) to 0.78 km (LC50 ) for A. segetum. The proportions of robust- and medium-flight individuals of A. ipsilon and A. segetum in exposure treatments were greatly reduced. CONCLUSIONS Low lethal concentration exposures to chlorantraniliprole can drastically reduce the reproduction and flight performance of A. ipsilon and A. segetum, while inhibiting the production of offspring, suggesting chlorantraniliprole would be an excellent compound for use in combination with food attractants. Chlorantraniliprole has good potential for management of the two long-range migratory pests tested using an attract-and-kill strategy. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da-Wei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Chang-Chun Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yong-Qiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yan-Hui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
54
|
Wu SX, Chen Y, Lei Q, Peng YY, Jiang HB. Sublethal Dose of β-Cypermethrin Impairs the Olfaction of Bactrocera dorsalis by Suppressing the Expression of Chemosensory Genes. INSECTS 2022; 13:721. [PMID: 36005346 PMCID: PMC9409297 DOI: 10.3390/insects13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive fruit insect pests. β-cypermethrin has been widely used in the orchard to control this major insect. Based on the resistance monitoring in 2011, B. dorsalis developed significant resistance against β-cypermethrin in fields. This indicated that the B. dorsalis has been exposed to sublethal concentrations of β-cypermethrin in the field for a long time. Thus, it is urgent to understand the sublethal effects of β-cypermethrin on this fly to guide the rational use of an insecticide. According to the olfactory preference assays and electroantennogram (EAG) recording, the B. dorsalis after β-cypermethrin exposure (LD30 = 10 ng/fly) severely decreased the ability to perceive the tested odorants. Moreover, we then performed quantitative real-time PCR and found the chemosensory genes including odorant receptor co-receptor (BdorORco) and ionotropic receptor co-receptors (BdorIRcos) were obviously suppressed. Our results demonstrated that the sublethal dose of β-cypermethrin impairs the olfaction of the pest insects by suppressing the expression of chemosensory genes (BdorORco and BdorIRcos), which expanded our knowledge of the sublethal effects of the pesticide on insects.
Collapse
Affiliation(s)
- Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
55
|
Straub L, Strobl V, Bruckner S, Camenzind DW, Van Oystaeyen A, Wäckers F, Williams GR, Neumann P. Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155098. [PMID: 35398139 DOI: 10.1016/j.scitotenv.2022.155098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Global insect biodiversity declines due to reduced fitness are linked to interactions between environmental stressors. In social insects, inclusive fitness depends on successful mating of reproductives, i.e. males and queens, and efficient collaborative brood care by workers. Therefore, interactive effects between malnutrition and environmental pollution on sperm and feeding glands (hypopharyngeal glands (HPGs)) would provide mechanisms for population declines, unless buffered against due to their fitness relevance. However, while negative effects for bumble bee colony fitness are known, the effects of malnutrition and insecticide exposure singly and in combination on individuals are poorly understood. Here we show, in a fully-crossed laboratory experiment, that malnutrition and insecticide exposure result in neutral or antagonistic interactions for spermatozoa and HPGs of bumble bees, Bombus terrestris, suggesting strong selection to buffer key colony fitness components. No significant effects were observed for mortality and consumption, but significant negative effects were revealed for spermatozoa traits and HPGs. The combined effects on these parameters were not higher than the individual stressor effects, which indicates an antagonistic interaction between both. Despite the clear potential for additive effects, due to the individual stressors impairing muscle quality and neurological control, simultaneous malnutrition and insecticide exposure surprisingly did not reveal an increased impact compared to individual stressors, probably due to key fitness traits being resilient. Our data support that stressor interactions require empirical tests on a case-by-case basis and need to be regarded in context to understand underlying mechanisms and so adequately mitigate the ongoing decline of the entomofauna.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland.
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
56
|
Tai H, Zhang F, Xiao C, Tang R, Liu Z, Bai S, Wang Z. Toxicity of chemical pesticides commonly used in maize to Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), an egg parasitoid of Asian corn borer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113802. [PMID: 35772363 DOI: 10.1016/j.ecoenv.2022.113802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Chemical pesticides are largely applied worldwide for the control of agricultural pests, and often cause lethal and sublethal side effects on natural enemies. To determine the compatibility of chemical pesticides, commonly used by maize growers, with Trichogramma ostriniae, the toxicities of four herbicides (pendimethalin, topramezone, glyphosate, and atrazine), three insecticides (imidacloprid, emamectin benzoate, and ethiofencarb), and three fungicides (propiconazole, benzoyl cyclazole, and difenoconazole) were tested under laboratory conditions, measuring residual toxicity to T. ostriniae adults, their lethal effects on the parasitoid's eggs inside the host egg, and on the reproduction of the parasitoid's female offspring. Three tested pesticides including ethiofencarb, glyphosate, and benzoyl cyclazole were slightly harmful to T. ostriniae adults, whereas the other seven pesticides were moderately harmful. The pesticide residues of ethiofencarb, and emamectin benzoate, showed slightly persistence of toxicity to T. ostriniae adults, in contrast to the remaining pesticides. Glyphosate, emamectin benzoate, imidacloprid, ethiofencarb, and propiconazole were classified as harmless, causing < 30% reduction in emergence rate of wasps from host eggs, while atrazine, pendimethalin, topramezone, benzoyl cyclazole, and difenoconazole were classified as slightly harmful, causing 31-52% reduction in parasitoid emergence rates. Furthermore, the number of eggs subsequently laid by T. ostriniae females that had emerged from parasitized host eggs treated with atrazine was significantly reduced compared to which of untreated parasitized host eggs. No negative effects were observed with atrazine treatment on the emergence rates of F1 wasps, their wing deformity rates and sex ratios. The data presented here indicate that the safety interval between pesticide applications and releases of T. ostriniae wasps is 2-3 weeks, which provide valuable information in designing a sound maize integrated pest management program that combines chemical pesticide applications with augmentative releases of T. ostriniae wasps.
Collapse
Affiliation(s)
- Hongkun Tai
- Seed Management Station, Dehong Prefecture, Mangshi 678400, China; Plant Protection and Quarantine Station, Dehong Prefecture, Mangshi 678400, China.
| | - Feng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China.
| | - Chun Xiao
- Plant Protection College, Yunnan Agricultural University, Kunming 650201, China.
| | - Rui Tang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
57
|
Fu Z, Han F, Huang K, Zhang J, Qin JG, Chen L, Li E. Combined toxic effects of thiamethoxam on intestinal flora, transcriptome and physiology of Pacific white shrimp Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154799. [PMID: 35341860 DOI: 10.1016/j.scitotenv.2022.154799] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The environmental accumulation of thiamethoxam has increasingly become a risk for the health of aquatic animals, especially crustacean species in the same phylum as the target pests. The lack of knowledge on the toxicity of thiamethoxam to crustaceans motivates our research to study the acute and chronic toxicity of decapod crustaceans Litopenaeus vannamei, exposed to thiamethoxam. A 28-day chronic toxicity test followed a 96 h acute toxicity test. Thiamethoxam induced oxidative stress and decreased growth performance in shrimp. In addition, thiamethoxam has led to a substantial imbalance of the micro-ecosystem in the intestine. The composition of the intestinal flora changed significantly, and the balance of the interaction network in genera was broken. The competitive interaction of many bacteria becomes an unstable cooperative interaction. Transcriptomic analysis showed that the numbers of up- and down-regulated differentially expressed genes (DEGs) increased in a dose-dependent manner. These DEGs were significantly enriched in pathways related to detoxification, and the expression of most detoxification genes was upregulated. DEGs related to detoxification were positively correlated with Shimia and negatively correlated with Pseudoalteromonas. This study provides evidence for the first time on the toxic effects of thiamethoxam on the growth, biochemistry, intestinal flora, and transcriptome in crustaceans.
Collapse
Affiliation(s)
- Zhenqiang Fu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Kaiqi Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
58
|
Zhang A, Zhou W, Wu D, Han L, Zhao K. Effects of multigenerational imidacloprid and thiamethoxam stress on metabolism and physiology of Aphis glycines Matsumura (Hemiptera: Aphididae). PLoS One 2022; 17:e0271069. [PMID: 35802579 PMCID: PMC9269462 DOI: 10.1371/journal.pone.0271069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), a primary pest of soybean, poses a severe threat to soybean production. In this study, the 4th instar nymphs were exposed to the LC50 and LC30 of imidacloprid and thiamethoxam from F0 to F4 generations to evaluate the activities of peroxidase, pyruvate kinase, and trehalase using microassay. We found that peroxidase and pyruvate kinase activities in soybean aphids increased rapidly, first to peak and then decreased slowly generation by generation under imidacloprid and thiamethoxam stress. In contrast, the trehalase activity was significantly decreased in F1 to F5 generations when treated with the LC50 and LC30 and imidacloprid and thiamethoxam compared to control. In addition, the Enzyme-Linked Immunosorbent Assay (ELISA) was used to monitor the changes in molting and juvenile hormone expressions of the soybean aphids in each generation (F1-F5). The expression of juvenile hormone in soybean aphids was increased significantly in each generation under continuous stress of imidacloprid and thiamethoxam LC50 imidacloprid and LC50 thiamethoxam inhibited the expression of molting hormones in soybean aphids of each generation. LC30 imidacloprid or LC30 thiamethoxam significantly stimulated the expression of molting hormone in the 1st and 2nd instar nymphs in each generation. In this paper, the differences in antioxidant regulation, energy metabolism intensity, and hormone expression of multi-generation soybean aphids were monitored under continuous stress of imidacloprid and thiamethoxam. Our results revealed the effects of continuous insecticide stress on the main endogenous substances. Further, they clarified the regulation rules of resistance in soybean aphids, providing a reference for efficient control with imidacloprid and thiamethoxam.
