51
|
Toporova VA, Argentova VV, Aliev TK, Panina AA, Dolgikh DA, Kirpichnikov MP. Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines. J Genet Eng Biotechnol 2023; 21:23. [PMID: 36811683 PMCID: PMC9947203 DOI: 10.1186/s43141-023-00474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. RESULTS We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development.
Collapse
Affiliation(s)
- V. A. Toporova
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia
| | - V. V. Argentova
- grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| | - T. K. Aliev
- grid.14476.300000 0001 2342 9668Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1–3, Moscow, 119234 Russia
| | - A. A. Panina
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia
| | - D. A. Dolgikh
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| | - M. P. Kirpichnikov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Department of Bioengineering, Biology Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234 Russia
| |
Collapse
|
52
|
Alameh M, Oliveira-Mendes BR, Kyndt F, Rivron J, Denjoy I, Lesage F, Schott JJ, De Waard M, Loussouarn G. A need for exhaustive and standardized characterization of ion channels activity. The case of K V11.1. Front Physiol 2023; 14:1132533. [PMID: 36860515 PMCID: PMC9968853 DOI: 10.3389/fphys.2023.1132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
hERG, the pore-forming subunit of the rapid component of the delayed rectifier K+ current, plays a key role in ventricular repolarization. Mutations in the KCNH2 gene encoding hERG are associated with several cardiac rhythmic disorders, mainly the Long QT syndrome (LQTS) characterized by prolonged ventricular repolarization, leading to ventricular tachyarrhythmias, sometimes progressing to ventricular fibrillation and sudden death. Over the past few years, the emergence of next-generation sequencing has revealed an increasing number of genetic variants including KCNH2 variants. However, the potential pathogenicity of the majority of the variants remains unknown, thus classifying them as variants of uncertain significance or VUS. With diseases such as LQTS being associated with sudden death, identifying patients at risk by determining the variant pathogenicity, is crucial. The purpose of this review is to describe, on the basis of an exhaustive examination of the 1322 missense variants, the nature of the functional assays undertaken so far and their limitations. A detailed analysis of 38 hERG missense variants identified in Long QT French patients and studied in electrophysiology also underlies the incomplete characterization of the biophysical properties for each variant. These analyses lead to two conclusions: first, the function of many hERG variants has never been looked at and, second, the functional studies done so far are excessively heterogeneous regarding the stimulation protocols, cellular models, experimental temperatures, homozygous and/or the heterozygous condition under study, a context that may lead to conflicting conclusions. The state of the literature emphasizes how necessary and important it is to perform an exhaustive functional characterization of hERG variants and to standardize this effort for meaningful comparison among variants. The review ends with suggestions to create a unique homogeneous protocol that could be shared and adopted among scientists and that would facilitate cardiologists and geneticists in patient counseling and management.
Collapse
Affiliation(s)
- Malak Alameh
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Barbara Ribeiro Oliveira-Mendes
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,*Correspondence: Barbara Ribeiro Oliveira-Mendes,
| | - Florence Kyndt
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Jordan Rivron
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Florian Lesage
- Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Jacques Schott
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Michel De Waard
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Gildas Loussouarn
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| |
Collapse
|
53
|
Deviatkin AA, Simonov RA, Trutneva KA, Maznina AA, Soroka AB, Kogan AA, Feoktistova SG, Khavina EM, Mityaeva ON, Volchkov PY. Cap-Independent Circular mRNA Translation Efficiency. Vaccines (Basel) 2023; 11:vaccines11020238. [PMID: 36851116 PMCID: PMC9967249 DOI: 10.3390/vaccines11020238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Recently, the mRNA platform has become the method of choice in vaccine development to find new ways to fight infectious diseases. However, this approach has shortcomings, namely that mRNA vaccines require special storage conditions, which makes them less accessible. This instability is due to the fact that the five-prime and three-prime ends of the mRNA are a substrate for the ubiquitous exoribonucleases. To address the problem, circular mRNAs have been proposed for transgene delivery as they lack these ends. Notably, circular RNAs do not have a capped five-prime end, which makes it impossible to initiate translation canonically. In this review, we summarize the current knowledge on cap-independent translation initiation methods and discuss which approaches might be most effective in developing vaccines and other biotechnological products based on circular mRNAs.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Ruslan A. Simonov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Kseniya A. Trutneva
