51
|
Abstract
The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.
Collapse
|
52
|
Roeven E, Kuzmyn AR, Scheres L, Baggerman J, Smulders MMJ, Zuilhof H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10187-10199. [PMID: 32820926 PMCID: PMC7498161 DOI: 10.1021/acs.langmuir.0c01675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be synthesized partly or completely on the surface or in solution, depending on the desired production process and/or application.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Luc Scheres
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Jacob Baggerman
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
53
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
54
|
Yang Q, Wu B, Eles JR, Vazquez AL, Kozai TDY, Cui XT. Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. ADVANCED BIOSYSTEMS 2020; 4:e1900287. [PMID: 32363792 PMCID: PMC7686959 DOI: 10.1002/adbi.201900287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
Abstract
For brain computer interfaces (BCI), the immune response to implanted electrodes is a major biological cause of device failure. Bioactive coatings such as neural adhesion molecule L1 have been shown to improve the biocompatibility, but are difficult to handle or produce in batches. Here, a synthetic zwitterionic polymer coating, poly(sulfobetaine methacrylate) (PSBMA) is developed for neural implants with the goal of reducing the inflammatory host response. In tests in vitro, the zwitterionic coating inhibits protein adsorption and the attachment of fibroblasts and microglia, and remains stable for at least 4 weeks. In vivo two-photon microscopy on CX3CR1-GFP mice shows that the zwitterionic coating significantly suppresses the microglial encapsulation of neural microelectrodes over a 6 h observation period. Furthermore, the lower microglial encapsulation on zwitterionic polymer-coated microelectrodes is revealed to originate from a reduction in the size but not the number of microglial end feet. This work provides a facile method for coating neural implants with zwitterionic polymers and illustrates the initial interaction between microglia and coated surface at high temporal and spatial resolution.
Collapse
Affiliation(s)
- Qianru Yang
- Biomedical Science Tower 3, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15232, USA
| | - Bingchen Wu
- Biomedical Science Tower 3, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15232, USA
| | - James R Eles
- Biomedical Science Tower 3, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15232, USA
| | - Alberto L Vazquez
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Pittsburgh, PA, 15219, USA
| | - Takashi D Y Kozai
- Center for Biotechnology and Bioengineering, University of Pittsburgh, 300 Technology Dr, Pittsburgh, PA, 15213, USA
| | - X Tracy Cui
- Biomedical Science Tower 3, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15232, USA
| |
Collapse
|
55
|
Hu X, Tian J, Li C, Su H, Qin R, Wang Y, Cao X, Yang P. Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000128. [PMID: 32346929 DOI: 10.1002/adma.202000128] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Surfaces that resist nonspecific protein adsorption in a complex biological milieu are required for a variety of applications. However, few strategies can achieve a robust antifouling coating on a surface in an easy and reliable way, regardless of material type, morphology, and shape. Herein, the preparation of an antifouling coating by one-step aqueous supramolecular assembly of bovine serum albumin (BSA) is reported. Based on fast amyloid-like protein aggregation through the rapid reduction of the intramolecular disulfide bonds of BSA by tris(2-carboxyethyl)phosphine, a dense proteinaceous nanofilm with controllable thickness (≈130 nm) can be covered on virtually arbitrary material surfaces in tens of minutes by a simple dipping or spraying. The nanofilm shows strong stability and adhesion with the underlying substrate, exhibiting excellent resistance to the nonspecific adsorption of a broad-spectrum of contaminants including proteins, serum, cell lysate, cells, and microbes, etc. In vitro and in vivo experiments show that the nanofilm can prevent the adhesion of microorganisms and the formation of biofilm. Compared with native BSA, the proteinaceous nanofilm coating exposes a variety of functional groups on the surface, which have more-stable adhesion with the surface and can maintain the antifouling in harsh conditions including under ultrasound, surfactants, organic solvents, and enzymatic digestion.
Collapse
Affiliation(s)
- Xinyi Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an, 710004, China
| | - Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rongrong Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
56
|
Spaulding KA, Zhu Y, Takaba K, Ramasubramanian A, Badathala A, Haraldsson H, Collins A, Aguayo E, Shah C, Wallace AW, Ziats NP, Lovett DH, Baker AJ, Healy KE, Ratcliffe MB. Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility. J Biomed Mater Res A 2020; 108:1736-1746. [PMID: 32270584 DOI: 10.1002/jbm.a.36941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
The decrease in contractility in myocardium adjacent (border zone; BZ) to a myocardial infarction (MI) is correlated with an increase in reactive oxygen species (ROS). We hypothesized that injection of a thermoresponsive hydrogel, with ROS scavenging properties, into the MI would decrease ROS and improve BZ function. Fourteen sheep underwent antero-apical MI. Seven sheep had a comb-like copolymer synthesized from N-isopropyl acrylamide (NIPAAm) and 1500 MW methoxy poly(ethylene glycol) methacrylate, (NIPAAm-PEG1500), injected (20 × 0.5 mL) into the MI zone 40 min after MI (MI + NIPAAm-PEG1500) and seven sheep were MI controls. Cardiac MRI was performed 2 weeks before and 6 weeks after MI + NIPAAm-PEG1500. BZ wall thickness at end systole was significantly higher for MI + NIPAAm-PEG1500 (12.32 ± 0.51 mm/m2 MI + NIPAAm-PEG1500 vs. 9.88 ± 0.30 MI; p = .023). Demembranated muscle force development for BZ myocardium 6 weeks after MI was significantly higher for MI + NIPAAm-PEG1500 (67.67 ± 2.61 mN/m2 MI + NIPAAm-PEG1500 vs. 40.53 ± 1.04 MI; p < .0001) but not significantly different from remote myocardium or BZ or non-operated controls. Levels of ROS in BZ tissue were significantly lower in the MI + NIPAAm-PEG1500 treatment group (hydroxyl p = .0031; superoxide p = .0182). We conclude that infarct injection of the NIPAAm-PEG1500 hydrogel with ROS scavenging properties decreased ROS and improved contractile protein function in the border zone 6 weeks after MI.