Collapse
Affiliation(s)
- Aonan Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wenjing Zhou
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Dongxue Wu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lanlan Han
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Kuijun Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
59
|
Musa A, Međo I, Marić I, Marčić D. Transovarial toxicity matters: lethal and sublethal effects of hexythiazox on the two-spotted spider mite (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:175-194. [PMID: 35867194 DOI: 10.1007/s10493-022-00733-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The effects of hexythiazox on life-history traits and demographic parameters of Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated using the age-stage two-sex life table (in fecundity-based and fertility-based variants), with emphasis on its transovarial toxicity. Hexythiazox was applied when T. urticae females were either in the preovipositional period or in the first day of oviposition. In the F0 generation bioassay, treatments with concentrations of 50, 12.5 and 3.125 mg/l significantly reduced the longevity of females and their fecundity. These effects were mostly the result of mortality of treated females (18-23%) over the 24-h exposure period. Even though the net reproductive rate (R0) decreased significantly, the intrinsic rate of increase (r), finite rate of increase (λ) and doubling time (D) were not significantly different from the control. The strongest transovarial toxic effect occurred within the first 4 days following treatment, when 52-89% of the eggs laid by treated females (96% in control) hatched. Fertility was significantly reduced by concentrations of 50, 12.5, 3.125, 0.781 and 0.195 mg/l. These concentrations caused significant reductions in R0 (34-54%), r (12-24%) and λ (3-5%), whereas D was extended for 0.4-0.7 days. In the F1 generation bioassay, 50, 12.5, 3.125, 0.781, 0.049 and 0.012 mg/l caused significant reductions in R0 (34-92%), r (10-68%) and λ (3-17%), whereas extending D for 0.3-5.6 days. These effects were mostly the consequence of transovarial toxicity. Application of the fecundity-based life table underestimated population-level effects of hexythiazox on T. urticae.
Collapse
Affiliation(s)
- Asma Musa
- Laboratory of Applied Entomology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Irena Međo
- Laboratory of Applied Entomology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080, Belgrade, Serbia
| | - Ivana Marić
- Laboratory of Applied Entomology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080, Belgrade, Serbia
| | - Dejan Marčić
- Laboratory of Applied Entomology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080, Belgrade, Serbia.
| |
Collapse
|
60
|
Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154085. [PMID: 35218848 DOI: 10.1016/j.scitotenv.2022.154085] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects.
Collapse
Affiliation(s)
- Rachel R Rix
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
61
|
Cutler GC, Amichot M, Benelli G, Guedes RNC, Qu Y, Rix RR, Ullah F, Desneux N. Hormesis and insects: Effects and interactions in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153899. [PMID: 35181361 DOI: 10.1016/j.scitotenv.2022.153899] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often encountered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experiments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and functioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology research on hormesis are discussed.
Collapse
Affiliation(s)
- G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Marcel Amichot
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Rachel R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
62
|
He Y, Du G, Xie S, Long X, He X, Zhu Y, Chen B. The Acaricidal Potential of a New Agent GC16 for Tetranychus pueraricola (Acari: Tetranychidae) Based on Developmental Performance and Physiological Enzyme Activity. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:814-825. [PMID: 35512629 DOI: 10.1093/jee/toac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The spider mite, Tetranychus pueraricola (Ehara & Gotoh; Acari: Tetranychidae), is a serious pest in agriculture and horticulture. Application of chemical pesticides is the main mode of this pest control. Due to pesticide residues and resistance-induced resurgence of pests, there is a need to discover alternatives for spider mite management. GC16 comprises a mixture of calcium chloride (CaCl2, 45%) and lecithin (55%), which was recently found to have acaricidal properties. We evaluated the sublethal effects of GC16 on T. pueraricola using life table and enzyme [catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), carboxylesterase (CarE), glutathione S-transferases (GST), and Ca2+-ATPase (Ca2+-ATP)] activity assays. The results showed that fecundity of T. pueraricola increased at LC30 but decreased at LC50 of GC16. The intrinsic rate of increase (r) of T. pueraricola decreased under the LC30 and LC50 of GC16. GC16 concentration and exposure time significantly influenced the activities of CAT, POD, CarE, GST, and Ca2+-ATP in adult mites. Twelve hours later after the treatment, GST and Ca2+-ATP activities were significantly inhibited by LC30 but enhanced by LC50. Moreover, the demographic parameter r and enzyme activities were negatively correlated. In sum, sublethal amounts of GC16 had an adverse effect on mites, and there was a trade-off between developmental performance and physiological enzyme activity of mites under GC16 stress, and GC16 showed an acaricidal potential for T. pueraricola. This work provides guidance for the application of GC16 to control T. pueraricola.
Collapse
Affiliation(s)
- Yanyan He
- School of Agriculture, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guangzu Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shunxia Xie
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoming Long
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Youyong Zhu
- School of Agriculture, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
63
|
Leite SA, Guedes RNC, da Costa DR, Colmenarez YC, Matsumoto SN, Dos Santos MP, Coelho BS, Moreira AA, Castellani MA. The effects of thiamethoxam on coffee seedling morphophysiology and Neotropical leaf miner (Leucoptera coffeella) infestations. PEST MANAGEMENT SCIENCE 2022; 78:2581-2587. [PMID: 35334156 DOI: 10.1002/ps.6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Coffee (Coffea arabica L.) is one of the main commodities produced in Brazil. Insecticides like the (systemic) neonicotinoid thiamethoxam are widely used to suppress pest populations during coffee production, in particular the Neotropical leaf miner (Leucoptera coffeella Guérin-Mèneville & Perrottet, 1842) (Lepidoptera: Lyonetiidae). In addition to its efficacy against this pest species, thiamethoxam is also thought to be a bioactivator of plant metabolism, but has not yet been tested for such activity. Thus, the objectives of the present study were (1) to assess the concentration-response effects of thiamethoxam on the vegetative vigor of coffee seedlings (C. arabica 'Catuaí 144' cultivar) at different concentrations [2, 20, 40, 80 and 200 mg active ingredient (a.i.) kg-1 ] applied via soil drenching and (2) to evaluate if the plant response interferes with the effectiveness of thiamethoxam in controlling leaf miner populations. The morphophysiological traits of the coffee seedlings were evaluated 20, 40, 60 and 80 days after application, and leaf miner infestations were recorded starting 20 days after the insecticide application with the releasing of adults, and every 20 days afterwards. RESULTS The results indicated that thiamethoxam has a deleterious effect on the morphophysiological traits of the plants compromising their development with increase in concentrations. However, leaf area exhibited a different pattern with a peak at 50 mg a.i. kg-1 consistent with thiamethoxam-induced hormesis (i.e. biphasic response with stimulatory effect at sublethal range of a toxic substance at the higher concentration). Nonetheless, such bioactivator effect did not affect thiamethoxan effectiveness against the leaf miner even at the lowest concentration tested. CONCLUSION Thiamethoxan exhibited bioactivation effect on leaf at low concentration, but without compromising efficacy against leaf miner populations. Therefore, its proposed metabolism-boosting properties may encourage the unnecessary use of this insecticide, potentially leading to higher selection for insecticide resistance and an eventual decline in its effectiveness against the Neotropical leaf miner. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Suzany A Leite
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | | | - Daniela R da Costa
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | - Yelitza C Colmenarez
- Centre for Agriculture and Bioscience International, CABI Latin America, Botucatu, Brazil
| | - Sylvana N Matsumoto
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | - Mateus P Dos Santos
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | - Beatriz S Coelho
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | - Aldenise A Moreira
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| | - Maria A Castellani
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, 45031-900, Brazil
| |
Collapse
|
64
|
Shen GM, Ou SY, Li CZ, Feng KY, Niu JZ, Adang MJ, He L. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. INSECT SCIENCE 2022; 29:801-816. [PMID: 34586709 DOI: 10.1111/1744-7917.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.
