51
|
Berim A, Gang DR. The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 2013; 288:1795-805. [PMID: 23184958 PMCID: PMC3548489 DOI: 10.1074/jbc.m112.420448] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin.
Collapse
Affiliation(s)
- Anna Berim
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| | - David R. Gang
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
52
|
Hamberger B, Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120426. [PMID: 23297350 DOI: 10.1098/rstb.2012.0426] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
Collapse
Affiliation(s)
- Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Copenhagen, Denmark.
| | | |
Collapse
|
53
|
Wang JP, Shuford CM, Li Q, Song J, Lin YC, Sun YH, Chen HC, Williams CM, Muddiman DC, Sederoff RR, Chiang VL. Functional redundancy of the two 5-hydroxylases in monolignol biosynthesis of Populus trichocarpa: LC-MS/MS based protein quantification and metabolic flux analysis. PLANTA 2012; 236:795-808. [PMID: 22628084 DOI: 10.1007/s00425-012-1663-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis-Menten and inhibition kinetics with LC-MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis-Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.
Collapse
Affiliation(s)
- Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
55
|
Devi BSR, Kim YJ, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, Yang DC. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. BIOCHEMISTRY (MOSCOW) 2012; 76:1347-59. [PMID: 22150280 DOI: 10.1134/s000629791112008x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In plants heme containing cytochrome P450 (P450) is a superfamily of monooxygenases that catalyze the addition of one oxygen atom from O2 into a substrate, with a substantial reduction of the other atom to water. The function of P450 families is attributed to chemical defense mechanism under terrestrial environmental conditions; several are involved in secondary and hormone metabolism. However, the evolutionary relationships of P450 genes in Panax ginseng remain largely unknown. In the present study, data mining methods were implemented and 116 novel putative P450 genes were identified from Expressed Sequence Tags (ESTs) of a ginseng database. These genes were classified into four clans and 22 families by sequence similarity conducted at amino acid level. The representative putative P450 sequences of P. ginseng and known P450 family from other plants were used to construct a phylogenetic tree. By comparing with other genomes, we found that most of the P450 genes from P. ginseng can be found in other dicot species. Depending on P450 family functions, seven P450 genes were selected, and for that organ specific expression, abiotic, and biotic studies were performed by quantitative reverse transcriptase-polymerase chain reaction. Different genes were found to be expressed differently in different organs. Biotic stress and abiotic stress transcript level was regulated diversely, and upregulation of P450 genes indicated the involvement of certain genes under stress conditions. The upregulation of the P450 genes under methyl jasmonate and fungal stress justifies the involvement of specific genes in secondary metabolite biosynthesis. Our results provide a foundation for further elucidating the actual function and role of P450 involved in various biochemical pathways in P. ginseng.
Collapse
Affiliation(s)
- Balusamy Sri Renuka Devi
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, Giheung-gu Yongin-si, Gyeonggi-do, 449-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:194-211. [PMID: 21443632 DOI: 10.1111/j.1365-313x.2011.04529.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function.
Collapse
Affiliation(s)
- David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Suite G01, Memphis TN 38163, USA
| | | |
Collapse
|
57
|
Yu F, Okamoto S, Harada H, Yamasaki K, Misawa N, Utsumi R. Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cell Mol Life Sci 2011; 68:1033-40. [PMID: 20730551 PMCID: PMC11114803 DOI: 10.1007/s00018-010-0506-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/03/2010] [Accepted: 08/09/2010] [Indexed: 11/28/2022]
Abstract
Plant cytochrome P450s are involved in the biosynthesis of various classes of secondary metabolites. To elucidate the biosynthesis of zerumbone, a sesquiterpenoid with multiple potential anticancer properties, a family of P450 genes expressed in rhizomes of Zingiber zerumbet Smith, were cloned using a PCR-based cloning strategy. After functional expression in yeast, one of these P450s was found to convert α-humulene into 8-hydroxy-α-humulene, a proposed intermediate of zerumbone biosynthesis. This P450 has been designated CYP71BA1, a new member of the CYP71 family. CYP71BA1 transcripts were detected almost exclusively in rhizomes and showed a similar expression pattern to ZSS1 transcripts during rhizome development. Coexpression of a gene cluster encoding four enzymes of the mevalonate pathway with CYP71BA1 and ZSS1 in Escherichia coli leads to the production of 8-hydroxy-α-humulene in the presence of mevalonate, suggesting the possibility of microbial production of this zerumbone intermediate from a relatively simple carbon source by metabolic engineering.
Collapse
Affiliation(s)
- Fengnian Yu
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Sho Okamoto
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd, i-BIRD 3-570, Suematsu, Nonoichi, Ishikawa, 921-8836 Japan
| | - Kazuhisa Yamasaki
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Norihiko Misawa
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd, i-BIRD 3-570, Suematsu, Nonoichi, Ishikawa, 921-8836 Japan
| | - Ryutaro Utsumi
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
58
|
Zocher G, Richter MEA, Mueller U, Hertweck C. Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase. J Am Chem Soc 2011; 133:2292-302. [PMID: 21280577 DOI: 10.1021/ja110146z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AurH is a unique cytochrome P450 monooxygenase catalyzing the stepwise formation of a homochiral oxygen heterocycle, a key structural and pharmacophoric component of the antibiotic aureothin. The exceptional enzymatic reaction involves a tandem oxygenation process including a regio- and stereospecific hydroxylation, followed by heterocyclization. For the structural and biochemical basis of this unparalleled sequence, four crystal structures of AurH variants in different conformational states and in complex with the P450 inhibitor ancymidol were solved, which represent the first structures of the CYP151A group. Structural data in conjunction with computational docking, site-directed mutagenesis, and chemical analyses unveiled a switch function when recognizing the two substrates, deoxyaureothin and the hydroxylated intermediate, thus allowing the second oxygenation-heterocyclization step. Furthermore, we were able to modify the chemo- and regioselectivity of AurH, yielding mutants that catalyze the regioselective six-electron transfer of a nonactivated methyl group to a carboxylic acid via hydroxyl and aldehyde intermediates.