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Anna A. Maznina
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Anastasiia B. Soroka
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Anna A. Kogan
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Sofya G. Feoktistova
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Elena M. Khavina
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Olga N. Mityaeva
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Pavel Y. Volchkov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
- Endocrinology Research Centre, 117036 Moscow, Russia
- Correspondence:
| |
Collapse
|
54
|
CRISPR/Cas9-mediated knockin of IRES-tdTomato at Ins2 locus reveals no RFP-positive cells in mouse islets. Funct Integr Genomics 2023; 23:42. [PMID: 36652148 PMCID: PMC9849276 DOI: 10.1007/s10142-023-00960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Using the CRISPR/Cas9 genomic editing technology, we constructed a transgenic mouse model to express specific fluorescent protein in pancreatic β cells, which harbor tdTomato exogenous gene downstream of the Ins2 promoter in C57BL/6 J mice. The Ins2-specific single-guide RNA-targeted exon2 was designed for the CRISPR/Cas9 system and Donor vector was constructed at the same time. Then Cas9, sgRNA, and Donor vector were microinjected in vitro into the mouse zygotes that were implanted into pseudo-pregnant mice. We obtained homozygotes through mating heterozygotes, and verified the knockin effect through genotype identification, in vivo imaging, and frozen section. Six F0 mice and stable inherited Ins2-IRES-tdTomato F1 were obtained. Genome sequencing results showed that the knockin group had no change in the Ins2 exon compared with the control group, while only the base sequence of tdTomato was added and no base mutation occurred. However, in vivo imaging and frozen section did not observe the expression of red fluorescent protein (RFP), and the protein expression of knockin gene tdTomato was negative. As a result, the expressions of tdTomato protein and fluorescence intensity were low and the detection threshold was not reached. In the CRISP/Cas9 technique, the exogenous fragment of IRES connection would affect the transcription level of the preceding gene, which in turn would lead to low-level expression of the downstream gene and affect the effect of gene insertion.
Collapse
|
55
|
Hashemi L, Ormsbee ME, Patel PJ, Nielson JA, Ahlander J, Padash Barmchi M. A Drosophila model of HPV16-induced cancer reveals conserved disease mechanism. PLoS One 2022; 17:e0278058. [PMID: 36508448 PMCID: PMC9744332 DOI: 10.1371/journal.pone.0278058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a significant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18 are the most prevalent types among HR-HPVs and together cause more than 70% of all cervical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary therapy have led to a slow reduction in cervical cancer incidence and high mortality rate. Hence, creating new models of HPV-induced cancer that can facilitate understanding of the disease mechanism and identification of key cellular targets of HPV oncogenes are important for development of new interventions. Here in this study, we used the tissue-specific expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phenotype scoring without affecting the viability of the organism. We found that, as in human cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies. Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised, resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-like structures to connect to each other and exhibited malignant behavior, migrating away to distant sites. Our findings suggest that given the high conservation of genes and signaling pathways between humans and flies, the Drosophila model of HPV16- induced cancer could serve as an excellent model for understanding the disease mechanism and discovery of novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Lydia Hashemi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - McKenzi E. Ormsbee
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Prashant J. Patel