Collapse
Affiliation(s)
| | - Yang Zhu
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Kiyoaki Takaba
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Anusuya Ramasubramanian
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | | | - Henrik Haraldsson
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | | | - Esteban Aguayo
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Curran Shah
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Arthur W Wallace
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David H Lovett
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Kevin E Healy
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Mark B Ratcliffe
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| |
Collapse
|
57
|
Feng X, Xu P, Shen T, Zhang Y, Ye J, Gao C. Age-Related Regeneration of Osteochondral and Tibial Defects by a Fibrin-Based Construct in vivo. Front Bioeng Biotechnol 2020; 8:404. [PMID: 32432101 PMCID: PMC7214756 DOI: 10.3389/fbioe.2020.00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Tissue-biomaterial interactions in different microenvironments influence significantly the repair and regeneration outcomes when a scaffold or construct is implanted. In order to elucidate this issue, a fibrin gel filled macroporous fibrin scaffold (fibrin-based scaffold) was fabricated by loading fibrinogen via a negative pressure method, following with thrombin crosslinking. The macroporous fibrin scaffold exhibited a porous structure with porosity of (88.1 ± 1.3)%, and achieved a modulus of 19.8 ± 0.4 kPa at a wet state after fibrin gel filling, providing a suitable microenvironment for bone marrow-derived mesenchymal stem cells (BMSCs). The in vitro cellular culture revealed that the fibrin-based scaffold could support the adhesion, spreading, and proliferation of BMSCs in appropriate cell encapsulation concentrations. The fibrin-based scaffolds were then combined with BMSCs and lipofectamine/plasmid deoxyribonucleic acid (DNA) encoding mouse-transforming growth factor β1 (pDNA-TGF-β1) complexes to obtain the fibrin-based constructs, which were implanted into osteochondral and tibial defects at young adult rabbits (3 months old) and aged adult rabbits (12 months old) to evaluate their respective repair effects. Partial repair of osteochondral defects and perfect restoration of tibial defects were realized at 18 weeks post-surgery for the young adult rabbits, whereas only partial repair of subchondral bone and tibial bone defects were found at the same time for the aged adult rabbits, confirming the adaptability of the fibrin-based constructs to the different tissue microenvironments by tissue-biomaterial interplays.
Collapse
Affiliation(s)
- Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yihan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
58
|
Ferber S, Gonzalez RJ, Cryer AM, von Andrian UH, Artzi N. Immunology-Guided Biomaterial Design for Mucosal Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903847. [PMID: 31833592 DOI: 10.1002/adma.201903847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cancer of mucosal tissues is a major cause of worldwide mortality for which only palliative treatments are available for patients with late-stage disease. Engineered cancer vaccines offer a promising approach for inducing antitumor immunity. The route of vaccination plays a major role in dictating the migratory pattern of lymphocytes, and thus vaccine efficacy in mucosal tissues. Parenteral immunization, specifically subcutaneous and intramuscular, is the most common vaccination route. However, this induces marginal mucosal protection in the absence of tissue-specific imprinting signals. To circumvent this, the mucosal route can be utilized, however degradative mucosal barriers must be overcome. Hence, vaccine administration route and selection of materials able to surmount transport barriers are important considerations in mucosal cancer vaccine design. Here, an overview of mucosal immunity in the context of cancer and mucosal cancer clinical trials is provided. Key considerations are described regarding the design of biomaterial-based vaccines that will afford antitumor immune protection at mucosal surfaces, despite limited knowledge surrounding mucosal vaccination, particularly aided by biomaterials and mechanistic immune-material interactions. Finally, an outlook is given of how future biomaterial-based mucosal cancer vaccines will be shaped by new discoveries in mucosal vaccinology, tumor immunology, immuno-therapeutic screens, and material-immune system interplay.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander M Cryer
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA, 02139, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
59
|
Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM, Artzi N, Lee Y. Overcoming the translational barriers of tissue adhesives. NATURE REVIEWS MATERIALS 2020; 5:310-329. [DOI: 10.1038/s41578-019-0171-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/06/2025]
|
60
|
Liu S, Cao H, Guo R, Li H, Lu C, Yang G, Nie J, Wang F, Dong N, Shi J, Shi F. Effects of the proportion of two different cross-linkers on the material and biological properties of enzymatically degradable PEG hydrogels. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
61
|
Li W, Fan X, Wang Y, Wang J, Li M, Li X, Tang K, Wan G. A glycidyl methacrylate modified collagen/polyethylene glycol diacrylate hydrogel: a mechanically strong hydrogel for loading levofloxacin. NEW J CHEM 2020. [DOI: 10.1039/d0nj02853c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial suturing of incision after ocular trauma is very complicated and is prone to infection.