Collapse
Affiliation(s)
- Georg Zocher
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 4, 72074 Tübingen, Germany.
| | | | | | | |
Collapse
|
59
|
Shibata Y, Kawakita K, Takemoto D. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1130-42. [PMID: 20687803 DOI: 10.1094/mpmi-23-9-1130] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytophthora infestans, the agent of late blight disease of potato, is a hemibiotrophic pathogen with biotrophic action during early infection and necrotrophic in the later stage of colonization. Mature Nicotiana benthamiana was resistant to P. infestans, whereas relatively young plants were susceptible to this pathogen. Young plants became resistant following a pretreatment with acibenzolar-S-methyl, a functional analog of salicylic acid (SA), indicating that susceptibility of young plants is due to a lack of induction of SA signaling. Further analysis with virus-induced gene silencing indicated that NbICS1 and NbEIN2, the genes for SA biosynthesis and ethylene (ET) signaling, respectively, are required for the resistance of mature N. benthamiana against P. infestans. Furthermore, these genes are required for the production of reactive oxygen species (ROS) induced by treatment of the INF1 elicitor. In NbICS1-silenced plants, cell death induced by either INF1 or necrosis-inducing protein NPP1.1 was significantly accelerated. Expression of genes for phytoalexin (capsidiol) biosynthesis, NbEAS and NbEAH, were regulated by ET, and gene silencing of either of them compromised resistance of N. benthamiana to P. infestans. Together, these results suggest that resistance of N. benthamiana against hemibiotrophic P. infestans requires both SA-regulated appropriate induction of cell death and ET-induced production of phytoalexin.
Collapse
Affiliation(s)
- Yusuke Shibata
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | |
Collapse
|
60
|
Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 2010; 20:539-52. [PMID: 20354503 DOI: 10.1038/cr.2010.36] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutant jasmonic acid-hypersensitive1-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea . Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of the jah1-1 mutant to B . cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. The jah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Nguyen DT, Göpfert JC, Ikezawa N, Macnevin G, Kathiresan M, Conrad J, Spring O, Ro DK. Biochemical conservation and evolution of germacrene A oxidase in asteraceae. J Biol Chem 2010; 285:16588-98. [PMID: 20351109 DOI: 10.1074/jbc.m110.111757] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes approximately 8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.
Collapse
Affiliation(s)
- Don Trinh Nguyen
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Li X, Zhang JB, Song B, Li HP, Xu HQ, Qu B, Dang FJ, Liao YC. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene. PHYTOPATHOLOGY 2010; 100:183-191. [PMID: 20055652 DOI: 10.1094/phyto-100-2-0183] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
ABSTRACT One plant genotype displays a resistance phenotype at one development stage but a susceptible reaction to the same pathogen at another stage, which is referred to here as resistance inversion. In wheat, Fusarium head blight (FHB)-resistant cv. Sumai3 showed a Fusarium seedling blight (FSB)-susceptible reaction whereas FHB-susceptible cv. Annong8455 exhibited FSB resistance when challenged with a Fusarium asiaticum strain that produces deoxynivalenol (DON). The resistance to FHB and FSB in wheat was closely associated with expression of a plant cytochrome P450 gene in response to FHB pathogens and mycotoxins. Quantitative real-time polymerase chain reaction analyses showed that expression of nine defense-related genes in spikes and seedlings was induced by the fungal infection, in which a massive accumulation of a plant cytochrome P450 gene, CYP709C1, was clearly associated with the resistance reaction in both seedling and spike. The FHB-resistant Sumai3 accumulated 7-fold more P450 transcripts than did the FHB-susceptible Annong8455, while 84-fold more P450 transcripts were accumulated in the FSB-resistant Annong8455 than the FSB-susceptible Sumai3. A Fusarium strain with a disrupted Tri5 gene, which is not able to produce the first enzyme essential for trichothecene mycotoxin biosynthesis, also induced more P450 transcripts in FHB- and FSB-resistant cultivars. The fungal activation of the P450 gene was more profound in the FSB-resistant reaction than the FHB-resistant reaction relative to their susceptible counterparts. DON triggered a differential expression of the P450 gene with comparable patterns in spikes and seedlings in a resistance-dependent manner. These results may provide a basis for dissecting mechanisms underlying FHB and FSB resistance reactions in wheat and revealing functions of the cytochrome P450 in plant detoxification and defense.