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Joseph Ahlander
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, United States of America
| | - Mojgan Padash Barmchi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
56
|
Development of a Bicistronic Yellow Fever Live Attenuated Vaccine with Reduced Neurovirulence and Viscerotropism. Microbiol Spectr 2022; 10:e0224622. [PMID: 35980184 PMCID: PMC9602263 DOI: 10.1128/spectrum.02246-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yellow fever (YF) live attenuated vaccine strain 17D (termed 17D) has been widely used for the prevention and control of YF disease. However, 17D retains significant neurovirulence and viscerotropism in mice, which is probably linked to the increased occurrences of serious adverse events following 17D vaccination. Thus, the development of an updated version of the YF vaccine with an improved safety profile is of high priority. Here, we generated a viable bicistronic YF virus (YFV) by incorporating the internal ribosome entry site (IRES) from Encephalomyocarditis virus into an infectious clone of YFV 17D. The resulting recombinant virus, 17D-IRES, exhibited similar replication efficiency to its parental virus (17D) in mammalian cell lines, while it was highly restricted in mosquito cells. Serial passage of 17D-IRES in BHK-21 cells showed good genetic stability. More importantly, in comparison with the parental 17D, 17D-IRES displayed significantly decreased mouse neurovirulence and viscerotropism in type I interferon (IFN)-signaling-deficient and immunocompetent mouse models. Interestingly, 17D-IRES showed enhanced sensitivity to type I IFN compared with 17D. Moreover, immunization with 17D-IRES provided solid protection for mice against a lethal challenge with YFV. These preclinical data support further development of 17D-IRES as an updated version for the approved YF vaccine. This IRES-based attenuation strategy could be also applied to the design of live attenuated vaccines against other mosquito-borne flaviviruses. IMPORTANCE Yellow fever (YF) continually spreads and causes epidemics around the world, posing a great threat to human health. The YF live attenuated vaccine 17D is considered the most efficient vaccine available and helps to successfully control disease epidemics. However, side effects may occur after vaccination, such as viscerotropic disease (YEL-AVD) and neurotropic adverse disease (YEL-AND). Thus, there is an urgent need for a safer YF vaccine. Here, an IRES strategy was employed, and a bicistronic YFV was successfully developed (named 17D-IRES). 17D-IRES showed effective replication and genetic stability in vitro and high attenuation in vivo. Importantly, 17D-IRES induced humoral and cellular immune responses and conferred full protection against lethal YFV challenge. Our study provides data suggesting that 17D-IRES, with its prominent advantages, could be a vaccine candidate against YF. Moreover, this IRES-based bicistronic technology platform represents a promising strategy for developing other live attenuated vaccines against emerging viruses.
Collapse
|
57
|
Kairuz D, Samudh N, Ely A, Arbuthnot P, Bloom K. Advancing mRNA technologies for therapies and vaccines: An African context. Front Immunol 2022; 13:1018961. [PMID: 36353641 PMCID: PMC9637871 DOI: 10.3389/fimmu.2022.1018961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023] Open
Abstract
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
58
|
Lee Z, Lu M, Irfanullah E, Soukup M, Hu WS. Construction of an rAAV Producer Cell Line through Synthetic Biology. ACS Synth Biol 2022; 11:3285-3295. [PMID: 36219557 PMCID: PMC9595119 DOI: 10.1021/acssynbio.2c00207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/24/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are important gene delivery vehicles for gene therapy applications. Their production relies on plasmid transfection or virus infection of producer cells, which pose a challenge in process scale-up. Here, we describe a template for a transfection-free, helper virus-free rAAV producer cell line using a synthetic biology approach. Three modules were integrated into HEK293 cells including an rAAV genome and multiple inducible promoters controlling the expression of AAV Rep, Cap, and helper coding sequences. The synthetic cell line generated infectious rAAV vectors upon induction. Independent control over replication and packaging activities allowed for manipulation of the fraction of capsid particles containing viral genomes, affirming the feasibility of tuning gene expression profiles in a synthetic cell line for enhancing the quality of the viral vector produced. The synthetic biology approach for rAAV production presented in this study can be exploited for scalable biomanufacturing.