Collapse
Affiliation(s)
- Weilin Li
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- College of Ecology and Resources Engineering
| | - Xialian Fan
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- The First Affiliated Hospital of Zhengzhou University
| | - Ying Wang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jingru Wang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Mengya Li
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiumin Li
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Keyong Tang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Guangming Wan
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
62
|
Scalabrini M, Hamon J, Linossier I, Ferrières V, Réhel K. Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces. Colloids Surf B Biointerfaces 2019; 183:110383. [DOI: 10.1016/j.colsurfb.2019.110383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
|
63
|
Park J, Jin C, Lee S, Kim J, Choi H. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Adv Healthc Mater 2019; 8:e1900213. [PMID: 31290597 DOI: 10.1002/adhm.201900213] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Indexed: 11/07/2022]
Abstract
Microrobots facilitate targeted therapy due to their small size, minimal invasiveness, and precise wireless control. A degradable hyperthermia microrobot (DHM) with a 3D helical structure is developed, enabling actively controlled drug delivery, release, and hyperthermia therapy. The microrobot is made of poly(ethylene glycol) diacrylate (PEGDA) and pentaerythritol triacrylate (PETA) and contains magnetic Fe3 O4 nanoparticles (MNPs) and 5-fluorouracil (5-FU). Its locomotion is remotely and precisely controlled by a rotating magnetic field (RMF) generated by an electromagnetic actuation system. Drug-free DHMs reduce the viability of cancer cells by elevating the temperature under an alternating magnetic field (AMF), a hyperthermic effect. 5-FU is released from the proposed DHMs in normal-, high-burst-, and constant-release modes, controlled by the AMF. Finally, actively controlled drug release from the DHMs in normal- and high-burst-release mode results in a reduction in cell viability. The reduction in cell viability is of greater magnitude in high-burst- than in normal-release mode. In summary, biodegradable DHMs have potential for actively controlled drug release and hyperthermia therapy.
Collapse
Affiliation(s)
- Jongeon Park
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Chaewon Jin
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Seungmin Lee
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐Young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| |
Collapse
|
64
|
Czupiel PP, Delplace V, Shoichet MS. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J Control Release 2019; 305:210-219. [PMID: 31071370 DOI: 10.1016/j.jconrel.2019.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Currently, there are limited treatment options for multi-drug resistant breast cancer. Lipid-modified cationic peptides have the potential to reach the mitochondria, which are attractive targets for the treatment of multi-drug resistant (MDR) breast cancer; yet, little is known about their mitochondrial targeting and anti-cancer activity. Interestingly, lipid-modified cationic peptides, typically used as gene transfection agents, exhibit similar structural features to mitochondrial targeted peptides. Using octahistidine-octaarginine (H8R8) as a model cationic peptide for cell penetration and endosomal escape, we explored the anti-cancer potential of lipid-modified cationic peptides as a function of amphiphilicity, biodegradability and lipid structure. We found that cationic peptides modified with a lipid that is at least 12 carbons in length exhibit potent anti-cancer activity in the low micromolar range in both EMT6/P and EMT6/AR-1 breast cancer cells. Comparing degradable and non-degradable linkers, as well as L- and D-amino acid sequences, we found that the anti-cancer activity is mostly independent of the biodegradation of the lipid-modified cationic peptides. Two candidates, stearyl-H8R8 (Str-H8R8) and vitamin E succinate-H8R8 (VES-H8R8) were cytotoxic to cancer cells by mitochondria depolarization. We observed increased reactive oxygen species (ROS) production, reduced cell bioenergetics and drug efflux, triggering apoptosis and G1 cell cycle arrest. Compared to Str-H8R8, VES-H8R8 showed enhanced cancer cell selectivity and drug efflux inhibition, thereby serving as a potential novel therapeutic agent. This study deepens our understanding of lipid-modified cationic peptides and uncovers their potential in multi-drug resistant breast cancer.
Collapse
Affiliation(s)
- Petro P Czupiel
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
65
|
Chen SL, Fu RH, Liao SF, Liu SP, Lin SZ, Wang YC. A PEG-Based Hydrogel for Effective Wound Care Management. Cell Transplant 2019; 27:275-284. [PMID: 29637814 PMCID: PMC5898694 DOI: 10.1177/0963689717749032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is extremely challenging to achieve strong adhesion in soft tissues while minimizing toxicity, tissue damage, and other side effects caused by wound sealing materials. In this study, flexible synthetic hydrogel sealants were prepared based on polyethylene glycol (PEG) materials. PEG is a synthetic material that is nontoxic and inert and, thus, suitable for use in medical products. We evaluated the in vitro biocompatibility tests of the dressings to assess cytotoxicity and irritation, sensitization, pyrogen toxicity, and systemic toxicity following the International Organization for Standardization 10993 standards and the in vivo effects of the hydrogel samples using Coloskin liquid bandages as control samples for potential in wound closure.
Collapse
Affiliation(s)
- Sen-Lu Chen
- 1 Biomaterials Research and Development Department, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ru-Huei Fu
- 2 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,3 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,4 Department of Psychology, Asia University, Taichung, Taiwan
| | - Shih-Fei Liao
- 1 Biomaterials Research and Development Department, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Ping Liu
- 2 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,3 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- 5 Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Yu-Chi Wang
- 1 Biomaterials Research and Development Department, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| |
Collapse
|
66
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
67
|
Morgese G, Gombert Y, Ramakrishna SN, Benetti EM. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41839-41848. [PMID: 30395432 DOI: 10.1021/acsami.8b17193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(2-alkyl-2-oxazoline)s (PAOXAs) have progressively emerged as suitable alternatives for replacing poly(ethylene glycol) (PEG) in a variety of biomaterial-related applications, especially in the designing of polymer brush-based biointerfaces because of their stealth properties and chemical robustness. When equimolar mixtures of PEG and PAOXAs are assembled on surfaces to yield mixed polymer brushes, the interfacial physicochemical properties of the obtained films are significantly altered, in some cases, surpassing the biopassive and lubricious characteristics displayed by single-component PAOXA and PEG counterparts. With a combination of variable angle spectroscopic ellipsometry, quartz crystal microbalance with dissipation, and atomic force microscopy-based methods, we demonstrate that mixing of PEG brushes with equimolar amounts of PAOXA grafts determines an increment in film's hydration and viscoelasticity. In the case of mixtures of PEG and poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline), brushes displaying full inertness toward serum proteins and improved lubricity with respect to the corresponding single-component layers can be generated, while providing a multifunctional surface that substantially enlarges the applicability of the designed coatings.