Collapse
Affiliation(s)
- X Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. CYP76M7 is an ent-cassadiene C11alpha-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. THE PLANT CELL 2009; 21:3315-25. [PMID: 19825834 PMCID: PMC2782285 DOI: 10.1105/tpc.108.063677] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 09/01/2009] [Accepted: 09/30/2009] [Indexed: 05/18/2023]
Abstract
Biosynthetic gene clusters are common in microbial organisms, but rare in plants, raising questions regarding the evolutionary forces that drive their assembly in multicellular eukaryotes. Here, we characterize the biochemical function of a rice (Oryza sativa) cytochrome P450 monooxygenase, CYP76M7, which seems to act in the production of antifungal phytocassanes and defines a second diterpenoid biosynthetic gene cluster in rice. This cluster is uniquely multifunctional, containing enzymatic genes involved in the production of two distinct sets of phytoalexins, the antifungal phytocassanes and antibacterial oryzalides/oryzadiones, with the corresponding genes being subject to distinct transcriptional regulation. The lack of uniform coregulation of the genes within this multifunctional cluster suggests that this was not a primary driving force in its assembly. However, the cluster is dedicated to specialized metabolism, as all genes in the cluster are involved in phytoalexin metabolism. We hypothesize that this dedication to specialized metabolism led to the assembly of the corresponding biosynthetic gene cluster. Consistent with this hypothesis, molecular phylogenetic comparison demonstrates that the two rice diterpenoid biosynthetic gene clusters have undergone independent elaboration to their present-day forms, indicating continued evolutionary pressure for coclustering of enzymatic genes encoding components of related biosynthetic pathways.
Collapse
|
64
|
Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. PLANT PHYSIOLOGY 2009; 150:1556-66. [PMID: 19420326 PMCID: PMC2705044 DOI: 10.1104/pp.109.138420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/01/2009] [Indexed: 05/04/2023]
Abstract
In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.
Collapse
Affiliation(s)
- Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
65
|
Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. THE PLANT CELL 2009; 21:1830-45. [PMID: 19567706 PMCID: PMC2714930 DOI: 10.1105/tpc.109.066670] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/22/2009] [Accepted: 06/09/2009] [Indexed: 05/18/2023]
Abstract
Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, gamma-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate-treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.
Collapse
Affiliation(s)
- Christoph Böttcher
- Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Bjarnholt N, Møller BL. Hydroxynitrile glucosides. PHYTOCHEMISTRY 2008; 69:1947-61. [PMID: 18539303 DOI: 10.1016/j.phytochem.2008.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/16/2008] [Indexed: 05/08/2023]
Abstract
beta- and gamma-Hydroxynitrile glucosides are structurally related to cyanogenic glucosides (alpha-hydroxynitrile glucosides) but do not give rise to hydrogen cyanide release upon hydrolysis. Structural similarities and frequent co-occurrence suggest that the biosynthetic pathways for these compounds share common features. Based on available literature data we propose that oximes produced by CYP79 orthologs are common intermediates and that their conversion into beta- and gamma-hydroxynitrile glucosides is mediated by evolutionary diversified multifunctional orthologs to CYP71E1. We designate these as CYP71(betagamma) and CYP71(alphabetagamma); in combination with the classical CYP71(alpha) (CYP71E1 and orthologs) these are able to hydroxylate any of the carbon atoms present in the amino acid and oxime derived nitriles. Subsequent dehydration reactions and hydroxylations and a final glycosylation step afford the unsaturated beta- and gamma-hydroxynitrile glucosides. This scheme would explain the distribution patterns of alpha-, beta- and gamma-hydroxynitrile glucosides found in plants. The possible biological functions of these hydroxynitriles are discussed.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- Plant Biochemistry Laboratory and The VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|
67
|
Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 2008; 25:656-61. [DOI: 10.1039/b802939c] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
68
|
Takahashi S, Yeo YS, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J. Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 2007; 282:31744-54. [PMID: 17715131 PMCID: PMC2695360 DOI: 10.1074/jbc.m703378200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solavetivone, a potent antifungal phytoalexin, is derived from a vetispirane-type sesquiterpene, premnaspirodiene, by a putative regio- and stereo-specific hydroxylation, followed by a second oxidation to yield the alpha,beta-unsaturated ketone. Mechanistically, these reactions could occur via a single, multifunctional cytochrome P450 or some combination of cytochrome P450s and a dehydrogenase. We report here the characterization of a single cytochrome P450 enzyme, Hyoscyamus muticus premnaspirodiene oxygenase (HPO), that catalyzes these successive reactions at carbon 2 (C-2) of the spirane substrate. HPO also catalyzes the equivalent regio-specific (C-2) hydroxylation of several eremophilane-type (decalin ring system) sesquiterpenes, such as with 5-epi-aristolochene. Moreover, HPO displays interesting comparisons to other sesquiterpene hydroxylases. 5-Epi-aristolochene di-hydroxylase (EAH) differs catalytically from HPO by introducing hydroxyl groups first at C-1, then C-3 of 5-epi-aristolochene. HPO and EAH also differ from one another by 91-amino acid differences, with four of these differences mapping to putative substrate recognition regions 5 and 6. These four positions were mutagenized alone and in various combinations in both HPO and EAH and the mutant enzymes were characterized for changes in substrate selectivity, reaction product specificity, and kinetic properties. These mutations did not alter the regio- or stereo-specificity of either HPO or EAH, but specific combinations of the mutations did improve the catalytic efficiencies 10-15-fold. Molecular models and comparisons between HPO and EAH provide insights into the catalytic properties of these enzymes of specialized metabolism in plants.