Collapse
Affiliation(s)
| | | | - Eesha Irfanullah
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Morgan Soukup
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
59
|
Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res 2022; 10:70. [PMID: 36123710 PMCID: PMC9487061 DOI: 10.1186/s40364-022-00417-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient’s own T lymphocytes are engineered to recognize and kill cancer cells, has achieved remarkable success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Once equipped with a CAR construct, T cells act as living drugs and recognize and eliminate the target tumor cells in an MHC-independent manner. In this review, we first described all structural modular of CAR in detail, focusing on more recent findings. We then pointed out behind-the-scene elements contributing to CAR expression and reviewed how CAR expression can be drastically affected by the elements embedded in the viral vector backbone.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
60
|
Fujikawa Y, Mori M, Tsukada M, Miyahara S, Sato-Fukushima H, Watanabe E, Murakami-Tonami Y, Inoue H. Pi-class Glutathione S-transferase (GSTP1)-selective fluorescent probes for multicolour imaging with various cancer-associated enzymes. Chembiochem 2022; 23:e202200443. [PMID: 36062403 DOI: 10.1002/cbic.202200443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Indexed: 11/09/2022]
Abstract
Pi-class glutathione S-transferase (GSTP1) is highly expressed in a wide variety of human cancer tissues compared to the corresponding normal counterpart. Therefore, GSTP1 is a potential target enzyme for overcoming resistance to chemotherapeutic agents or visualizing specific lesions such as cancer. Here, we present orange and red fluorescence-emitting probes selective for GSTP1. Carbofluorescein and TokyoMagenta fluorophores were modified with a previously described GSTP1-selective chromogenic compound to generate orange and red fluorescence probes, respectively. Of these probes, Ps-CF , the orange fluorescence-emitting probe, was confirmed to be highly specific for detecting GSTP1 exogenously or endogenously expressed in various cancer cells. Additionally, it was demonstrated that Ps-CF is applicable for the simultaneous detection of GSTP1 and another cancer-associated enzymes by using a green fluorescence emitting γ-glutamyl transpeptidase (GGT) probe. In conclusion, the fluorescent probes developed in this study enable the simultaneous detection of multiple tumour markers such as GSTP1 with other cancer-associated enzymes by the concurrent use of spectrally distinguished fluorescent probes, potentially broadening the scope of cancer detection.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- Tokyo University of Pharmacy and Life Sciences, School of Life Sciences, 1432-1 Horinouchi, 192-0392, Tokyo, JAPAN
| | - Masaya Mori
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Minami Tsukada
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Seiya Miyahara
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Honoka Sato-Fukushima
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Eita Watanabe
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Yuko Murakami-Tonami
- Tokyo University of Technology: Tokyo Koka Daigaku, School of Bioscience and Biotechnology, JAPAN
| | - Hideshi Inoue
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| |
Collapse
|
61
|
Li Y, Cui ZJ. Photodynamic Activation of the Cholecystokinin 1 Receptor with Tagged Genetically Encoded Protein Photosensitizers: Optimizing the Tagging Patterns. Photochem Photobiol 2022; 98:1215-1228. [PMID: 35211987 DOI: 10.1111/php.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated photodynamically. For this to happen in situ, genetically encoded protein photosensitizers (GEPP) may be tagged to natively expressed CCK1R, but how to best tag GEPP has not been examined. Therefore, GEPP (miniSOG or KillerRed) was tagged to CCK1R and light-driven photodynamic CCK1R activation was monitored by Fura-2 fluorescent calcium imaging, to screen for optimized tagging patterns. Blue light-emitting diode irradiation of CHO-K1 cells expressing miniSOG fused to N- or C-terminus of CCK1R was found to both trigger persistent calcium oscillations-a hallmark of permanent photodynamic CCK1R activation. Photodynamic CCK1R activation was accomplished also with miniSOG fused to N-terminus of CCK1R via linker (GlySerGly)4 or 8 , but not linker (GSG)12 or an internal ribosomal entry site insert. KillerRed fused to N- or C-terminus of CCK1R after white light irradiation resulted in similar activation of in-frame CCK1R. Photodynamic CCK1R activation in miniSOG-CCK1R-CHO-K1 cells was blocked by singlet oxygen (1 O2 ) quencher uric acid or Trolox C, corroborating the role of 1 O2 as the reactive intermediate. It is concluded that photodynamic CCK1R activation can be achieved either with direct GEPP fusion to CCK1R or fusion via a short linker, fusion via long linkers might serve as the internal control.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
62
|
VEGF-A and FGF4 Engineered C2C12 Myoblasts and Angiogenesis in the Chick Chorioallantoic Membrane. Biomedicines 2022; 10:biomedicines10081781. [PMID: 35892681 PMCID: PMC9330725 DOI: 10.3390/biomedicines10081781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels. Adequate oxygen transport and waste removal are necessary for tissue homeostasis. Restrictions in blood supply can lead to ischaemia which can contribute to disease pathology. Vascular endothelial growth factor (VEGF) is essential in angiogenesis and myogenesis, making it an ideal candidate for angiogenic and myogenic stimulation in muscle. We established C2C12 mouse myoblast cell lines which stably express elevated levels of (i) human VEGF-A and (ii) dual human FGF4-VEGF-A. Both stably transfected cells secreted increased amounts of human VEGF-A compared to non-transfected cells, with the latter greater than the former. In vitro, conditioned media from engineered cells resulted in a significant increase in endothelial cell proliferation, migration, and tube formation. In vivo, this conditioned media produced a 1.5-fold increase in angiogenesis in the chick chorioallantoic membrane (CAM) assay. Delivery of the engineered myoblasts on Matrigel demonstrated continued biological activity by eliciting an almost 2-fold increase in angiogenic response when applied directly to the CAM assay. These studies qualify the use of genetically modified myoblasts in therapeutic angiogenesis for the treatment of muscle diseases associated with vascular defects.