Collapse
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Yvonne Gombert
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| |
Collapse
|
68
|
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom J, Zenobi‐Wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non‐Ionic Polymer Brushes as Biointerfaces: Poly(2‐oxazine)s Outperform Both Poly(2‐oxazoline)s and PEG. Angew Chem Int Ed Engl 2018; 57:11667-11672. [DOI: 10.1002/anie.201805620] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Bart Verbraeken
- Supramolecular Chemistry GroupDepartment of Organic Chemistry and Macromolecular ChemistryGhent University Belgium
| | - Shivaprakash N. Ramakrishna
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Yvonne Gombert
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Emma Cavalli
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Jan‐Georg Rosenboom
- Institute of Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zürich Switzerland
| | - Marcy Zenobi‐Wong
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Nicholas D. Spencer
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupDepartment of Organic Chemistry and Macromolecular ChemistryGhent University Belgium
| | - Edmondo M. Benetti
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| |
Collapse
|
69
|
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom JG, Zenobi-Wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Bart Verbraeken
- Supramolecular Chemistry Group; Department of Organic Chemistry and Macromolecular Chemistry; Ghent University; Belgium
| | - Shivaprakash N. Ramakrishna
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Yvonne Gombert
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Emma Cavalli
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Jan-Georg Rosenboom
- Institute of Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; ETH; Zürich Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Nicholas D. Spencer
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic Chemistry and Macromolecular Chemistry; Ghent University; Belgium
| | - Edmondo M. Benetti
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| |
Collapse
|
70
|
Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng 2018; 2:894-906. [PMID: 30931173 PMCID: PMC6436621 DOI: 10.1038/s41551-018-0273-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Continuous glucose monitors (CGMs), used by patients with diabetes mellitus, can autonomously track fluctuations in blood glucose over time. However, the signal produced by CGMs during the initial recording period following sensor implantation contains substantial noise, requiring frequent recalibration via fingerprick tests. Here, we show that coating the sensor with a zwitterionic polymer, found via a combinatorial-chemistry approach, significantly reduces signal noise and improves CGM performance. We evaluated the polymer-coated sensors in mice as well as in healthy and diabetic non-human primates, and show that the sensors accurately record glucose levels without the need for recalibration. We also show that the polymer-coated sensors significantly abrogated immune responses to the sensor, as indicated by histology, fluorescent whole-body imaging of inflammation-associated protease activity, and gene expression of inflammation markers. The polymer coating may allow CGMs to become standalone measuring devices.
Collapse
|
71
|
Ben Hamu G, Shamir D, Zohar M, Burg A. Acceleration of the corrosion reaction of magnesium by Fenton reagents. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1495332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Guy Ben Hamu
- Department of Mechanical Engineering, Sami Shamoon College of Engineering, Ashdod, Israel
| | | | - Moshe Zohar
- Department of Electrical and Electronics Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
72
|
Newland B, Taplan C, Pette D, Friedrichs J, Steinhart M, Wang W, Voit B, Seib FP, Werner C. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. NANOSCALE 2018; 10:8413-8421. [PMID: 29714385 PMCID: PMC5944428 DOI: 10.1039/c8nr00603b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.
Collapse
Affiliation(s)
- B. Newland
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
- Brain Repair Group , School of Biosciences , Cardiff University , Cardiff , CF10 3AX , UK
| | - C. Taplan
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
- Technische Universität Dresden , Organic Chemistry of Polymers , 01062 Dresden , Germany
| | - D. Pette
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
| | - J. Friedrichs
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
| | - M. Steinhart
- Institut für Chemie neuer Materialien , Universität Osnabrück , Barbarastraße 7 , 49069 Osnabrück , Germany
| | - W. Wang
- Charles Institute for Dermatology , University College Dublin , Dublin , Ireland
| | - B. Voit
- Technische Universität Dresden , Organic Chemistry of Polymers , 01062 Dresden , Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6 , D-01069 Dresden , Germany
| | - F. P. Seib
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow , G4 0RE , UK
| | - C. Werner
- Leibniz-Institut für Polymerforschung Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Straße 6 , D-01069 Dresden , Germany .
| |
Collapse
|
73
|
Schroeder R. Microgels for long-term storage of vitamins for extended spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:26-37. [PMID: 29475517 DOI: 10.1016/j.lssr.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Biocompatible materials that can encapsulate large amounts of nutrients while protecting them from degrading environmental influences are highly desired for extended manned spaceflight. In this study, alkaline-degradable microgels based on poly(N-vinylcaprolactam) (PVCL) were prepared and analysed with their regard to stabilise retinol which acts as a model vitamin (vitamin A1). It was investigated whether the secondary crosslinking of the particles with a polyphenol can prevent the isomerisation of biologically active all-trans retinol to biologically inactive cis-trans retinol. Both loading with retinol and secondary crosslinking of the particles was performed at room temperature to prevent an early degradation of the vitamin. This study showed that PVCL microgels drastically improve the water solubility of hydrophobic retinol. Additionally, it is demonstrated that the highly crosslinked microgel particles in aqueous solution can be utilised to greatly retard the light- and temperature-induced isomerisation process of retinol by a factor of almost 100 compared to pure retinol stored in ethanol. The use of microgels offers various advantages over other drug delivery systems as they exhibit enhanced biocompatibility and superior aqueous solubility.