Collapse
Affiliation(s)
- Shunji Takahashi
- Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Yun-Soo Yeo
- Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Yuxin Zhao
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Paul E. O’Maille
- The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Bryan T. Greenhagen
- Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Joseph P. Noel
- The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Robert M. Coates
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Joe Chappell
- Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
- To whom correspondence should be addressed: 1405 Veterans Dr., Lexington, KY 40546-0312. Tel.: 859-257-5020 (ext. 80775); Fax: 859-257-7125; E-mail:
| |
Collapse
|
69
|
Seitz C, Ameres S, Forkmann G. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett 2007; 581:3429-34. [PMID: 17612530 DOI: 10.1016/j.febslet.2007.06.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/17/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3'H and F3'5'H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5'-hydroxylation activity to recombinant Gerbera hybrida F3'H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3'5'H into an F3'H with low remaining 5'-hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3'- to 3',5'-hydroxylation activity.
Collapse
Affiliation(s)
- Christian Seitz
- Technical University Munich, Chair of Floriculture Crops and Horticultural Plant Breeding, Am Hochanger 4, 85350 Freising, Germany.
| | | | | |
Collapse
|
70
|
Lee BJ, Kwon SJ, Kim SK, Kim KJ, Park CJ, Kim YJ, Park OK, Paek KH. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun 2006; 351:405-11. [PMID: 17070775 DOI: 10.1016/j.bbrc.2006.10.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022]
Abstract
Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P(0) interaction, but not during compatible TMV-P(1.2) interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.
Collapse
Affiliation(s)
- Boo-Ja Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Pan G, Zhang X, Liu K, Zhang J, Wu X, Zhu J, Tu J. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. PLANT MOLECULAR BIOLOGY 2006; 61:933-43. [PMID: 16927205 DOI: 10.1007/s11103-006-0058-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/29/2006] [Indexed: 05/11/2023]
Abstract
Development of hybrid rice has greatly contributed to increased yields during the past three decades. Two bentazon-lethal mutants 8077S and Norin8m are being utilized in developing new hybrid rice systems. When the male sterile lines are developed in such a mutant background, the problem of F1 seed contamination by self-seeds from the sterile lines can be solved by spraying bentazon at seedling stage. We first determined the sensitivity of the mutant plants to bentazon. Both mutants showed symptoms to bentazon starting from 100 mg/l, which was about 60-fold, lower than the sensitivity threshold of their wild-type controls. In addition, both mutants were sensitive to sulfonylurea-type herbicides. The locus for the mutant phenotype is bel for 8077S and bsl for Norin8m. Tests showed that the two loci are allelic to each other. The two genes were cloned by map-based cloning. Interestingly, both mutant alleles had a single-base deletion, which was confirmed by PCR-RFLP. The two loci are renamed bel ( a ) (for bel) and bel ( b ) (for bsl). The wild-type Bel gene encodes a novel cytochrome P450 monooxgenase, named CYP81A6. Analysis of the mutant protein sequence also revealed the reason for bel ( a ) being slightly tolerant than bel ( b ). Introduction of the wild-type Bel gene rescued the bentazon- and sulfonylurea-sensitive phenotype of bel ( a ) mutant. On the other hand, expression of antisense Bel in W6154S induced a mutant phenotype. Based on these results we conclude that the novel cytochrome P450 monooxygenase CYP81A6 encoded by Bel confers resistance to two different classes of herbicides.
Collapse
Affiliation(s)
- Gang Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
72
|
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006; 440:940-3. [PMID: 16612385 DOI: 10.1038/nature04640] [Citation(s) in RCA: 1742] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/09/2006] [Indexed: 11/09/2022]
Abstract
Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
Collapse
Affiliation(s)
- Dae-Kyun Ro
- California Institute of Quantitative Biomedical Research, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Xu J, Wan E, Kim CJ, Floss HG, Mahmud T. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. MICROBIOLOGY-SGM 2005; 151:2515-2528. [PMID: 16079331 DOI: 10.1099/mic.0.28138-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rifamycin B biosynthesis by Amycolatopsis mediterranei S699 involves a number of unusual modification reactions in the formation of the unique polyketide backbone and decoration of the molecule. A number of genes believed to be involved in the tailoring of rifamycin B were investigated and the results confirmed that the formation of the naphthalene ring moiety of rifamycin takes place during the polyketide chain extension and is catalysed by Rif-Orf19, a 3-(3-hydroxyphenyl)propionate hydroxylase-like protein. The cytochrome P450-dependent monooxygenase encoded by rif-orf5 is required for the conversion of the Delta12, 29 olefinic bond in the polyketide backbone of rifamycin W into the ketal moiety of rifamycin B. Furthermore, Rif-Orf3 may be involved in the regulation of rifamycin B production, as its knock-out mutant produced about 40 % more rifamycin B than the wild-type. The work also revealed that many of the genes located in the cluster are not involved in rifamycin biosynthesis, but might be evolutionary remnants carried over from an ancestral lineage.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Eva Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Chang-Joon Kim