Collapse
|
63
|
Saoin S, Arunyanak N, Muangchan P, Boonkrai C, Pisitkun T, Kloypan C, Nangola S. Bicistronic vector-based procedure to measure correlative expression and bacteriostatic activity of recombinant neutrophil gelatinase-associated lipocalin. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Somphot Saoin
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Naphatswan Arunyanak
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pornuma Muangchan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chiraphat Kloypan
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
64
|
Ahmad Zamri N, Rusli MEF, Mohamad Yusof L, Rosli R. Immunization with a bicistronic DNA vaccine modulates systemic IFN-γ and IL-10 expression against Vibrio cholerae infection. J Med Microbiol 2022; 71. [PMID: 35635780 DOI: 10.1099/jmm.0.001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cholera is an acute enteric infection caused by Vibrio cholerae, particularly in areas lacking access to clean water. Despite the global effort to improve water quality in these regions, the burden of cholera in recent years has not yet declined. Interest has therefore extended in the use of bicistronic DNA vaccine encoding ctxB and tcpA genes of V. cholerae as a potential vaccine.Hypothesis/Gap Statement. The potential of a bicistronic DNA vaccine, pVAX-ctxB-tcpA has not been determined in vitro and in vivo.Aim. The goal of present study was to evaluate in vitro expression and in vivo potential of pVAX-ctxB-tcpA vaccine against V. cholerae.Methodology. The pVAX-ctxB-tcpA was transiently transfected into mammalian COS-7 cells, and the in vitro expression was assessed using fluorescence and Western blot analyses. Next, the vaccine was encapsulated into sodium alginate using water-in-oil emulsification and evaluated for its efficiency in different pH conditions. Subsequently, oral vaccination using en(pVAX-ctxB-tcpA) was performed in vivo. The animals were challenged with V. cholerae O1 El Tor after 2 weeks of vaccination using the Removable Intestinal Tie-Adult Rabbit Diarrhoea (RITARD) model. Following the infection challenge, the rabbits were monitored for evidence of symptoms, and analysed for systemic cytokine expression level (TNF-α, IFN-γ, IL-6 and IL-10) using quantitative real-time polymerase chain reaction.Results. The in vitro expression of pVAX-ctxB-tcpA was successfully verified via fluorescence and Western blot analyses. Meanwhile, in vivo analysis demonstrated that the en(pVAX-ctxB-tcpA) was able to protect the RITARD model against V. cholerae infection due to a lack of evidence on the clinical manifestations of cholera following bacterial challenge. Furthermore, the bicistronic group showed an upregulation of systemic IFN-γ and IL-10 following 12 days of vaccination, though not significant, suggesting the possible activation of both T-helper 1 and 2 types of response. However, upon bacterial challenge, the gene expression of all cytokines did not change.Conclusion. Our findings suggest that the bicistronic plasmid DNA vaccine, pVAX-ctxB-tcpA, showed a potential role in inducing immune response against cholera through upregulation of in vitro gene and protein expression as well as in vivo cytokine gene expression, particularly IFN-γ and IL-10.