Collapse
Affiliation(s)
- Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kai-Yang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
65
|
Defining the mechanisms of action and mosquito larva midgut response to a yeast-encapsulated orange oil larvicide. Parasit Vectors 2022; 15:183. [PMID: 35643588 PMCID: PMC9148471 DOI: 10.1186/s13071-022-05307-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast-encapsulated orange oil (YEOO) is a novel, ingestible larvicide that combines the benefits of a low-cost essential oil with yeast, an attractive food source for mosquito larvae. In this work, we investigated the underlying mechanisms of action associated with YEOO ingestion by Aedes aegypti larvae. METHODS Aedes aegypti third-stage larvae (L3) were treated with sublethal or lethal concentrations of YEOO. Genes associated with apoptosis, autophagy and innate immune responses were investigated by RT-qPCR in guts and carcasses dissected from treated and control larvae. Differential expression of cytochrome P450 genes in the CYP6 and CYP9 families were also investigated. Confocal and transmission electron microscopy were used to assess damage caused by YEOO throughout the larval alimentary canal. TUNEL was used to assess apoptosis via DNA fragmentation. RESULTS The apoptosis genes IAP1 and IAP2 in larvae displayed opposing effects following exposure to lethal doses of YEOO, with a 26-fold induction of IAP1 at 8 h post YEOO ingestion. The effector caspase CASPS8 displayed a 6.7-fold induction in the gut and concomitant 70-fold induction in the carcass at 8 h post YEOO ingestion. The midgut epithelia regenerator, Vein, had an 11-fold induction in the gut after 4 h and was repressed 7.6-fold in the carcass at 24 h. Sublethal concentrations (< LC50) led to significant differential expression of CYP6 and CYP9 genes. Midgut epithelial damage was highlighted by the destruction of microvilli, vacuolization of midgut cells and damage to cell junctions and basal lamina as early as 30 min. Larval type 2 peritrophic matrix structural integrity and porosity remain unchanged. CONCLUSION Our results strongly suggest that the robust larvicidal activity of YEOO is due to a generalized broad-acting mechanism combining epithelial damage and apoptosis, with concomitant expression of multiple innate response genes involved in epithelial regeneration and detoxification. YEOO's amenability for use as part of an integrated vector management program makes this novel larvicide a practical approach for mosquito larval control in the future.
Collapse
|
66
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
67
|
Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? INSECTS 2022; 13:insects13040371. [PMID: 35447813 PMCID: PMC9032297 DOI: 10.3390/insects13040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The collapse of the honey bee colonies is a complex phenomenon in which different factors may participate in an interrelated manner (e.g., pathogen interactions, exposure to chemicals, beekeeping practices, climatology, etc.). In light of the current debate regarding the interpretation of field and monitoring studies in prospective risk assessments, here we studied how exposure to thiamethoxam affects honey bee colonies in Central Spain when applied as a seed treatment to winter oilseed rape, according to the good agricultural practice in place prior to the EU restrictions. Under the experimental conditions, exposure to thiamethoxam, alone or in combination with other stressors, did not generate and maintain sufficient chronic stress as to provoke honey bee colony collapse. The stress derived from exposure to thiamethoxam and honey bee pathogens was compensated by adjustments in the colony’s dynamics, and by an increase in the worker bee population, a behavior known as hormesis. An analysis of the factors underlying this phenomenon should be incorporated into the prospective risk assessment of plant protection products in order to improve the future interpretation of field studies and management practices. Abstract To study the influence of thiamethoxam exposure on colony strength and pathogen prevalence, an apiary (5 colonies) was placed in front of a plot sown with winter oilseed rape (wOSR), just before the flowering phase. Before sowing, the seeds were treated with an equivalent application of 18 g thiamethoxam/ha. For comparison, a second apiary (5 colonies) was located in front of a separate 750 m plot sown with untreated wOSR. Dead foragers at the entrance of hives were assessed every 2–3 days throughout the exposure period, while the colony strength (number of combs covered with adult honey bees and brood) and pathogens were monitored each month until the following spring. Foraging on the wOSR crop was confirmed by melissopalynology determination of the corbicular pollen collected periodically, while the chemical analysis showed that exposure to thiamethoxam was mainly through nectar. There was an increase in the accumulation of dead bees in the apiary exposed to thiamethoxam relating with the control, which was coped with an increment of bee brood surface and adult bee population. However, we did not find statistically significant differences between apiaries (α = 0.05) in terms of the evolution of pathogens. We discuss these results under hormesis perspective.
Collapse
|
68
|
Rix RR, Guedes RNC, Christopher Cutler G. Hormesis Dose-Response Contaminant-induced hormesis in animals. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
69
|
Batool R, Umer MJ, Wang Y, He K, Shabbir MZ, Zhang T, Bai S, Chen J, Wang Z. Myco-Synergism Boosts Herbivory-Induced Maize Defense by Triggering Antioxidants and Phytohormone Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:790504. [PMID: 35251075 PMCID: PMC8892192 DOI: 10.3389/fpls.2022.790504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Biocontrol strategies are the best possible and eco-friendly solution to develop resistance against O furnacalis and improve the maize yield. However, the knowledge about underlying molecular mechanisms, metabolic shifts, and hormonal signaling is limited. METHODS Here, we used an axenic and a consortium of entomopathogenic Beauveria bassiana OFDH1-5 and a pathogen-antagonistic Trichoderma asperellum GDFS1009 in maize and observed that consortium applications resulted in higher chlorophyll contents and antioxidants activities [superoxide dismutase (SOD), peroxidase (POD), proline, protease, and polyphenol oxidase (PPO)] with a decrease in O. furnacalis survival. We performed a comprehensive transcriptome and an untargeted metabolome profiling for the first time at a vegetative stage in fungal inoculated maize leaves at 0-, 12-, 24-, 48-, and 72-h post insect infestation. RESULTS The consortium of B. bassiana and T. asperellum leads to 80-95% of O. furnacalis mortality. A total of 13,156 differentially expressed genes were used for weighted gene coexpression network analysis. We identified the six significant modules containing thirteen candidate genes [protein kinase (GRMZM2G025459), acyl-CoA dehydrogenase (GRMZM5G864319), thioredoxin gene (GRMZM2G091481), glutathione S-transferase (GRMZM2G116273), patatin-like phospholipase gene (GRMZM2G154523), cytochrome P450 (GRMZM2G139874), protease inhibitor (GRMZM2G004466), (AC233926.1_FG002), chitinase (GRMZM2G453805), defensin (GRMZM2G392863), peroxidase (GRMZM2G144153), GDSL- like lipase (AC212068.4_FG005), and Beta-glucosidase (GRMZM2G031660)], which are not previously reported that are highly correlated with Jasmonic acid - Ethylene (JA-ET) signaling pathway and antioxidants. We detected a total of 130 negative and 491 positive metabolomic features using a ultrahigh-performance liquid chromatography ion trap time-of-flight mass spectrometry (UHPLC-QTOF-MS). Intramodular significance and real time-quantitative polymerase chain reaction (RT-qPCR) expressions showed that these genes are the true candidate genes. Consortium treated maize had higher jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) levels. CONCLUSION Our results provide insights into the genetics, biochemicals, and metabolic diversity and are useful for future biocontrol strategies against ACB attacks.
Collapse
Affiliation(s)
- Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Yangzhou Wang
- Insect Ecology, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
70
|
Bird L, Miles M, Quade A, Spafford H. Insecticide resistance in Australian Spodoptera frugiperda (J.E. Smith) and development of testing procedures for resistance surveillance. PLoS One 2022; 17:e0263677. [PMID: 35143580 PMCID: PMC8830740 DOI: 10.1371/journal.pone.0263677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Spodoptera frugiperda (J.E. Smith) is a highly invasive noctuid pest first reported in northern Australia during early 2020. To document current status of resistance in S. frugiperda in Australia, insecticide toxicity was tested in field populations collected during the first year of establishment, between March 2020 and March 2021. Dose-response was measured by larval bioassay in 11 populations of S. frugiperda and a susceptible laboratory strain of Helicoverpa armigera. Emamectin benzoate was the most efficacious insecticide (LC50 0.023μg/ml) followed by chlorantraniliprole (LC50 0.055μg/ml), spinetoram (LC50 0.098μg/ml), spinosad (LC50 0.526μg/ml), and methoxyfenozide (1.413μg/ml). Indoxacarb was the least toxic selective insecticide on S. frugiperda (LC50 3.789μg/ml). Emamectin benzoate, chlorantraniliprole and methoxyfenozide were 2- to 7-fold less toxic on S. frugiperda compared with H. armigera while spinosyns were equally toxic on both species. Indoxacarb was 28-fold less toxic on S. frugiperda compared with H. armigera. There was decreased sensitivity to Group 1 insecticides and synthetic pyrethroids in S. frugiperda compared with H. armigera: toxicity was reduced up to 11-fold for methomyl, 56 to 199-fold for cyhalothrin, and 44 to 132-fold for alpha cypermethrin. Synergism bioassays with metabolic inhibitors suggest involvement of mixed function oxidase in pyrethroid resistance. Recommended diagnostic doses for emamectin benzoate, chlorantraniliprole, spinetoram, spinosad, methoxyfenozide and indoxacarb are 0.19, 1.0, 0.75, 6, 12 and 48μg/μl, respectively.