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Heinz G Floss
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| |
Collapse
|
74
|
Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J. Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-gamma-bisabolene synthases. Arch Biochem Biophys 2005; 448:104-16. [PMID: 16297850 DOI: 10.1016/j.abb.2005.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 09/21/2005] [Accepted: 09/30/2005] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana genome contains at least 32 terpenoid synthase (AtTPS) genes [Aubourg et al., Mol. Genet. Genom. 267 (2002) 730] a few of which have recently been characterized. Based on hierarchical cluster analysis of AtTPS gene expression, measured by microarray profiling and validated with published expression data, we identified two groups of predominantly root expressed AtTPS genes containing five members with previously unknown biochemical functions (At4g13280, At4g13300, At5g48110, At1g33750, and At3g29410). Among the root expressed AtTPS genes, a pair of tandem-organized genes, At4g13280 (AtTPS12) and At4g13300 (AtTPS13), shares 91% predicted amino acid identity indicating recent gene duplication. Bacterial expression of cDNAs and enzyme assays showed that both At4g13280 and At4g13300 encode sesquiterpene synthases catalyzing the conversion of farnesyl diphosphate to (Z)-gamma-bisabolene and the additional minor products E-nerolidol and alpha-bisabolol. Expression of beta-glucuronidase (GUS) reporter gene fused to upstream genomic regions of At4g13280 or At4g13300 showed constitutive promoter activities in the cortex and sub-epidermal layers of Arabidopsis roots. In addition, highly localized promoter activities were found in leaf hydathodes and flower stigmata. Mechanical wounding of Arabidopsis leaves induced local expression of At4g13280 and At4g13300. The functional characterization of At4g13280 gene product AtTPS12 and At4g13230 gene product AtTPS13 as (Z)-gamma-bisabolene synthases, together with the recent characterization of two flower-specific AtTPS [At5g23960 and At5g44630; Tholl et al., Plant J. 42 (2005) 757], concludes the biochemical functional annotation of all four predicted Arabidopsis sesquiterpene synthase genes. Our data suggest biological functions for At4g13280 and At4g13300 in the rhizosphere with additional roles in aerial plant tissues.
Collapse
Affiliation(s)
- Dae-Kyun Ro
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T1Z4
| | | | | | | | | | | |
Collapse
|
75
|
Takahashi S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J. Kinetic and molecular analysis of 5-epiaristolochene 1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes. J Biol Chem 2005; 280:3686-96. [PMID: 15522862 PMCID: PMC2859954 DOI: 10.1074/jbc.m411870200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final step of capsidiol biosynthesis is catalyzed by 5-epiaristolochene dihydroxylase (EAH), a cytochrome P450 enzyme that catalyzes the regio- and stereospecific insertion of two hydroxyl moieties into the bicyclic sesquiterpene 5-epiaristolochene (EA). Detailed kinetic studies using EA and the two possible monohydroxylated intermediates demonstrated the release of 1beta-hydroxy-EA ((OH)EA) at high EA concentrations and a 10-fold catalytic preference for 1beta(OH)EA versus 3alpha(OH)EA, indicative of a preferred reaction order of hydroxylation at C-1, followed by that at C-3. Sequence alignments and homology modeling identified active-site residues tested for their contribution to substrate specificity and overall enzymatic activity. Mutants EAH-S368C and EAH-S368V exhibited wild-type catalytic efficiencies for 1beta(OH)EA biosynthesis, but were devoid of the successive hydroxylation activity for capsidiol biosynthesis. In contrast to EAH-S368C, EAH-S368V catalyzed the relative equal biosynthesis of 1beta(OH)EA, 2beta(OH)EA, and 3beta(OH)EA from EA with wild-type efficiency. Moreover, EAH-S368V converted approximately 1.5% of these monohydroxylated products to their respective ketone forms. Alanine and threonine mutations at position 368 were significantly compromised in their conversion rates of EA to capsidiol and correlated with 3.6- and 5.7-fold increases in their Km values for the 1beta(OH)EA intermediate, respectively. A role for Ile486 in the successive hydroxylations of EA was also suggested by the EAH-I468A mutant, which produced significant amounts 1beta(OH)EA, but negligible amounts of capsidiol from EA. The altered product profile of the EAH-I486A mutant correlated with a 3.6-fold higher Km for EA and a 4.4-fold slower turnover rate (kcat) for 1beta(OH)EA. These kinetic and mutational studies were correlated with substrate docking predictions to suggest how Ser368 and Ile486 might contribute to active-site topology, substrate binding, and substrate presentation to the oxo-Fe-heme reaction center.