Collapse
Affiliation(s)
- Najwa Ahmad Zamri
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Ehsan Fitri Rusli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
65
|
Fan Y, Chen W, Wei R, Qiang W, Pearson JD, Yu T, Bremner R, Chen D. Mapping transgene insertion sites reveals the α-Cre transgene expression in both developing retina and olfactory neurons. Commun Biol 2022; 5:411. [PMID: 35505181 PMCID: PMC9065156 DOI: 10.1038/s42003-022-03379-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research. The Pax6-α-Cre mouse line used in retinal studies actually contains four transgene insertion within gene clusters of olfactory and vomeronasal receptors, leading to expression in not just retinal, but also olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Yimeng Fan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
66
|
Generation and Characterization of an Inducible Cx43 Overexpression System in Mouse Embryonic Stem Cells. Cells 2022; 11:cells11040694. [PMID: 35203340 PMCID: PMC8869955 DOI: 10.3390/cells11040694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Connexins (Cx) are a large family of membrane proteins that can form intercellular connections, so-called gap junctions between adjacent cells. Cx43 is widely expressed in mammals and has a variety of different functions, such as the propagation of electrical conduction in the cardiac ventricle. Despite Cx43 knockout models, many questions regarding the biology of Cx43 in health and disease remain unanswered. Herein we report the establishment of a Cre-inducible Cx43 overexpression system in murine embryonic stem (ES) cells. This enables the investigation of the impact of Cx43 overexpression in somatic cells. We utilized a double reporter system to label Cx43-overexpressing cells via mCherry fluorescence and exogenous Cx43 via fusion with P2A peptide to visualize its distribution pattern. We proved the functionality of our systems in ES cells, HeLa cells, and 3T3-fibroblasts and demonstrated the formation of functional gap junctions based on dye diffusion and FRAP experiments. In addition, Cx43-overexpressing ES cells could be differentiated into viable cardiomyocytes, as shown by the formation of cross striation and spontaneous beating. Analysis revealed faster and more rhythmic beating of Cx43-overexpressing cell clusters. Thus, our Cx43 overexpression systems enable the investigation of Cx43 biology and function in cardiomyocytes and other somatic cells.
Collapse
|
67
|
Snarski P, Sukhanov S, Yoshida T, Higashi Y, Danchuk S, Chandrasekar B, Tian D, Rivera-Lopez V, Delafontaine P. Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice. Arterioscler Thromb Vasc Biol 2022; 42:113-126. [PMID: 34852642 PMCID: PMC8792341 DOI: 10.1161/atvbaha.121.316090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.
Collapse
Affiliation(s)
- Patricia Snarski
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Sergiy Sukhanov
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Tadashi Yoshida
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Yusuke Higashi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Svitlana Danchuk
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Bysani Chandrasekar
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA
| | | | - Patrick Delafontaine
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
68
|
Impact of Molecular Modification on the Efficiency of Recombinant Baculovirus Vector Invasion to Mammalian Cells and Its Immunogenicity in Mice. Viruses 2022; 14:v14010140. [PMID: 35062344 PMCID: PMC8779059 DOI: 10.3390/v14010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The baculovirus display system (BDS), an excellent eukaryotic surface display technology that offers the advantages of safety, efficiency, and economy, is widely used in biomedicine. A previous study using rBacmid-Δgp64-ires-gp64 expressed in low copy numbers of the gp64 gene achieved high-efficiency expression and co-display of three fluorescent proteins (GFP, YFP, and mCherry). However, low expression of GP64 in recombinant baculoviruses also reduces the efficiency of recombinant baculovirus transduction into mammalian cells. In addition, the baculovirus promoter has no expression activity in mammalian cells and thus cannot meet the application requirements of baculoviral vectors for the BDS. Based on previous research, this study first determined the expression activity of promoters in insect Spodoptera frugiperda 9 cells and mammalian cells and successfully screened the very early promoter pie1 to mediate the co-expression of multiple genes. Second, utilizing the envelope display effect of the INVASIN and VSVG proteins, the efficiency of transduction of recombinant baculovirus particles into non-host cells was significantly improved. Finally, based on the above improvement, a recombinant baculovirus vector displaying four antigen proteins with high efficiency was constructed. Compared with traditional BDSs, the rBacmid-Δgp64 system exhibited increased display efficiency of the target protein by approximately 3-fold and induced an approximately 4-fold increase in the titer of serum antibodies to target antigens in Bal B/c mice. This study systematically explored the application of a new multi-gene co-display technology applicable to multi-vaccine research, and the results provide a foundation for the development of novel BDS technologies.