Collapse
Affiliation(s)
- R Schroeder
- ESA - Advanced Concepts Team, European Space Research Technology Centre (ESTEC), Keplerlaan 1, Postbus 299, NL-2200 AG Noordwijk, Netherlands.
| |
Collapse
|
74
|
McAvoy K, Jones D, Thakur RRS. Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery. Pharm Res 2018; 35:36. [PMID: 29368249 PMCID: PMC5784000 DOI: 10.1007/s11095-017-2298-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023]
Abstract
Purpose To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Methods Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Results Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Conclusion Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
Collapse
Affiliation(s)
- Kathryn McAvoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - David Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK. .,School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
75
|
Kahyaoglu LN, Madangopal R, Park JH, Rickus JL. Integration of a Genetically Encoded Calcium Molecular Sensor into Photopolymerizable Hydrogels for Micro-Optrode-Based Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31557-31567. [PMID: 28845962 DOI: 10.1021/acsami.7b09923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetically encoded molecular-protein sensors (GEMS) are engineered to sense and quantify a wide range of biological substances and events in cells, in vitro and even in vivo with high spatial and temporal resolution. Here, we aim to stably incorporate these proteins into a photopatternable matrix, while preserving their functionality, to extend the application of these proteins as spatially addressable optical biosensors. For this reason, we examined the fabrication of 3D hydrogel microtips doped with a genetically encoded fluorescent biosensor, GCaMP3, at the end of an optical fiber. Stable incorporation parameters of GCaMP3 into a photo-cross-linkable monomer matrix were investigated through a series of characterization and optimization experiments. Different precursor-solution formulations and irradiation parameters of in situ photopolymerization were tested to determine the factors affecting protein stability and sensor reproducibility during photoencapsulation. The microstructure and performance of hydrogel microtips were controlled by varying UV irradiation intensity as well as the molecular weight and concentration of the photocurable monomer, PEGDA (polyethylene glycol diacrylate), in precursor solution. Protein-doped hydrogel micro-optrodes (microtip sensors) were fabricated successfully and reproducibly at the distal end of optical fiber. Under optimized conditions, the bioactivity of GCaMP3 within a hydrogel matrix of micro-optrodes remained similar to that of the protein-free matrix in buffer. The limit of detection of protein optrodes for free calcium was also determined to be 4.3 nM. The hydrogel formulation and fabrication process demonstrated here using microtip optrodes can be easily adapted to other conformation-dependent protein biosensors and can be used in sensing applications.
Collapse
Affiliation(s)
- Leyla Nesrin Kahyaoglu
- Agricultural & Biological Engineering, ‡Weldon School of Biomedical Engineering, §Birck-Bindley Physiological Sensing Facility, Purdue University , West Lafayette, Indiana 47907, United States
| | - Rajtarun Madangopal
- Agricultural & Biological Engineering, ‡Weldon School of Biomedical Engineering, §Birck-Bindley Physiological Sensing Facility, Purdue University , West Lafayette, Indiana 47907, United States
| | - Joon Hyeong Park
- Agricultural & Biological Engineering, ‡Weldon School of Biomedical Engineering, §Birck-Bindley Physiological Sensing Facility, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jenna L Rickus
- Agricultural & Biological Engineering, ‡Weldon School of Biomedical Engineering, §Birck-Bindley Physiological Sensing Facility, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
76
|
Kalsi P, Thom M, Choi D. Histological effects of fibrin glue and synthetic tissue glues on the spinal cord: are they safe to use? Br J Neurosurg 2017; 31:695-700. [DOI: 10.1080/02688697.2017.1359491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pratipal Kalsi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
- Neurosurgery, James Cook University Hospital, Middlesbrough, UK
| | - Maria Thom
- Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - David Choi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
77
|
Chung L, Maestas DR, Housseau F, Elisseeff JH. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 2017; 114:184-192. [PMID: 28712923 DOI: 10.1016/j.addr.2017.07.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
The compatibility of biomaterials is critical to their structural and biological function in medical applications. The immune system is the first responder to tissue trauma and to a biomaterial implant. The innate immune effector cells, most notably macrophages, play a significant role in the defense against foreign bodies and the formation of a fibrous capsule around synthetic implants. Alternatively, macrophages participate in the pro-regenerative capacity of tissue-derived biological scaffolds. Research is now elucidating the role of the adaptive immune system, and T cells in particular, in directing macrophage response to synthetic and biological materials. Here, we review basic immune cell types and discuss recent research on the role of the immune system in tissue repair and its potential relevance to scaffold design. We will also discuss new emerging immune cell types relevant to biomaterial responses and tissue repair. Finally, prospects for specifically targeting and modulating the immune response to biomaterial scaffolds for enhancing tissue repair and regeneration will be presented.
Collapse
|
78
|
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev 2017; 114:193-205. [PMID: 28449872 DOI: 10.1016/j.addr.2017.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Macrophages are versatile and plastic effector cells of the immune system, and contribute to diverse immune functions including pathogen or apoptotic cell removal, inflammatory activation and resolution, and tissue healing. Macrophages function as signaling regulators and amplifiers, and influencing their activity is a powerful approach for controlling inflammation or inducing a wound-healing response in regenerative medicine. This review discusses biomaterials-based approaches for altering macrophage activity, approaches for targeting drugs to macrophages, and approaches for delivering macrophages themselves as a therapeutic intervention.