Collapse
Affiliation(s)
- Shunji Takahashi
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| | - Yuxin Zhao
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Paul E. O’Maille
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Bryan T. Greenhagen
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| | - Joseph P. Noel
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Robert M. Coates
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Joe Chappell
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| |
Collapse
|
76
|
Zhao Y, Schenk DJ, Takahashi S, Chappell J, Coates RM. Eremophilane sesquiterpenes from capsidiol. J Org Chem 2004; 69:7428-35. [PMID: 15497966 DOI: 10.1021/jo049058c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of eremophilane sesquiterpene alcohols and hydrocarbons was prepared from the phytoalexin capsidiol (1) for mechanistic studies with epiaristolochene synthase and epiaristolochene dihydroxylase. Among them, 3-deoxycapsidiol (10) was obtained through selective derivatization and reductive cleavage of the equatorial 3 alpha hydroxyl group. Two novel isomers of aristolochene and eremophilene were accessed from the 1- and 3-deoxycapsidiol isomers. 4-Epieremophilene (17) was obtained by conjugate reduction of epiaristolochen-1-one tosylhydrazone with catecholborane followed by sulfinate elimination and diimide rearrangement. Epimerization of epiaristolochen-3-one (27a) at the C4 methyl followed by reductions led to the previously unknown aristolochene isomer, eremophila-9(10),11(12)-diene (30). Optical rotations and characteristic (1)H NMR data for the related eremophilenols and dienes are collected in Tables 1 and 2. Finally, bioassays were used to assess the antifungal potencies of capsidiol and its synthetic derivatives. The minimum inhibitory concentration for capsidiol (3-10 ng) was at least 1 order of magnitude lower than that of any of the derivatives and considerably lower than those previously reported for ketoconazole, nystatin, and propiconazole.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
77
|
Christopher ME, Miranda M, Major IT, Constabel CP. Gene expression profiling of systemically wound-induced defenses in hybrid poplar. PLANTA 2004; 219:936-47. [PMID: 15605173 DOI: 10.1007/s00425-004-1297-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/22/2004] [Indexed: 05/18/2023]
Abstract
As part of an ongoing effort to identify genes involved in poplar defense responses, and to provide a resource for comparative analysis of woody and non-woody plant defense, we generated expressed sequence tags (ESTs) from a library constructed from systemically wounded leaves of hybrid poplar (Populus trichocarpa x P. deltoides). Partial sequences were obtained from the 5' ends of 928 individual cDNAs, which could be grouped into 565 non-overlapping sequences. Of these, 447 sequences were singletons, while the remainder fell into 118 clusters containing up to 17 partially overlapping ESTs. Approximately 81% of the EST sequences showed similarity to previously described sequences in public databases. Of these, the distribution of gene functions within the EST set indicated that approximately 11% of the ESTs encode proteins potentially involved in defense or secondary metabolism, while photosynthesis and primary metabolism accounted for 45% of the expressed genes. Two types of defense proteins, Kunitz trypsin inhibitors and chitinases, were found among the ten most abundant ESTs, indicating the significant impact of wounding on the leaf transcriptome and suggesting that these functions are important for hybrid poplar defense. In the course of this work, three new wound-inducible Kunitz trypsin inhibitor-like genes and two new chitinase-like genes were characterized. A suite of other systemically wound-induced genes were identified using northern and macroarray analysis, indicating diversity and multiplicity in the induced defense response. Overall, we demonstrate that defense-related genes of hybrid poplar have a variety of functions, and show remarkably diverse expression patterns upon wounding.
Collapse
Affiliation(s)
- Mary E Christopher
- Centre for Forest Biology and Department of Biology, University of Victoria, Stn CSC, PO Box 3020, Victoria, BC, V8W 3N5, Canada
| | | | | | | |
Collapse
|
78
|
Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. PLANT PHYSIOLOGY 2004; 135:1893-902. [PMID: 15326281 PMCID: PMC520761 DOI: 10.1104/pp.104.049981] [Citation(s) in RCA: 498] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 07/19/2004] [Accepted: 07/19/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
79
|
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. PLANT PHYSIOLOGY 2004; 135:756-72. [PMID: 15208422 PMCID: PMC514113 DOI: 10.1104/pp.104.039826] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 05/18/2023]
Abstract
Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
80
|
Morant M, Bak S, Møller BL, Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2003; 14:151-62. [PMID: 12732316 DOI: 10.1016/s0958-1669(03)00024-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochromes P450 catalyse extremely diverse and often complex regiospecific and/or stereospecific reactions in the biosynthesis or catabolism of plant bioactive molecules. Engineered P450 expression is needed for low-cost production of antineoplastic drugs such as taxol or indole alkaloids and offers the possibility to increase the content of nutraceuticals such as phytoestrogens and antioxidants in plants. Natural products may serve important functions in plant defence and metabolic engineering of P450s is a prime target to improve plant defence against insects and pathogens. Herbicides, pollutants and other xenobiotics are metabolised by some plant P450 enzymes. These P450s are tools to modify herbicide tolerance, as selectable markers and for bioremediation.
Collapse
Affiliation(s)
- Marc Morant
- Department of Plant Stress Response, Institute of Plant Molecular Biology, CNRS-UPR2357, Université Louis Pateur, 28 rue Goethe, F-67000, Strasbourg, France
| | | | | | | |
Collapse
|
81
|
Greenhagen BT, Griggs P, Takahashi S, Ralston L, Chappell J. Probing sesquiterpene hydroxylase activities in a coupled assay with terpene synthases. Arch Biochem Biophys 2003; 409:385-94. [PMID: 12504906 DOI: 10.1016/s0003-9861(02)00613-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-epi-Aristolochene dihydroxylase (EAH) catalyzes unique stereo- and regiospecific hydroxylations of a bicyclic sesquiterpene hydrocarbon to generate capsidiol. To define functional and mechanistic features of the EAH enzyme, the utility of a coupled assay using readily available sesquiterpene synthases and microsomes from yeast overexpressing the EAH enzyme was determined. Capsidiol and deoxycapsidiol biosyntheses were readily measured in coupled assays consisting of 5-epi-aristolochene synthase and EAH as determined by the incorporation of radiolabeled farnesyl diphosphate into thin-layer chromatography-isolated products and verified by gas chromatography-mass spectrometry analysis. The assays were dependent on the amounts of synthase and hydroxylase protein added, the incubation times, and the presence of nicotinamide adenine dinucleotide phosphate. The utility of this coupled assay was extended by examining the relative efficiency of the EAH enzyme to catalyze hydroxylations of different sesquiterpene skeletons generated by other terpene synthases.