Collapse
|
69
|
Ishrat I, Cheng A, Yu F, Guo J, Zhang P, Zhang K, Yang Z. Development of a one-plasmid system to replace the endogenous protein with point mutation for post-translational modification studies. Mol Biol Rep 2022; 49:1-7. [PMID: 34762224 DOI: 10.1007/s11033-021-06693-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Post-translational modification (PTM) is one of the major regulatory mechanism for protein activities. To understand the function of PTMs, mutants that prevent or mimic the modification are frequently utilized. The endogenous proteins are usually depleted while the point mutations are expressed. A common strategy to accomplish these tasks includes two-steps: First, a cell line stably expressing shRNA for protein depletion is generated, then an RNAi-resistance construct is introduced to express mutant. However, these steps are time- and labor-consuming. More importantly, shRNA and mutant protein are frequently expressed in different cells at different time, which significantly disturbs the conclusions. METHODS To overcome these technical problems, we developed a lentiviral based one-plasmid system that allowed concurrent expression of shRNA and mutant protein. The puromycin-resistant gene was inserted for the selection of stable-expression cells. RESULTS Using this plasmid, we efficiently replaced the endogenous proteins with comparable levels of exogenous proteins for LDHB and PKM2, two glycolytic enzymes regulated by PTM in cancer cells. The system was also successfully exploited in evaluating the role of phosphorylation of LDHB serine 162 in multiple in vitro and in vivo assays. CONCLUSION Thus, we have developed an efficient one-plasmid system to replace endogenous protein with point mutations for the functional study of PTM.
Collapse
Affiliation(s)
- Iqra Ishrat
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aoxing Cheng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
70
|
Fenno LE, Levy R, Yizhar O. Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications. Methods Mol Biol 2022; 2501:289-310. [PMID: 35857234 DOI: 10.1007/978-1-0716-2329-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Lief E Fenno
- Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
71
|
A Platform Technology for Monitoring the Unfolded Protein Response. Methods Mol Biol 2022; 2378:45-67. [PMID: 34985693 PMCID: PMC10053305 DOI: 10.1007/978-1-0716-1732-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The unfolded protein response (UPR) is a complex signal transduction pathway that remodels gene expression in response to proteotoxic stress in the endoplasmic reticulum (ER) and is linked to the development of a range of diseases, including Alzheimer's disease, diabetes, and several types of cancer. UPR induction is typically monitored by measuring the expression level of UPR marker genes. Most tools for quantifying gene expression, including DNA microarrays and quantitative PCR with reverse transcription (RT-PCR), produce snapshots of the cell transcriptome, but are not ideal for measurements requiring temporal resolution of gene expression dynamics. Reporter assays for indirect detection of the UPR typically rely on extrachromosomal expression of reporters under the control of minimal or synthetic regulatory sequences that do not recapitulate the native chromosomal context of the UPR target genes. To address the need for tools to monitor chromosomal gene expression that recapitulate gene expression dynamics from the native chromosomal context and generate a readily detectable signal output, we developed a gene signal amplifier platform that links transcriptional and post-translational regulation of a fluorescent output to the expression of a chromosomal gene marker of the UPR. The platform is based on a genetic circuit that amplifies the output signal with high sensitivity and dynamic resolution and is implemented through chromosomal integration of the gene encoding the main control element of the genetic circuit to link its expression to that of the target gene, thereby generating a platform that can be easily adapted to monitor any UPR target through integration of the main control element at the appropriate chromosomal locus. By recapitulating the transcriptional and translational control mechanisms underlying the expression of UPR targets with high sensitivity, this platform provides a novel technology for monitoring the UPR with superior sensitivity and dynamic resolution.