Collapse
Affiliation(s)
- Lisa Bird
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, New South Wales, Australia
| | - Melina Miles
- Queensland Department of Agriculture and Fisheries, Toowoomba, Queensland, Australia
| | - Adam Quade
- Queensland Department of Agriculture and Fisheries, Toowoomba, Queensland, Australia
| | - Helen Spafford
- Department of Primary Industries and Regional Development, Frank Wise Institute of Tropical Agriculture, Kununurra, Western Australia, Australia
| |
Collapse
|
71
|
Barroso G, Pazini JB, Iost Filho FH, Barbosa DPL, de Paiva ACR, Matioli TF, Yamamoto PT. Are Pesticides Used to Control Thrips Harmonious with Soil-Dwelling Predatory Mite Cosmolaelaps sabelis (Mesostigmata: Laelapidae)? JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:151-159. [PMID: 34791336 DOI: 10.1093/jee/toab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Edaphic predatory mites could be introduced in pest management programs of pests that live, or spend part of their life cycle, in the soil. Some mesostigmatic mites have been widely used for the management of different species of thrips (Thysanoptera), especially in protected cultivation. The edaphic predator Cosmolaelaps sabelis (Mesostigmata: Laelapidae) was a model species in this study, being exposed to the most applied insecticides for the control of thrips in Brazil. After lethal, sublethal and transgenerational effects were evaluated. The pesticides acephate, acetamiprid + etofenprox, azadirachtin, spinetoram, formetanate hydrochloride, and imidacloprid were classified according to the IOBC/WPRS (International Organization for Biological Control-West Paleartic Regional Section) recommendation, considering the acute toxicity and the effects on adult females' reproduction, in the maternal and first generation. The pesticides acetamiprid + etofenprox and azadirachtin were classified as slightly harmful (Class 2), while spinetoram was classified as moderately harmful (Class 3). Acephate and formetanate hydrochloride were classified as harmful (Class 4). Only imidacloprid didn't cause negative effects on the females. Regarding effects on the first generation, acetamiprid + etofenprox, azadirachtin, and spinetoram caused reduction in the oviposition rates. Therefore, we suggest that complimentary bioassays should be done under semi-field and field conditions using the pesticides that were considered harmful in this study, to assess their effects on this predator in other environments prior to recommending not to use them in integrated programs to manage soil-based pests using chemical and biological tools.
Collapse
Affiliation(s)
- G Barroso
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - J B Pazini
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - F H Iost Filho
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - D P L Barbosa
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - A C R de Paiva
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - T F Matioli
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - P T Yamamoto
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
72
|
Zhang J, Wang Z, Klett K, Qu Y, Tan K. Higher toxin tolerance to triptolide, a terpenoid foraged by a sympatric honeybee. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104358. [PMID: 35026301 DOI: 10.1016/j.jinsphys.2022.104358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The thunder god vine, Tripterygium hypoglaucum, is a toxic nectar plant distributed across China. A terpenoid, called triptolide (TRP), found in nectar can impair honeybees' foraging responses, dance communication, and olfactory learning. In the present study, we tested the tolerances of the native honeybee Apis cerana and the introduced honeybee A. mellifera to short-term and long-term exposure to TRP. The results showed that introduced A. mellifera is more vulnerable in fatality to high concentrations of TRP sucrose solution (5 and 10 µg TRP mL-1) than A. cerana. We also compared the short-term and long-term exposure effects of TRP on olfactory learning and memory between the two honeybee species, and the olfactory learning and memory of both honey bee species showed impaired performance after both 2 h or 7 days of being fed with TRP sucrose solution. However, A. cerana showed a higher tolerance and resistance to TRP toxin than A. mellifera. Our results support a coevolution hypothesis in that the native species A. cerana has higher toxin tolerance than the introduced species A. mellifera.
Collapse
Affiliation(s)
- Junjun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| | - Katrina Klett
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yufeng Qu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China; Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
73
|
Guedes RNC, Rix RR, Cutler GC. Pesticide-Induced Hormesis in Arthropods: Towards Biological Systems. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
74
|
Tan S, Li G, Liu Z, Wang H, Guo X, Xu B. Effects of glyphosate exposure on honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103792. [PMID: 34971799 DOI: 10.1016/j.etap.2021.103792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Honeybees show an important pollination ability and play vital roles in improving crop yields and increasing plant genetic diversity, thereby generating tremendous economic benefits for humans. However, honeybee survival is affected by a number of biological and abiotic stresses, including the effects of fungi, bacteria, viruses, parasites, and especially agrochemicals. Glyphosate, a broad-spectrum herbicide that is primarily used for weed control in agriculture, has been reported to have lethal and sublethal effects on honeybees. Here, we summarize recent advances in research on the effects of glyphosate on honeybees, including effects on their behaviors, growth and development, metabolic processes, and immune defense, providing a detailed reference for studying the mechanism of action of pesticides. Furthermore, we provide possible directions for future research on glyphosate toxicity to honeybees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
75
|
Wang P, Vassão DG, Raguschke B, Furlong MJ, Zalucki MP. Balancing nutrients in a toxic environment: the challenge of eating. INSECT SCIENCE 2022; 29:289-303. [PMID: 33890407 DOI: 10.1111/1744-7917.12923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Insect herbivores can regulate their food intake by mixing food sources with different nutrient content, but face the resulting challenge of ingesting various plant secondary metabolites. How insects deal with toxins in a complex nutrient environment is unclear. Here we investigated the influence of a classic plant secondary metabolite, allyl glucosinolate (sinigrin), and its hydrolyzed product allyl isothiocyanate (AITC), on the development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) when fed on diets with different protein-to-carbohydrate (p : c) ratios. We also examined the effects of these toxins on larval biochemistry, by chemically analyzing the frass produced by insects feeding on the different diets. As expected, AITC had a greater negative effect than sinigrin on H. armigera life-history traits. However, AITC at low concentration appeared to have a positive effect on some traits. Both sinigrin and AITC-induced detoxification activity in the gut, and the reaction was related to diet protein concentration. High-protein diets can provide the required free amino acid, especially cysteine, needed for the detoxification process. The nutrient content of the diet influences how plant secondary metabolites are handled, and the use of artificial diets in experiments investigating the metabolic fate of plant secondary compounds needs to be carefully evaluated.
Collapse
Affiliation(s)
- Peng Wang
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bettina Raguschke
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
76
|
Xu L, Zhao J, Xu D, Xu G, Gu Z, Xiao Z, Dewer Y, Zhang Y. Application of transcriptomic analysis to unveil the toxicity mechanisms of fall armyworm response after exposure to sublethal chlorantraniliprole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113145. [PMID: 34979309 DOI: 10.1016/j.ecoenv.2021.113145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The anthranilic diamide insecticide chlorantraniliprole is highly effective against Lepidoptera pests, but the underlying mechanisms of toxic effects of chlorantraniliprole exposures for adapting to the chemical environment are poorly known in fall armyworm (FAW), Spodoptera frugiperda (J.E.Smith). FAW being one of the most pests of maize in Latin America, suddenly appeared in China in 2019 and spread rapidly. In this study, using bioassay and transcriptomic and biochemical analyses, we comprehensively investigated gene expression changes of third instar larvae in response to different sublethal concentrations (LC10 and LC30) of chlorantraniliprole in this insect. Exposure to LC10 chlorantraniliprole (0.73 mg/L) causes 1266 differentially expressed genes (DEGs), of which 578 are up-regulated and 688 down-regulated. Exposure to LC30 (2.49 mg/L) causes differential expression of 3637 DEGs (1545 up-, 2092 down-regulated). Interestingly, the LC30 treatment led to a significant increase in the number of DEGs compared to that of the LC10, indicating a concentration effect manner. Moreover, enrichment analysis identified important DEGs belonging to specific categories, such as amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification pathways, and enzymes activities in enriched pathways were significantly altered at the LC10 and LC30, which matched transcriptome analysis to mediate toxic mechanisms. The DEGs encoding detoxification-related genes were identified and validated by quantitative real-time PCR (qRT-PCR), which correlated with the RNA-sequencing (RNA-seq) data. To our knowledge, these findings provide the first toxicity mechanisms for a better understanding of chlorantraniliprole action and detoxification in FAW and other insect pests at molecular level.
Collapse
Affiliation(s)
- Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Zhao
- Key Laboratory of Green Preservation and Control of Tobacco Diseases and Pests in the Huanghuai Growing Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Dejin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangchun Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyan Gu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zheng Xiao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang A & F University, Hangzhou 311300, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Yanan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
77
|
Cervantes L, López-Martínez G. Anoxia hormesis following overwintering diapause boosts bee survivorship and adult performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149934. [PMID: 34525715 DOI: 10.1016/j.scitotenv.2021.149934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Insect pollination is a crucial component of our ecosystems and biodiversity, but our reliance on this ecosystem service has much broader implications. We depend on these pollination services to produce materials and food. But insect pollinators, especially bees, are in strong decline due to a plethora of factors, least of which are environmental abiotic stressors like climate change. The alfalfa leafcutting bee, Megachile rotundata, is the world's most managed solitary bee and is particularly vulnerable to changes in temperature. This species spends up to ten months overwintering while being exposed to the lowest temperatures of winters and the hottest temperatures of late summer. This results in usage of energy reserves prematurely and asynchronous spring emergence with their food resource. To understand the stress response of these bees and potentially boost their performance, we applied a hormetic framework where bees were exposure to different doses of anoxia (the absence of oxygen) to trigger hormesis; a low-dose stimulatory response known to lower damage and improve performance. We used hormesis on immature bees as a post-winter treatment with the goal of improving springtime performance in adults. One hour of anoxia had no negative effect on adult springtime emergence and bees were quick to recover. These bees were more active than untreated bees, as resistant to starvation, and as long-lived. Higher exposure to anoxia (3 h) was found to be mildly hormetic and 6-h exposures were detrimental. Anoxia hormesis did not represent a significant cost on the energy reserve of overwintering bees but we found that the age at which anoxia is applied will affect the effectiveness of treatment. Our data suggest that anoxia hormesis is a viable intervention to improve springtime performance in overwintering bees.