Collapse
|
79
|
Yao H, Xue J, Wang Q, Xie R, Li W, Liu S, Cai J, Qin D, Wang DA, Ren L. Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629066 DOI: 10.1016/j.msec.2017.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucosamine (GA) is an important cartilage matrix precursor for the glycosaminoglycan biochemical synthesis, and has positive effects on cartilage regeneration, particularly in osteoarthritis therapy. However, it has not been used as a bioactive group in scaffolds for cartilage repair widely. In this study, we synthesized modified polyethylene glycol (PEG) hydrogel with glucosamine and then encapsulated human bone mesenchymal stem cells (hBMSCs) in the hydrogel to induce the differentiation of hBMSCs into chondrocytes in three-dimensional culture. The GA-modified PEG hydrogels promoted the chondrogenesis of hBMSCs, particularly in the concentration of 5mM and 10mM. The subcutaneous transplantation of 10mM GA-modified hydrogels with hBMSCs formed cartilage-like blocks in vivo for 8weeks. Importantly, with glucosamine increase, the modified hydrogels down-regulated the fibrosis and hypertrophic cartilage markers in protein level. Therefore, glucosamine modified PEG hydrogels facilitated the chondrogenesis of hBMSCs, which might represent a new method for cartilage repair using a tissue-engineering approach.
Collapse
Affiliation(s)
- Hang Yao
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, 637457, Singapore
| | - Jingchen Xue
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Qunfang Wang
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Renjian Xie
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Weichang Li
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jinglei Cai
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dajiang Qin
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, 637457, Singapore.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Wushan RD, Tianhe District, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
80
|
Gan Y, Li P, Wang L, Mo X, Song L, Xu Y, Zhao C, Ouyang B, Tu B, Luo L, Zhu L, Dong S, Li F, Zhou Q. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials 2017; 136:12-28. [PMID: 28505597 DOI: 10.1016/j.biomaterials.2017.05.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
Hydrogel is a suitable scaffold for the nucleus pulposus (NP) regeneration. However, its unmatched mechanical properties lead to implant failure in late-stage disc degeneration because of structural failure and implant extrusion after long-term compression. In this study, we evaluated an interpenetrating network (IPN)-strengthened and toughened hydrogel for NP regeneration, using dextran and gelatin as the primary network while poly (ethylene glycol) as the secondary network. The aim of this study was to realize the NP regeneration using the hydrogel. To achieve this, we optimized its properties by adjusting the mass ratios of the secondary/primary networks and determining the best preparation conditions for NP regeneration in a series of biomechanical, cytocompatibility, tissue engineering, and in vivo study. We found the optimal formulation of the IPN hydrogel, at a secondary/primary network ratio of 1:4, exhibited high toughness (the compressive strain reached 86%). The encapsulated NP cells showed increasing proliferation, cell clustering and matrix deposition. Furthermore, the hydrogel could support long-term cell retention and survival in the rat IVDs. It facilitated rehydration and regeneration of porcine degenerative NPs. In conclusion, this study demonstrates the tough IPN hydrogel could be a promising candidate for functional disc regeneration in future.
Collapse
Affiliation(s)
- Yibo Gan
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Pei Li
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Liyuan Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiumei Mo
- College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, PR China
| | - Lei Song
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan Xu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Chen Zhao
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bin Ouyang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bing Tu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Lei Luo
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, PR China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Qiang Zhou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
81
|
Hubschman JP, Govetto A, Farajzadeh M, Sato T, Askari S, Glasgow B. Feasibility of a polyethylene glycol-derived polymer as retinal patch to seal retinal breaks during vitrectomy for rhegmatogenous retinal detachment: a prospective, in vivo pilot study in a porcine model. Clin Exp Ophthalmol 2017; 45:708-716. [DOI: 10.1111/ceo.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/20/2017] [Accepted: 02/28/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Jean Pierre Hubschman
- Retina Division, Stein Eye Institute; University of California Los Angeles; Los Angeles California USA
| | - Andrea Govetto
- Retina Division, Stein Eye Institute; University of California Los Angeles; Los Angeles California USA
| | - Matthew Farajzadeh
- Retina Division, Stein Eye Institute; University of California Los Angeles; Los Angeles California USA
| | - Tatsuhiko Sato
- Retina Division, Stein Eye Institute; University of California Los Angeles; Los Angeles California USA
| | - Syed Askari
- Medicus Veterinary Biosciences; San José California USA
| | - Ben Glasgow
- Department of Pathology and Laboratory Medicine, Stein Eye Institute; University of California Los Angeles; Los Angeles California USA
| |
Collapse
|
82
|
Harris M, Ahmed H, Barr B, LeVine D, Pace L, Mohapatra A, Morshed B, Bumgardner JD, Jennings JA. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release. Int J Biol Macromol 2017; 104:1407-1414. [PMID: 28365285 DOI: 10.1016/j.ijbiomac.2017.03.141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
Stimuli-responsive biomaterials offer a unique advantage over traditional local drug delivery systems in that the drug elution rate can be controllably increased to combat developing symptomology or maintain high local elution levels for disease treatment. In this study, superparamagnetic Fe3O4 nanoparticles and the antibiotic vancomycin were loaded into chitosan microbeads cross-linked with varying lengths of polyethylene glycol dimethacrylate. Beads were characterized using degradation, biocompatibility, and elution studies with successive magnetic stimulations at multiple field strengths and frequencies. Thirty-minute magnetic stimulation induced a temporary increase in daily elution rate of up to 45% that was dependent on field strength, field frequency and cross-linker length. Beads degraded by up to 70% after 3 days in accelerated lysozyme degradation tests, but continued to elute antibiotic for up to 8 days. No cytotoxic effects were observed in vitro compared to controls. These promising preliminary results indicate clinical potential for use in stimuli-controlled drug delivery.