Collapse
Affiliation(s)
- Bryan T Greenhagen
- Department of Agronomy, Plant Physiology/Biochemistry/Molecular Biology Program, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | | | |
Collapse
|
82
|
Chapter ten The chemical wizardry of isoprenoid metabolism in plants. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0079-9920(03)80025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
83
|
Abstract
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxicative pathways. Those P450s in biosynthetic pathways play critical roles in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Those in catabolic pathways participate in the breakdown of endogenous compounds and toxic compounds encountered in the environment. Because of their roles in this wide diversity of metabolic processes, plant P450 proteins and transcripts can serve as downstream reporters for many different biochemical pathways responding to chemical, developmental, and environmental cues. This review focuses initially on defining P450 biochemistries, nomenclature systems, and the relationships between genes in the extended P450 superfamily that exists in all plant species. Subsequently, it focuses on outlining the many approaches being used to assign function to individual P450 proteins and gene loci. The examples of assigned P450 activities that are spread throughout this review highlight the importance of understanding and utilizing P450 sequences as markers for linking biochemical pathway responses to physiological processes.
Collapse
Affiliation(s)
- Mary A Schuler
- Department of Cell & Structural Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA.
| | | |
Collapse
|
84
|
Schoch GA, Nikov GN, Alworth WL, Werck-Reichhart D. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. PLANT PHYSIOLOGY 2002; 130:1022-31. [PMID: 12376665 PMCID: PMC166627 DOI: 10.1104/pp.004309] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Revised: 05/10/2002] [Accepted: 06/23/2002] [Indexed: 05/20/2023]
Abstract
The cinnamate (CA) 4-hydroxylase (C4H) is a cytochrome P450 that catalyzes the second step of the main phenylpropanoid pathway, leading to the synthesis of lignin, pigments, and many defense molecules. Salicylic acid (SA) is an essential trigger of plant disease resistance. Some plant species can synthesize SA from CA by a mechanism not yet understood. A set of specific inhibitors of the C4H, including competitive, tight-binding, mechanism-based irreversible, and quasi-irreversible inhibitors have been developed with the main objective to redirect cinnamic acid to the synthesis of SA. Competitive inhibitors such as 2-hydroxy-1-naphthoic acid and the heme-coordinating compound 3-(4-pyridyl)-acrylic acid allowed strong inhibition of C4H activity in a tobacco (Nicotiana tabacum cv Bright Yellow [BY]) cell suspension culture. This inhibition was however rapidly relieved either because of substrate accumulation or because of inhibitor metabolism. Substrate analogs bearing a methylenedioxo function such as piperonylic acid (PIP) or a terminal acetylene such as 4-propynyloxybenzoic acid (4PB), 3-propynyloxybenzoic acid, and 4-propynyloxymethylbenzoic acid are potent mechanism-based inactivators of the C4H. PIP and 4PB, the best inactivators in vitro, were also efficient inhibitors of the enzyme in BY cells. Inhibition was not reversed 46 h after cell treatment. Cotreatment of BY cells with the fungal elicitor beta-megaspermin and PIP or 4PB led to a dramatic increase in SA accumulation. PIP and 4PB do not trigger SA accumulation in nonelicited cells in which the SA biosynthetic pathway is not activated. Mechanism-based C4H inactivators, thus, are promising tools for the elucidation of the CA-derived SA biosynthetic pathway and for the potentiation of plant defense.
Collapse
Affiliation(s)
- Guillaume A Schoch
- Department of Plant Stress Response, Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université Louis Pasteur, 28 Rue Goethe, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
85
|
Morant M, Hehn A, Werck-Reichhart D. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC PLANT BIOLOGY 2002; 2:7. [PMID: 12153706 PMCID: PMC122057 DOI: 10.1186/1471-2229-2-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Accepted: 08/01/2002] [Indexed: 05/18/2023]
Abstract
BACKGROUND Availability of genomewide information on an increasing but still limited number of plants offers the possibility of identifying orthologues, or related genes, in species with major economical impact and complex genomes. In this paper we exploit the recently described CODEHOP primer design and PCR strategy for targeted isolation of homologues in large gene families. RESULTS The method was tested with two different objectives. The first was to analyze the evolution of the CYP98 family of cytochrome P450 genes involved in 3-hydroxylation of phenolic compounds and lignification in a broad range of plant species. The second was to isolate an orthologue of the sorghum glucosyl transferase UGT85B1 and to determine the complexity of the UGT85 family in wheat. P450s of the CYP98 family or closely related sequences were found in all vascular plants. No related sequence was found in moss. Neither extensive duplication of the CYP98 genes nor an orthologue of UGT85B1 were found in wheat. The UGT85A subfamily was however found to be highly variable in wheat. CONCLUSIONS Our data are in agreement with the implication of CYP98s in lignification and the evolution of 3-hydroxylation of lignin precursors with vascular plants. High conservation of the CYP98 family strongly argues in favour of an essential function in plant development. Conversely, high duplication and diversification of the UGT85A gene family in wheat suggests its involvement in adaptative response and provides a valuable pool of genes for biotechnological applications. This work demonstrates the high potential of the CODEHOP strategy for the exploration of large gene families in plants.