Collapse
Affiliation(s)
- Lidia Cervantes
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
78
|
Zhang Y, Xu G, Jiang Y, Ma C, Yang G. Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus. INSECTS 2021; 12:insects12121131. [PMID: 34940219 PMCID: PMC8706141 DOI: 10.3390/insects12121131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Correspondence: (G.X.); (G.Y.)
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Chao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.X.); (G.Y.)
| |
Collapse
|
79
|
Fernandes FO, de Souza TD, Sanches AC, Dias NP, Desiderio JA, Polanczyk RA. Sub-lethal effects of a Bt-based bioinsecticide on the biological conditioning of Anticarsia gemmatalis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2071-2082. [PMID: 34549369 DOI: 10.1007/s10646-021-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Bioinsecticides based on Bacillus thuringiensis (Bt) Berliner, 1915 are widely used to control lepidopteran in several crops. However, surviving insects exposed to the sub-lethal concentration of Bt-based bioinsecticides can suffer a multitude of effects on the biological conditioning known as hormesis. Here, we aimed to provide a clearer understanding of the biological conditioning of Anticarsia gemmatalis (Hübner, 1818), exposed to different concentrations of a Bt-based bioinsecticide, by assessing life table parameters over three generations. We defined five sub-lethal concentrations (LC5, LC10, LC15, LC20, and LC25) from the response curve estimate of A. gemmatalis. Deionized water was used as a control. We assessed the parameters of eggs-viability and the duration of the stages, incubation, larval, pre-pupal, pupal, adult, pre-oviposition and total biological cycle. Data were used to construct the fertility life table using the two-sex program. The survival curves showed greater variation in the proportion of individuals at each development stage using the LC25. The sub-lethal concentrations did not influence the incubation-eggs period, pre-pupal and pupal. However, the larval and adult stages using LC25 and LC10 were the most affected. Changes in sex ratio were observed using LC20 and LC5. The toxic effect of Bt-based bioinsecticide interfered mainly in the parameters of fertility, sex ratio, net reproduction rate (R0), and gross reproduction rate (GRR).
Collapse
Affiliation(s)
| | - Tamires Doroteo de Souza
- Department of Plant Protection, Paulista State University "Júlio de Mesquita Filho", Jaboticabal, Brazil
| | - Ariadne Costas Sanches
- Department of Biological and Health Sciences, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Naymã Pinto Dias
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, USA
| | - Janete Apparecida Desiderio
- Department of Biology Applied to Agriculture, Paulista State University "Júlio de Mesquita Filho", Jaboticabal, Brazil
| | - Ricardo Antonio Polanczyk
- Department of Plant Protection, Paulista State University "Júlio de Mesquita Filho", Jaboticabal, Brazil
| |
Collapse
|
80
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
81
|
Andreazza F, Oliveira EE, Martins GF. Implications of Sublethal Insecticide Exposure and the Development of Resistance on Mosquito Physiology, Behavior, and Pathogen Transmission. INSECTS 2021; 12:insects12100917. [PMID: 34680686 PMCID: PMC8539869 DOI: 10.3390/insects12100917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Mosquitoes are one of the greatest threats to human lives; they transmit a wide range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle. For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their population. Little is known about how the stress resulting from the exposure of mosquitoes to insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and the pathogens they transmit. In this work, we review existing experimental evidence to obtain a broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to different insecticides. We have focused on studies that have advanced our understanding of their physiological and behavioral responses (including the mechanisms behind insecticide resistance) and the spread of pathogens by these vectors—understudied but critically important issues for epidemiology. Studying these exposure-related effects is of paramount importance for predicting how they respond to insecticide exposure and whether this exposure makes them more or less likely to transmit pathogens. Abstract For many decades, insecticides have been used to control mosquito populations in their larval and adult stages. Although changes in the population genetics, physiology, and behavior of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of sublethal concentrations on individuals and populations, the changes in population genetics caused by the selection for resistance after insecticide exposure, and the major mechanisms underlying such resistance. Sublethal exposures negatively impact the individual’s performance by affecting their physiology and behavior and leaving them at a disadvantage when compared to unexposed organisms. How these sublethal effects could change mosquito population sizes and diversity so that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population genetics by selecting resistant individuals, which may bring further and complex interactions for mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated pathogens’ transmission.
Collapse
Affiliation(s)
- Felipe Andreazza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Correspondence:
| |
Collapse
|
82
|
Yang L, Wang J, Cheke RA, Tang S. A Universal Delayed Difference Model Fitting Dose-response Curves. Dose Response 2021; 19:15593258211062785. [PMID: 34987337 PMCID: PMC8689633 DOI: 10.1177/15593258211062785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Dose-response curves, which fit a multitude of experimental data derived from toxicology, are widely used in physics, chemistry, biology, and other fields. Although there are many dose-response models for fitting dose-response curves, the application of these models is limited by many restrictions and lacks universality, so there is a need for a novel, universal dynamical model that can improve fits to various types of dose-response curves. METHODS We expand the hormetic Ricker model, taking the delay inherent in the dose-response into account, and develop a novel and dynamic delayed Ricker difference model (DRDM) to fit various types of dose-response curves. Furthermore, we compare the DRDM with other dose-response models to confirm that it can mimic different types of dose-response curves. DATA ANALYSIS By fitting various types of dose-response data sets derived from drug applications, disease treatment, pest control, and plant management, and comparing the imitative effect of the DRDM with other models, we find that the DRDM fits monotonic dose-response data well and, in most circumstances, the DRDM has a better imitative effect to non-monotonic dose-response data with hormesis than other models do. RESULTS The MSE of fits of the DRDM to S-shaped dose-response data (DS2-G) is not lower than those for four other models, but the MSE of fits to U-shaped (DS7) and inverted U-shaped dose-response data (DS10) were lower than for two other models. This means that the imitative effect of the DRDM is comparable to other models of monotonic dose-response data, but is a significant improvement compared to traditional models of non-monotonic dose-response data with hormesis. CONCLUSION We propose a novel dynamic model (DRDM) for fitting to various types of dose-response curves, which can reflect the dynamic trend of the population growth compared with traditional static dose-response models. By analyzing data, we have confirmed that the DRDM provides an ideal description of various dose-response observations and it can be used to fit a wide range of dose-response data sets, especially for hormetic data sets. Therefore, we conclude that the DRDM has a good universality for dose-response curve fitting.
Collapse
Affiliation(s)
- Linqian Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China
| | - Jiaying Wang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China
| | - Robert A. Cheke
- Natural Resources Institute, the University of Greenwich, UK
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
83
|
Joncour B, Nelson WA. Sublethal concentration of insecticide amplifies interference competition in a tortrix moth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112324. [PMID: 34015630 DOI: 10.1016/j.ecoenv.2021.112324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are extensively used worldwide to kill insect pests, yet organisms are most often exposed to insecticides at sublethal concentrations. Our understanding of sublethal effects on life histories is needed to predict the impact of insecticides on population dynamics and improve insecticide use and pest control. Sublethal concentrations can impact life histories directly and indirectly through changes in the intraspecific competition. Yet, few studies have evaluated the sublethal effects on intraspecific competition and these do not disentangle the insecticide effects on interference competition versus exploitative competition. As such, sublethal effects on the relative contribution of each pathways in shaping life histories are largely unknown, despite the fact that this can impact population dynamics. In this study, we focused on the neurotoxic insecticide spinosad and investigated its sublethal effects on interference among the aggressive larvae of the tortrix moth Adoxophyes honmai and the consequences for life histories. We conducted a set of paired experiments to disentangle the insecticide effects on interference from the ones on exploitation. Spinosad was found to amplify interference with most effects on mortality which lets us suggest that the insecticide likely increases the level of aggressive interactions resulting in more conspecific killings (e.g. cannibalism). Spinosad exposure was found to impair movement ability. Less movements may increase susceptibility to conspecific attacks and or increase aggresivity for better defence, two plausible mechanisms that could explain the increase in interference with insecticide. This study shows that insecticide at sublethal concentration can impact life histories by altering the strength of interference competition. Many organisms (pest and non-target species) compete through interference and theory predicts that a change in interference can substantially change dynamics. Our finding therefore reveals the importance of assessing the effect of insecticides on the mechanisms of competition when predicting their impact on populations.
Collapse
Affiliation(s)
- Barbara Joncour
- Department of Biology, Queen's University, 116 Barrie Street, Kingston K7L 3N6, ON, Canada.
| | - William A Nelson
- Department of Biology, Queen's University, 116 Barrie Street, Kingston K7L 3N6, ON, Canada
| |
Collapse
|
84
|
Rix RR, Cutler GC. Neonicotinoid Exposures that Stimulate Predatory Stink Bug, Podisus maculiventris (Hemiptera: Pentatomidae), Reproduction Do Not Inhibit Its Behavior. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1575-1581. [PMID: 33974694 DOI: 10.1093/jee/toab085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Exposure to sublethal amounts of pesticide can compromise life-history traits and behavior of natural enemies thereby reducing their effectiveness as predators. However, sublethal exposures to pesticides and other stressors may also stimulate insects, a dose-response phenomenon known as hormesis. We previously reported stimulatory effects on reproduction in the beneficial insect predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae) following exposure to sublethal concentrations of imidacloprid. Here we examined whether these same treatments stimulated behavior and/or predation of P. maculiventris. Stimulation of some behaviors occurred at a reproductively hormetic concentration and two additional sublethal concentrations, depending upon bioassay design and sex. We observed no substantial inhibition of behavior or predation at a reproductively hormetic concentration, demonstrating that reproductive fitness in P. maculiventris may be stimulated without compromising behaviors important in its effectiveness as a natural enemy.