Collapse
Affiliation(s)
- Michael Harris
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA.
| | - Hamza Ahmed
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Brandico Barr
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - David LeVine
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Leslie Pace
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Ankita Mohapatra
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Bashir Morshed
- Department of Electrical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Joel D Bumgardner
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| | - Jessica Amber Jennings
- Department of Biomedical Engineering, The University of Memphis, 3796 Norriswood Ave, Memphis TN, 38152, USA
| |
Collapse
|
83
|
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering; Particulate Fluids Processing Centre; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
84
|
Mizuno Y, Mizuta R, Hashizume M, Taguchi T. Enhanced sealing strength of a hydrophobically-modified Alaska pollock gelatin-based sealant. Biomater Sci 2017; 5:982-989. [DOI: 10.1039/c6bm00829a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel tissue sealant composed of hydrophobically-modified Alaska pollock gelatin and polyethylene glycol-based crosslinker showed higher sealing effect than commercially available tissue sealant.
Collapse
Affiliation(s)
- Y. Mizuno
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| | - R. Mizuta
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| | - M. Hashizume
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku
- Japan
| | - T. Taguchi
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| |
Collapse
|
85
|
Jain E, Hill L, Canning E, Sell SA, Zustiak SP. Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker. J Mater Chem B 2017; 5:2679-2691. [DOI: 10.1039/c6tb03050e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuning hydrogel properties through minor modifications of the crosslinker structure is a beneficial approach for hydrogel design that could result in hydrogels with wide range of properties to match a desired application.
Collapse
Affiliation(s)
- Era Jain
- Department of Biomedical Engineering
- Saint Louis University
- Saint Louis
- USA
| | - Lindsay Hill
- Department of Biomedical Engineering
- Saint Louis University
- Saint Louis
- USA
| | - Erin Canning
- Department of Biomedical Engineering
- Saint Louis University
- Saint Louis
- USA
| | - Scott A. Sell
- Department of Biomedical Engineering
- Saint Louis University
- Saint Louis
- USA
| | - Silviya P. Zustiak
- Department of Biomedical Engineering
- Saint Louis University
- Saint Louis
- USA
| |
Collapse
|
86
|
Ren K, Cui H, Xu Q, He C, Li G, Chen X. Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules 2016; 17:3862-3871. [PMID: 27775890 DOI: 10.1021/acs.biomac.6b00884] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kaixuan Ren
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Haitao Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Qinghua Xu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Chaoliang He
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Gao Li
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
87
|
Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery. J Control Release 2016; 233:174-80. [PMID: 27179635 DOI: 10.1016/j.jconrel.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intimal hyperplasia (IH) remains a major cause of poor patient outcomes after surgical revascularization to treat atherosclerosis. A multitude of drugs have been shown to prevent the development of IH. Moreover, endovascular drug delivery following angioplasty and stenting has been achieved with a marked diminution in the incidence of restenosis. Despite advances in endovascular drug delivery, there is currently no clinically available method of periadventitial drug delivery suitable for open vascular reconstructions. Herein we provide an overview of the recent literature regarding innovative polymer platforms for periadventitial drug delivery in preclinical models of IH as well as insights about barriers to clinical translation. METHODS A comprehensive PubMed search confined to the past 15years was performed for studies of periadventitial drug delivery. Additional searches were performed for relevant clinical trials, patents, meeting abstracts, and awards of NIH funding. RESULTS Most of the research involving direct periadventitial delivery without a drug carrier was published prior to 2000. Over the past 15years there have been a surge of reports utilizing periadventitial drug-releasing polymer platforms, most commonly bioresorbable hydrogels and wraps. These methods proved to be effective for the inhibition of IH in various animal models (e.g. balloon angioplasty, wire injury, and vein graft), but very few have advanced to clinical trials. There are a number of barriers that may account for this lack of translation. Promising new approaches including the use of nanoparticles will be described. CONCLUSIONS No periadventitial drug delivery system has reached clinical application. For periadventitial delivery, polymer hydrogels, wraps, and nanoparticles exhibit overlapping and complementary properties. The ideal periadventitial delivery platform would allow for sustained drug release yet exert minimal mechanical and inflammatory stresses to the vessel wall. A clinically applicable strategy for periadventitial drug delivery would benefit thousands of patients undergoing open vascular reconstruction each year.
Collapse
|
88
|
Iverson NM, Bisker G, Farias E, Ivanov V, Ahn J, Wogan GN, Strano MS. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. J Biomed Nanotechnol 2016; 12:1035-1047. [PMID: 27305824 PMCID: PMC5307332 DOI: 10.1166/jbn.2016.2237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life.