Collapse
Affiliation(s)
- Marc Morant
- Department of Plant Stress Response, Institute of Plant Molecular Biology, CNRS-UPR 2357, Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Alain Hehn
- Department of Plant Stress Response, Institute of Plant Molecular Biology, CNRS-UPR 2357, Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Danièle Werck-Reichhart
- Department of Plant Stress Response, Institute of Plant Molecular Biology, CNRS-UPR 2357, Université Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| |
Collapse
|
86
|
Bohlmann J, Stauber EJ, Krock B, Oldham NJ, Gershenzon J, Baldwin IT. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. PHYTOCHEMISTRY 2002; 60:109-16. [PMID: 12009313 DOI: 10.1016/s0031-9422(02)00080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three new copies of a sesquiterpenoid synthase gene encoding 5-epi-aristolochene synthase (EAS) were cloned as cDNAs from Nicotiana attenuata and functionally characterized after expression of the recombinant enzymes in E. coli. Differential patterns of EAS gene expression and formation of the antimicrobial sesquiterpenoid capsidiol were found in roots and shoots of two species of Nicotiana. EAS is expressed constitutively in roots of N. attenuata and N. sylvestris corresponding with constitutive capsidiol formation in roots. Constitutive expression of EAS and capsidiol accumulation were not detectable in shoots of rosette plants of N. attenuata, but accumulation of terpene synthase transcripts could be induced in shoots by feeding of the tobacco hornworm, Manduca sexta. Constitutive expression of EAS has not been previously reported from N. tabacum, where capsidiol is known as an elicitor- and pathogen-inducible phytoalexin. It is conceivable that capsidiol contributes not only to an inducible defense against pathogens, but also to a constitutive defense in an organ-specific manner in some species of Nicotiana.
Collapse
Affiliation(s)
- Jörg Bohlmann
- Max Planck Institute for Chemical Ecology, Winzlaer Strasse 10, Beutenberg Campus, 07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
87
|
Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R. Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. J Bacteriol 2002; 184:2019-29. [PMID: 11889110 PMCID: PMC134914 DOI: 10.1128/jb.184.7.2019-2029.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Accepted: 12/28/2001] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the thaxtomin cyclic dipeptide phytotoxins proceeds nonribosomally via the thiotemplate mechanism. Acyladenylation, thioesterification, N-methylation, and cyclization of two amino acid substrates are catalyzed by the txtAB-encoded thaxtomin synthetase. Nucleotide sequence analysis of the region 3' of txtAB in Streptomyces acidiscabies 84.104 identified an open reading frame (ORF) encoding a homolog of the P450 monooxygenase gene family. It was proposed that thaxtomin A phenylalanyl hydroxylation was catalyzed by the monooxygenase homolog. The ORF was mutated in S. acidiscabies 84.104 by using an integrative gene disruption construct, and culture filtrate extracts of the mutant were assayed for the presence of dehydroxy derivatives of thaxtomin A. Reversed-phase high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry indicated that the major component in culture filtrate extracts of the mutant was less polar and smaller than thaxtomin A. Comparisons of electrospray mass spectra as well as (1)H- and (13)C-nuclear magnetic resonance spectra of the purified compound with those previously reported for thaxtomins confirmed the structure of the compound as 12,15-N-dimethylcyclo-(L-4-nitrotryptophyl-L-phenylalanyl), the didehydroxy analog of thaxtomin A. The ORF, designated txtC, was cloned and the recombinant six-His-tagged fusion protein produced in Escherichia coli and purified from cell extracts. TxtC produced in E. coli exhibited spectral properties similar to those of cytochrome P450-type hemoproteins that have undergone conversion to the catalytically inactive P420 form. Based on these properties and the high similarity of TxtC to other well-characterized P450 enzymes, we conclude that txtC encodes a cytochrome P450-type monooxygenase required for postcyclization hydroxylation of the cyclic dipeptide.
Collapse
Affiliation(s)
- F G Healy
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | | | |
Collapse
|
88
|
Inaba T, Nagano Y, Nagasaki T, Sasaki Y. Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 2002; 277:9183-8. [PMID: 11756458 DOI: 10.1074/jbc.m111491200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ypt/Rab proteins are Ras-related small GTPases that act on the intracellular membrane through the trafficking pathway, and their function depends on their localization. Approximately 25 genes encoding Ypt3/Rab11-related proteins exist in Arabidopsis, but the reason for the presence of many genes in plants remains unclear. Pea Pra2 and Pra3, members of Ypt3/Rab11, are closely related proteins. Because possible orthologs are conserved among dicots, they can be studied to determine their possible localization. Biochemical analysis revealed that these proteins were localized on distinct membranes in pea. Furthermore, using green fluorescent protein-Pra2 and green fluorescent protein-Pra3 fusion proteins, we demonstrated that these proteins are distinctively localized on the trafficking pathway in tobacco Bright Yellow 2 cells. Pra2 was predominantly localized on Golgi stacks and endosomes, which did not support the localization of Pra2 on the endoplasmic reticulum (Kang, J. G., Yun, J., Kim, D. H., Chung, K. S., Fujioka, S., Kim, J. I., Dae, H. W., Yoshida, S., Takatsuto, S., Song, P. S., and Park, C. M. (2001) Cell 105, 625--636). In contrast, Pra3 was likely to be localized on the trans-Golgi network and/or the prevacuolar compartment. We concluded that Pra2 and Pra3 proteins are distinctively localized on the trafficking pathway. This finding suggests that functional diversification takes place in the plant Ypt3/Rab11 family.
Collapse
Affiliation(s)
- Takehito Inaba
- Laboratory of Plant Molecular Biology, Graduate School of Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|