Collapse
Affiliation(s)
- R R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | | |
Collapse
|
85
|
Hu S, Li J, Wang P, Zhu F. Hormetic Effects of Dimethachlone on Mycelial Growth and Virulence of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2021; 111:1166-1172. [PMID: 33107780 DOI: 10.1094/phyto-08-20-0364-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungicide hormesis has implications for the application of fungicides to control plant diseases. We investigated the hormetic effects of the dicarboximide fungicide dimethachlone on mycelial growth and virulence of the necrotrophic plant pathogen Sclerotinia sclerotiorum. Dimethachlone at sublethal doses in potato dextrose agar (PDA) increased the mycelial growth of S. sclerotiorum. After the growth-stimulated mycelia were subcultured on fresh PDA and inoculated on rapeseed leaves, increased mycelial growth and virulence were observed, indicating that hormetic traits were passed down to the next generation. Dimethachlone applied to leaves at 0.002 to 500 μg/ml stimulated virulence, with a maximum stimulation amplitude (MSA) of 31.4% for the isolate HLJ4, which occurred at 2 μg/ml. Dimethachlone-resistant isolates and transformants had a mean virulence MSA of 30.4%, which was significantly higher (P = 0.008) than the MSA for sensitive isolates (16.2%). Negative correlations were detected between MSA and virulence in the absence of any fungicide (r = -0.872, P < 0.001) and between MSA and mycelial growth on PDA (r = -0.794, P = 0.002). Studies on hormetic mechanisms indicated that dimethachlone had no significant effects on expression levels of three virulence-associated genes, that is, a cutinase-encoding gene SsCut, a polygalacturonase gene SsPG1, or an oxaloacetate acetylhydrolase gene SsOah1. The results will contribute to understanding hormesis and have implications for the judicious application of fungicides to control plant diseases.
Collapse
Affiliation(s)
- Simin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinli Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Pengju Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
86
|
Sentenská L, Cometa M, Pekár S. Effect of bio-insecticide residues and the presence of predatory cues on mating in a biocontrol spider. CHEMOSPHERE 2021; 272:129647. [PMID: 33485047 DOI: 10.1016/j.chemosphere.2021.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Insecticide formulations can cause mortality in natural enemies or have sublethal effects on them, which include alterations in their behaviour and development. Here, we investigated the effect of a bioinsecticide (azadirachtin) and predator cues on mating in a biocontrol spider, Philodromus cespitum. Firstly, adult males were exposed to cues from ants (as predators) or conspecific juveniles (as controls) and those from virgin adult females combined with insecticide residues and we then recorded their selection of the respective surfaces. In an insecticide-free environment, males spent significantly more time on the surface with cues from juveniles and virgin females than on the surface with cues from ants and virgin females. In the environment with ant cues, males did not spend significantly more time on the surface treated with water or insecticide residues. Secondly, adult male and female spiders were exposed to cues from predators and conspecifics and fresh insecticide residuals and we recorded mating behaviour. The presence of ant cues nor the presence of insecticide residues had a significant effect on the mating behaviour. However, the frequency of females biting males was significantly lower on the surface with insecticide residues and ant cues and highest on the surface with ant cues and water treatment. The size of mating plugs (applied to female genitals by males during mating) was not different between ant cues and control, but the plugs were significantly larger on the surface with insecticide residues. We conclude that azadirachtin affected only slightly the perception of predation risk and consequently mating behaviour in P. cespitum. Similarly, presence of ant cues had little effect on mating.
Collapse
Affiliation(s)
- Lenka Sentenská
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Marzio Cometa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
87
|
Shephard AM, Zambre AM, Snell‐Rood EC. Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 2021; 14:1390-1402. [PMID: 34025774 PMCID: PMC8127708 DOI: 10.1111/eva.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organismal tolerance to environmental pollution is thought to be constrained by fitness costs, where variants with higher survival in polluted environments have lower performance in nonpolluted environments. Yet, costs are not always detected in empirical studies. One hypothesis suggests that whether tolerance costs emerge depends on the degree of heterogeneity populations experience with respect to pollution exposure. For instance, in populations confined to local environments where pollution is persistent, selection may favour alleles that enhance pollution tolerance but reduce performance in nonpolluted environments (costs). However, in broadly distributed populations that undergo selection in both polluted and nonpolluted patches, costs should be eroded. Understanding tolerance costs in broadly distributed populations is relevant to management of invasive species, which are highly dispersive, wide ranging, and often colonize disturbed or polluted patches such as agricultural monocultures. Therefore, we conducted a case study quantifying costs of tolerance to zinc pollution (a common heavy metal pollutant) in wild cabbage white butterflies (Pieris rapae). This wide ranging, highly dispersive and invasive pest periodically encounters metal pollution by consuming plants in urban and agricultural settings. In contrast to expected costs of tolerance, we found that cabbage white families with greater zinc tolerance also produced more eggs and had higher reproductive effort under nonpolluted conditions. These results contribute to a more general hypothesis of why costs of pollution tolerance vary across studies: patchy selection with pollutants should erode costs and may favour genotypes that perform well under both polluted and nonpolluted conditions. This might partly explain why widely distributed invasive species are able to thrive in diverse, polluted and nonpolluted habitats.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Amod M. Zambre
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| |
Collapse
|
88
|
Meijer N, de Rijk T, van Loon JJA, Zoet L, van der Fels-Klerx HJ. Effects of insecticides on mortality, growth and bioaccumulation in black soldier fly (Hermetia illucens) larvae. PLoS One 2021; 16:e0249362. [PMID: 33882072 PMCID: PMC8059818 DOI: 10.1371/journal.pone.0249362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Residues of persistent insecticides may be present in the substrates on which insects are reared for food and feed, which may affect insect growth or survival. In addition, insecticidal substances may bio-accumulate in reared insects. The objective of this study was to assess potential effects of selected insecticides on the growth and survival of black soldier fly larvae (BSFL, Hermetia illucens) and on their safety when used as animal feed. Six insecticides (chlorpyrifos, propoxur, cypermethrin, imidacloprid, spinosad, tebufenozide) with different modes of action were tested in two sequential experiments. Cypermethrin was also tested with the synergist piperonyl butoxide (PBO). Standard BSFL substrate was spiked to the respective maximum residue level (MRL) of each insecticide allowed by the European Union to occur in feed; and BSFL were reared on these substrates. Depending on the observed effects in the first experiment, spiked concentrations tested in the second experiment were increased or reduced. At the concentrations applied (1 and 10 times MRL), three of the six tested substances (chlorpyrifos, propoxur, tebufenozide) did not affect the survival or biomass growth of BSFL, compared to the control (non-spiked) treatments. At MRL, imidacloprid stimulated the growth of BSFL compared to the controls. Spinosad and cypermethrin at the MRL level negatively affected growth and survival. The effects of cypermethrin appeared to be augmented by addition of PBO. A mean bio-accumulation factor of ≤0.01 was found in both experiments for all substances-except for cypermethrin, which was comparatively high, but still below 1 (0.79 at 0.1 mg/kg). The lack of accumulation of insecticides in the larvae suggests that there is no risk of larval products being uncompliant with feed MRLs. However, we conclude that insecticides present in substrates may affect growth and survival of BSFL. More research on a larger variety of substances and insect species is recommended.
Collapse
Affiliation(s)
- Nathan Meijer
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Theo de Rijk
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Joop J. A. van Loon
- Plant Sciences Group, Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Lisa Zoet
- Bestico B.V., Berkel en Rodenrijs, The Netherlands
| | | |
Collapse
|
89
|
Alberoni D, Favaro R, Baffoni L, Angeli S, Di Gioia D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144116. [PMID: 33383302 DOI: 10.1016/j.scitotenv.2020.144116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 05/11/2023]
Abstract
Bees can be severely affected by various plant protection products (PPP). Among these, neonicotinoid insecticides are of concern as they have been shown to be responsible for extensive honeybee colonies death when released into the environment. Also, sublethal neonicotinoid doses contaminating single honeybees and their colonies (e.g. through contaminated pollen) are responsible for honeybees physiological alterations with probable implication also on microbiome functionality. Honeybees show symbiotic interactions with specific gut bacteria that can enhance the adult host performances. Among the known mechanisms, the modulation of the immune system, the degradation of recalcitrant secondary plant metabolites, pollen digestion, and hormonal signaling, are the most important functional benefits for the host honeybee. To date, few research efforts have aimed at revealing the impact of PPP on the gut microbial community of managed and wild honeybees. The majority of the existing literature relays on cage or semifield tests of short duration for research investigating neonicotinoids-gut microbiome interactions. This research wanted to unravel the impact of two neonicotinoids (i.e. imidacloprid and thiacloprid) in natural field conditions up to 5 weeks of exposure. A long-term impact of neonicotinoids on gut microbial community of honeybees was observed. The alterations affected several microbial genera and species such as Frischella spp., lactobacilli and bifidobacteria, whose shifting is implicated in intestinal dysbiosis. Long-term impact leading to dysbiosis was detected in case of exposure to imidacloprid, whereas thiacloprid exposure stimulated temporary dysbiosis. Moreover, the microbial diversity was significantly reduced in neonicotinoid-treated groups. Overall, the reported results support a compromised functionality of the gut microbial community, that might reflect a lower efficiency in the ecosystemic functionality of honeybees.