Collapse
Affiliation(s)
- Nicole M. Iverson
- Department of Biological Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Edgardo Farias
- Department of Biological Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Vsevolod Ivanov
- Department of Biological Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Jiyoung Ahn
- Department of Chemical Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Gerald N. Wogan
- Department of Biological Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
89
|
Berdichevski A, Shachaf Y, Wechsler R, Seliktar D. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI. Biomaterials 2015; 42:1-10. [DOI: 10.1016/j.biomaterials.2014.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022]
|
90
|
Lee SH, Boire TC, Lee JB, Gupta MK, Zachman AL, Rath R, Sung HJ. ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. J Mater Chem B 2014; 2:7109-7113. [PMID: 25343029 PMCID: PMC4203664 DOI: 10.1039/c4tb01094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable oligoproline peptide, KP7K. The ROS-mediated degradability triggers favorable host responses of the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique advantages for tissue engineering applications.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Angela L. Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Rutwik Rath
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| |
Collapse
|
91
|
Chan KWY, Liu G, van Zijl PCM, Bulte JWM, McMahon MT. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 2014; 35:7811-8. [PMID: 24930848 DOI: 10.1016/j.biomaterials.2014.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/21/2014] [Indexed: 12/24/2022]
Abstract
By means of physical isolation of cells inside semi-permeable hydrogels, encapsulation has been widely used to immunoprotect transplanted cells. While spherical alginate microcapsules are now being used clinically, there still is little known about the patient's immune system response unless biopsies are obtained. We investigated the use of Magnetization Transfer (MT) imaging to non-invasively detect host immune responses against alginate capsules containing xenografted human hepatocytes in four groups of animals, including transplanted empty capsules (-Cells/-IS), capsules with live cells with (+LiveCells/+IS) and without immunosuppression (+LiveCells/-IS), and capsules with apoptotic cells in non-immunosuppressed animals (+DeadCells/-IS). The highest MT ratio (MTR) was found in +LiveCells/-IS, which increased from day 0 by 38% and 53% on days 7 and 14 after transplantation respectively, and corresponded to a distinctive increase in cell infiltration on histology. Furthermore, we show that macromolecular ratio maps based on MT data are more sensitive to cell infiltration and fibrosis than conventional MTR maps. Such maps showed a significant difference between +LiveCells/-IS (0.18 ± 0.02) and +DeadCells/-IS (0.13 ± 0.02) on day 7 (P < 0.01) existed, which was not observed on MTR imaging. We conclude that MT imaging, which is clinically available, can be applied for non-invasive monitoring of the occurrence of a host immune response against encapsulated cells.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
92
|
Catros S, Molenberg A, Freilich M, Dard M. Evaluation of a Polyethylene Glycol-Osteogenic Protein-1 System on Alveolar Bone Regeneration in the Mini-Pig. J ORAL IMPLANTOL 2014; 41:e96-e101. [PMID: 24673473 DOI: 10.1563/aaid-joi-d-13-00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alveolar bone regeneration associated with the local release of osteogenic protein-1 (OP-1) from a polyethylene glycol (PEG) scaffold was evaluated in 14 mini-pigs. Following extraction of mandibular teeth and 26-weeks of healing time, standardized bone defects were created bilaterally in the posterior mandibles (3 sites for each hemimandible) that were randomly assigned to treatment groups. Seven treatments groups were compared: 4 different concentrations of the PEG/OP-1 test system (n = 14 for each), a positive control (collagen/OP-1, n = 14), a negative control (PEG only, n = 7) and nontreated defects (n = 7). Each animal provided all test and control groups. The animals were sacrificed after 3 weeks of healing and samples were processed for histology and histomorphometry. Three weeks after implantation, there were positive clinical responses for all test groups. Earlier bone maturation was observed in the test groups that had higher concentrations of OP-1 (0.25, 0.5, or 1 mg/mL) compared to the negative control group (PEG alone), the low concentration group (0.1 mg/mL), and the positive control group (collagen/OP-1). However, histomorphometric quantitative analyses did not reveal any statistical difference between any of the groups. No residual PEG biomaterial or inflammatory responses to the biomaterial or growth factor were observed. This study confirmed the safe local delivery of OP-1 from PEG hydrogel. Alveolar bone regeneration was not statistically different between tests groups, negative control (PEG alone) or commercial positive control (collagen/OP-1). The semi-quantitative analysis, however, showed a trend in favor of the higher concentrations of OP-1 to induce faster bone maturation.
Collapse
Affiliation(s)
- Sylvain Catros
- 1 Inserm U1026, BioTis, Bordeaux Segalen University, Bordeaux, France.,2 CHU de Bordeaux, Pôle d'Odontologie et de Santé Buccale, Bordeaux, France
| | | | - Martin Freilich
- 4 Department of Reconstructive Sciences, Center for Biomaterials, School of Dental Medicine, University of Connecticut, Farmington, Conn
| | - Michel Dard
- 3 Institut Straumann AG, Basel, Switzerland.,5 Department of Periodontology and Implant dentistry, College of Dentistry, New York University, New York, NY
| |
Collapse
|
93
|
Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A 2014; 102:4244-51. [PMID: 24464985 DOI: 10.1002/jbm.a.35096] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/02/2014] [Accepted: 01/21/2014] [Indexed: 12/28/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels are one of the most extensively utilized biomaterials systems due to their established biocompatibility and highly tunable properties. It is widely acknowledged that traditional acrylate-derivatized PEG (PEGDA) hydrogels are susceptible to slow degradation in vivo and are therefore unsuitable for long-term implantable applications. However, there is speculation whether the observed degradation is due to hydrolysis of endgroup acrylate esters or oxidation of the ether backbone, both of which are possible in the foreign body response to implanted devices. PEG diacrylamide (PEGDAA) is a polyether-based hydrogel system with similar properties to PEGDA but with amide linkages in place of the acrylate esters. This provides a hydrolytically-stable control that can be used to isolate the relative contributions of hydrolysis and oxidation to the in vivo degradation of PEGDA. Here we show that PEGDAA hydrogels remained stable over 12 weeks of subcutaneous implantation in a rat model while PEGDA hydrogels underwent significant degradation as indicated by both increased swelling ratio and decreased modulus. As PEGDA and PEGDAA have similar susceptibility to oxidation, these results demonstrate for the first time that the primary in vivo degradation mechanism of PEGDA is hydrolysis of the endgroup acrylate esters. Additionally, the maintenance of PEGDAA hydrogel properties in vivo indicates their suitability for long-term implants. These studies serve to elucidate key information about a widely used biomaterial system to allow for better implantable device design and to provide a biostable replacement option for PEGDA in applications that require long-term stability.
Collapse
Affiliation(s)
- M B Browning
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120
| | | | | | | |
Collapse
|