Collapse
Affiliation(s)
- D Alberoni
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - R Favaro
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - L Baffoni
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - S Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - D Di Gioia
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
90
|
Delayed mortality, resistance and the sweet spot, as the good, the bad and the ugly in phosphine use. Sci Rep 2021; 11:3933. [PMID: 33594183 PMCID: PMC7887275 DOI: 10.1038/s41598-021-83463-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Phosphine is the most commonly used gas for fumigation for durable commodities globally, but there is still inadequate information regarding its efficacy in conjunction with proper concentration monitoring. In a series of bioassays, insect mortality after specific exposure intervals to phosphine in selected species was examined, as well as the appearance of the so called "sweet spot". The species that were tested were: Oryzaephilus surinamensis (L.), Tribolium castaneum (Herbst), Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) with populations that had different levels of phosphine resistance. Evaluation was conducted by using the Phosphine Tolerance Test (PTT), with exposure of the adult stage for 15, 30, 60, 90, 150 and 300 min at 3000 ppm. At the end of these intervals (separate bioassays for each time interval), the insects were transferred to Petri dishes, in which recovery was recorded at different time intervals (2 h, 1, 2 and 7 days). The majority of susceptible populations of all species were instantly immobilized even in the shortest exposure period (15 min), in contrast with resistant populations that were active even after 300 min. After exposure to phosphine, populations and exposure time affected mortality of susceptible populations, whereas resistant populations recovered regardless of species and exposure time. Additional bioassays at the concentrations of 500, 1000, 2000 and 3000 ppm for 1, 3, 5, 20, 30 and 40 h showed the presence of the "sweet spot", i.e., decrease of mortality with the increase of concentration. In fact, for most of the tested species, the "sweet spot" appeared in 1000 and 2000 ppm at a 5-h exposure time, regardless of the level of resistance to phosphine. This observation is particularly important both in terms of the assessment of resistance and in the context of non-linear recovery at elevated concentrations, indicating the occurrence of strong hormetic reversals in phosphine efficacy.
Collapse
|
91
|
Meslin C, Bozzolan F, Braman V, Chardonnet S, Pionneau C, François MC, Severac D, Gadenne C, Anton S, Maibèche M, Jacquin-Joly E, Siaussat D. Sublethal Exposure Effects of the Neonicotinoid Clothianidin Strongly Modify the Brain Transcriptome and Proteome in the Male Moth Agrotis ipsilon. INSECTS 2021; 12:insects12020152. [PMID: 33670203 PMCID: PMC7916958 DOI: 10.3390/insects12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. Low doses of insecticides can stimulate various life traits in target pest insects, whereas negative effects are expected. We recently showed that treatments with different low doses of clothianidin could modify behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we showed that clothianidin disrupted 1229 genes and 49 proteins at the molecular level, including numerous enzymes of detoxification and neuronal actors, which could explain the acclimatization in pest insects to the insecticide-contaminated environment. Abstract Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.
Collapse
Affiliation(s)
- Camille Meslin
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Virginie Braman
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Solenne Chardonnet
- Plateforme Post-Génomique de la Pitié-Salpêtrière (P3S), UMS 37 PASS, INSERM, Sorbonne Université, 75013 Paris, France; (S.C.); (C.P.)
| | - Cédric Pionneau
- Plateforme Post-Génomique de la Pitié-Salpêtrière (P3S), UMS 37 PASS, INSERM, Sorbonne Université, 75013 Paris, France; (S.C.); (C.P.)
| | - Marie-Christine François
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Dany Severac
- MGX, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34000 Montpellier, France;
| | - Christophe Gadenne
- Institut de Génétique Environnement et Protection des Plantes IGEPP, INRAE, Institut Agro, Université de Rennes, 49045 Angers, France; (C.G.); (S.A.)
| | - Sylvia Anton
- Institut de Génétique Environnement et Protection des Plantes IGEPP, INRAE, Institut Agro, Université de Rennes, 49045 Angers, France; (C.G.); (S.A.)
| | - Martine Maibèche
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - Emmanuelle Jacquin-Joly
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
| | - David Siaussat
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 75005 Paris, France; (C.M.); (F.B.); (V.B.); (M.-C.F.); (M.M.); (E.J.-J.)
- Département Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, 78026 Versailles, France
- Correspondence:
| |
Collapse
|
92
|
Majidpour M, Maroofpour N, Ghane-Jahromi M, Guedes RNC. Thiacloprid + Deltamethrin on the Life-Table Parameters of the Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae), and the Parasitoid, Aphidius flaviventris (Hymenoptera: Aphelinidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2723-2731. [PMID: 32990750 DOI: 10.1093/jee/toaa214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Indexed: 06/11/2023]
Abstract
A combination of pesticides and biological control agents is frequently necessary to achieve successful pest management requiring the assessment of their compatibility for the intended purpose. Aphidius flaviventris Kurdjumov is one of the parasitoids of the cotton aphid Aphis gossypii Glover, whose susceptibility to pesticides was not yet investigated. Accordingly, we investigated the lethal and sublethal effects of the commonly utilized insecticide mixture thiacloprid + deltamethrin on the cotton aphid and its parasitoid wasp Aphidius flaviventris. The estimated LC50 for the aphid was 14.1 mg ai/l; the effects of sublethal exposure at LC10 (2.80 mg ai/l) and LC30 (7.28 mg ai/l) on the aphid life-table parameters led to significantly increase on the development time of third- and fourth-instar nymphs and preadult. Sublethal exposure to the insecticide mixture compromised aphid longevity, fecundity, and life-table parameters (r, R0, and T). Moreover, population growth and parasitism rate of the parasitoid were significantly compromised at both concentrations of the insecticide mixture under sublethal exposure. These results not only indicate the efficacy of thiacloprid + deltamethrin against the cotton aphid, but also raise concerns regarding its negative impacts on the parasitoid Aphidius flaviventris and caution against its use in pest management programs.
Collapse
Affiliation(s)
- Marzieh Majidpour
- Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Nariman Maroofpour
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Ghane-Jahromi
- Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | | |
Collapse
|
93
|
Manning P, Cutler GC. Exposure to low concentrations of pesticide stimulates ecological functioning in the dung beetle Onthophagus nuchicornis. PeerJ 2020; 8:e10359. [PMID: 33282556 PMCID: PMC7690291 DOI: 10.7717/peerj.10359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022] Open
Abstract
Body-size is an important trait for predicting how species contribute to ecosystem functions and respond to environmental stress. Using the dung beetle Onthophagus nuchicornis (Coleoptera: Scarabaeidae), we explored how variation in body-size affected ecosystem functioning (dung burial) and sensitivity to an environmental stressor (exposure to the veterinary anthelmintic ivermectin). We found that large beetles buried nearly 1.5-fold more dung than small beetles, but that mortality from exposure to a range of concentrations of ivermectin did not differ between large and small beetles. Unexpectedly, we found that exposure to low concentrations of ivermectin (0.01–1 mg ivermectin per kg dung) stimulated dung burial in both small and large beetles. Our results provide evidence of ecological functioning hormesis stemming from exposure to low amounts of a chemical stressor that causes mortality at high doses.
Collapse
Affiliation(s)
- Paul Manning
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
94
|
Strobl V, Camenzind D, Minnameyer A, Walker S, Eyer M, Neumann P, Straub L. Positive Correlation between Pesticide Consumption and Longevity in Solitary Bees: Are We Overlooking Fitness Trade-Offs? INSECTS 2020; 11:E819. [PMID: 33233695 PMCID: PMC7699727 DOI: 10.3390/insects11110819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
The ubiquitous use of pesticides is one major driver for the current loss of biodiversity, and the common practice of simultaneously applying multiple agrochemicals may further contribute. Insect toxicology currently has a strong focus on survival to determine the potential hazards of a chemical routinely used in risk evaluations. However, studies revealing no effect on survival or even indicating enhanced survival are likely to be misleading, if potential trade-offs between survival and other physiological factors are overlooked. Here, we used standard laboratory experiments to investigate the sublethal (i.e., food consumption) and lethal (i.e., survival) effects of two common agricultural pesticides (Roundup® and clothianidin) on adult female solitary bees, Osmia bicornis. The data showed no significant effect of the treatment on cumulative survival; however, a significant positive correlation between herbicide and insecticide exposure and age was revealed, i.e., bees exposed to higher dosages lived longer. As no significant differences in daily food consumption were observed across treatment groups, increased food intake can be excluded as a factor leading to the prolonged survival. While this study does not provide data on fitness effects, two previous studies using solitary bees observed significant negative effects of neonicotinoid insecticides on fitness, yet not on survival. Thus, we conjecture that the observed non-significant effects on longevity may result from a trade-off between survival and reproduction. The data suggest that a focus on survival can lead to false-negative results and it appears inevitable to include fitness or at least tokens of fitness at the earliest stage in future risk assessments.
Collapse
Affiliation(s)
- Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| | - Stephanie Walker
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| | - Michael Eyer
- Laboratory of Soil Biodiversity, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (D.C.); (A.M.); (S.W.); (P.N.)
| |
Collapse
|
95
|
Malbert-Colas A, Drozdz T, Massot M, Bagni T, Chertemps T, Maria A, Maïbèche M, Siaussat D. Effects of low concentrations of deltamethrin are dependent on developmental stages and sexes in the pest moth Spodoptera littoralis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41893-41901. [PMID: 32696409 DOI: 10.1007/s11356-020-10181-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Effects of low concentrations of pesticides, with no or moderate mortality of targeted species, are poorly studied even though these low concentrations are common under natural conditions. Studying their effects is critical because they can induce positive hormetic responses, possibly leading to greater pest multiplication and promoting the evolution of pest resistance. Here, we investigated the responses of the pest moth Spodoptera littoralis to low concentrations of deltamethrin, and tested for variation in effects of the pesticide between developmental stages and sexes. Indeed, we show that a given concentration of deltamethrin has different effects between stages, and even between sexes. Two experimental concentrations led to very high mortality early in S. littoralis development (4th larval instar), but only to low mortality rates in adults. Moreover, our highest experimental concentration had only detrimental effects in adult females, but improved the reproductive success of adult males. Model projections showed that the lethality from treatments at the 4th larval instar was the predominant effect. Because of the high multiplication rate of S. littoralis, it was also found that treatments with very similar effects on larval mortality can lead to either population extinction or rapid pest resurgence.
Collapse
Affiliation(s)
- Aude Malbert-Colas
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Thomas Drozdz
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Manuel Massot
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Thibaut Bagni
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Thomas Chertemps
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Annick Maria
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - Martine Maïbèche
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France
| | - David Siaussat
- CNRS, INRAe, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
96
|
Seidel EJ, Pazini JB, Tomazella VLD, Vieira AMC, Silva FF, Martins JFS, Barrigossi JAF. Predicting Rice Stem Stink Bug Population Dynamics Based on GAMLSS Models. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1145-1154. [PMID: 32949128 DOI: 10.1093/ee/nvaa091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Indexed: 06/11/2023]
Abstract
The rice stem stink bug, Tibraca limbativentris Stål (Hemiptera: Pentatomidae), is one of the most harmful insects for Brazilian rice fields. Aiming to define the most appropriate time and place for pest management measures in commercial paddy fields, we adjusted regression models (Poisson, Zero Inflated Poisson, reparametrized Zero Inflated Poisson, Negative Binomial and Zero Inflated Negative Binomial) for modeling the population variation of T. limbativentris along the phenological cycle of the flooded rice cultivation. We hypothesize that the rice stem stink bug population's size is influenced by the rice cycle (time) and geographical positions within the crop. It was possible to predict the occurrence of the rice stem stink bug in the commercial flooded rice crop. The population of the rice stem stink bug increased significantly with the time or phenological evolution of rice. Our results indicated that the start of T. limbativentris monitoring should occur up to 45 d After Plant Emergence (DAE), from the regions along the edges of the rice paddies, which are the points of entry and higher concentration of the insect. In addition, 45 and 60 DAE were considered the crucial times for T. limbativentris control decision making in flooded rice paddies.
Collapse
Affiliation(s)
- E J Seidel
- Department of Statistic, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - J B Pazini
- Department of Plant Protection, Federal University of Pelotas, Pelotas, RS, Brazil
| | - V L D Tomazella
- Department of Statistic, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A M C Vieira
- Department of Statistic, Federal University of São Carlos, São Carlos, SP, Brazil
| | - F F Silva
- Federal University of Pampa, São Gabriel, RS, Brazil
| | - J F S Martins
- Brazilian Agricultural Research Corporation, Embrapa Temperate Agriculture, Monte Bonito, Pelotas, RS, Brazil
| | - J A F Barrigossi
- Brazilian Agricultural Research Corporation, Embrapa Rice & Bean, Fazenda Capivara, Santo Antônio de Goiás, GO, Brazil
| |
Collapse
|
97
|
Rix RR, Cutler GC. Low Doses of a Neonicotinoid Stimulate Reproduction in a Beneficial Predatory Insect. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2179-2186. [PMID: 32814948 DOI: 10.1093/jee/toaa169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Biological stimulation induced by low doses of toxicants or other stressors is known as hormesis. Hormetic stimulation of life history traits in insect pests can negatively impact agriculture, but stimulation of beneficial insects could be leveraged to enhance biological control agents. We examined whether low doses of imidacloprid could enhance oviposition, fecundity, fertility, and survival in the beneficial stink bug predator, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), exposed at different life stages and across two generations. When treated as young adults, P. maculiventris fecundity was stimulated at 0.5 and 1.0 mg/liter imidacloprid (<2% of the field rate) without changes in time to oviposition, fertility, and survival. Nymphs exposed to 0.015 mg/liter imidacloprid (<1% of the field rate) also had stimulated reproduction without effects on oviposition, fertility, and survival, but treatment of nymphs at 0.15 and 1.5 mg/liter imidacloprid stimulated fecundity at the expense of fertility and survival. In another experiment we found reproductive stimulation can occur trans-generationally without major reduction in fertility or survival. Our results suggest biocontrol producers may be able to strategically apply low doses of stress to natural enemies during culturing without compromising fitness in subsequent generations.
Collapse
Affiliation(s)
- R R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS
| | - G C Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS
| |
Collapse
|
98
|
Andreazza F, Haddi K, Nörnberg SD, Guedes RNC, Nava DE, Oliveira EE. Sex-dependent locomotion and physiological responses shape the insecticidal susceptibility of parasitoid wasps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114605. [PMID: 32380390 DOI: 10.1016/j.envpol.2020.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT50) = 24 h) to spinosad than D. longicaudata females (LT50 = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.
Collapse
Affiliation(s)
- Felipe Andreazza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departament of Entomology, Michigan State University, East Lansing, MI, 48823, USA
| | - Khalid Haddi
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Entomologia, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Sandro D Nörnberg
- Embrapa Clima Temperado, Laboratory of Entomology, Pelotas, RS, 96010-971, Brazil
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Dori E Nava
- Embrapa Clima Temperado, Laboratory of Entomology, Pelotas, RS, 96010-971, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departament of Entomology, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
99
|
Cui K, He L, Zhang Z, Zhang L, Mu W, Liu F. Effects of benzothiazole on survival for reduced reproduction and development in Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). PEST MANAGEMENT SCIENCE 2020; 76:3088-3095. [PMID: 32279408 DOI: 10.1002/ps.5860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), is an important stored-product pest that is distributed worldwide and has developed resistance to many insecticides. Identifying novel and effective alternative insecticides is important for the control of T. castaneum. The volatile compound benzothiazole has been identified as having great acute toxic activity against T. castaneum. However, a comprehensive evaluation of a new insecticide should include both direct toxic effects and sublethal effects. The aim of this study was therefore to evaluate the effects of benzothiazole on the development and reproduction of T. castaneum. RESULTS Exposure of fourth-instar larvae to lethal and sublethal concentrations of benzothiazole (LC10 , LC30 and LC50 ) significantly decreased pupation rates, food intake and growth rates in T. castaneum. Larval duration was significantly reduced by approximately 1 day in the LC30 and LC50 treatment groups. The LC50 benzothiazole caused a significant decrease in the weight of pupae and adults, fecundity and egg hatchability. Increased and decreased nutrient (carbohydrate and lipid) contents were observed in surviving larvae and pupae, respectively. The LC30 and LC50 treatments caused the down-regulation of five growth-positive regulated genes (PI3K, AKT, CyclinE, S6K1 and S6K2) and the up-regulation of two growth-negative regulated genes (4EBP and FOXO). CONCLUSION Benzothiazole presented adverse effects on the development and reproduction of T. castaneum, further supporting benzothiazole as a highly active compound in stored-product protection. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhengqun Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Lingyan Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|
100
|
Mc Namara L, Gauthier K, Walsh L, Thébaud G, Gaffney M, Jacquot E. Management of yellow dwarf disease in Europe in a post-neonicotinoid agriculture. PEST MANAGEMENT SCIENCE 2020; 76:2276-2285. [PMID: 32243081 DOI: 10.1002/ps.5835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low-level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors. However, this has changed recently, with many insecticides being lost, culminating in a recent European Union (EU) regulation prohibiting outdoor use of the neonicotinoid-insecticide compounds. This change is coupled with the growing challenge of insecticide-resistant aphids, the lack of genetic resources against YDVs, and a knowledge deficit around the parameters responsible for the emergence and spread of YDD. This means that economic sustainability of cereal cultivation in several European countries including France and United Kingdom is now again threatened by this aphid-vectored viral disease. In this review, we summarize the current knowledge on the YDV pathosystem, describe management options against YDD, analyse the impacts of the neonicotinoid ban in Europe, and consider future strategies to control YDV. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Louise Mc Namara
- Teagasc, Crop Science Department, Crops, Environment and Land Use Programme, Carlow, Ireland
| | - Kevin Gauthier
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
- Bayer CropScience, Lyon, France
| | - Lael Walsh
- Teagasc, Horticultural Development Department, Crops, Environment and Land Use Programme, Dublin, Ireland
- Pentland Centre for Sustainability in Business, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Gaël Thébaud
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
| | - Michael Gaffney
- Teagasc, Horticultural Development Department, Crops, Environment and Land Use Programme, Dublin, Ireland
| | - Emmanuel Jacquot
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|