Collapse
|
72
|
Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021; 13:1982447. [PMID: 34747345 PMCID: PMC8583164 DOI: 10.1080/19420862.2021.1982447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
73
|
Oliveira‐Mendes B, Feliciangeli S, Ménard M, Chatelain F, Alameh M, Montnach J, Nicolas S, Ollivier B, Barc J, Baró I, Schott J, Probst V, Kyndt F, Denjoy I, Lesage F, Loussouarn G, De Waard M. A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clin Transl Med 2021; 11:e609. [PMID: 34841674 PMCID: PMC8609418 DOI: 10.1002/ctm2.609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.
Collapse
Affiliation(s)
| | - Sylvain Feliciangeli
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Mélissa Ménard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Frank Chatelain
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Malak Alameh
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Jérôme Montnach
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | | | - Julien Barc
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Isabelle Baró
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | - Vincent Probst
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Florence Kyndt
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires RaresHôpital BichatParisFrance
| | - Florian Lesage
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | | | - Michel De Waard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| |
Collapse
|
74
|
Jeon YH, Jung YT. Production of a replicating retroviral vector expressing Reovirus fast protein for cancer gene therapy. J Virol Methods 2021; 299:114332. [PMID: 34655690 DOI: 10.1016/j.jviromet.2021.114332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023]
Abstract
Reovirus fusion-associated small transmembrane (FAST) proteins induce syncytium formation. Recently, several studies have shown that the use of recombinant vectors engineered to express fusion proteins is becoming attractive for the development of enhanced oncolytic viruses. In this study, we investigated the cytotoxic effect of four different FAST proteins (p10 FAST of Avian reovirus [ARV], p10 FAST of Pulau virus [PuV], p13 FAST of Broome virus [BroV], and p14 FAST of reptilian reovirus [RRV]). Plasmids encoding FASTs were transfected into Vero cells. All FAST proteins induced syncytium formation at varying intensities. To achieve high levels of FAST expression, four different FAST genes were inserted into the murine leukemia virus (MLV)-based replication-competent retroviral (RCR) vector. Two days after transfection in 293 T cells, only the MoMLV-10A1-p10(PuV) RCR vector showed syncytia formation. Based on these results, p10(Puv) was selected from the four FASTs. Next, we investigated the cytotoxicity of p10(PuV) on HeLa cervical carcinoma cells, HT1080 human fibrosarcoma cells, and U87 human glioma cells. Although three human cancer cell lines induced syncytium formation, U87 cells were highly susceptible to syncytia formation by transfection with p10(PuV). In addition, the viral supernatants from MoMLV-10A-p10(PuV) RCR vector-transfected 293 T cells also induced syncytium formation in HT1080, TE671, and U87 cells. This RCR vector encoding p10(PuV) is a promising candidate for cancer gene therapy.
Collapse
Affiliation(s)
- Young Hyun Jeon
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Yong-Tae Jung
- Department of Microbiology, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
75
|
Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021; 75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
There is an unmet need for functional primary human hepatocytes to support the pharmaceutical and (bio)medical demand. The unique discovery, a decade ago, that somatic cells can be drawn out of their apparent biological lockdown to reacquire a pluripotent state has revealed a completely new avenue of possibilities for generating surrogate human hepatocytes. Since then, the number of papers reporting the direct conversion of somatic cells into induced hepatocytes (iHeps) has burgeoned. A hepatic cell fate can be established via the ectopic expression of native liver-enriched transcription factors in somatic cells, thereby bypassing the need for an intermediate (pluripotent) stem cell state. That said, understanding and eventually controlling the processes that give rise to functional iHeps remains challenging. In this review, we provide an overview of the state-of-the-art reprogramming cocktails and techniques, as well as their corresponding conversion efficiencies. Special attention is paid to the role of liver-enriched transcription factors as hepatogenic reprogramming tools and small molecules as facilitators of hepatic transdifferentiation. To conclude, we formulate recommendations to optimise, standardise and enrich the in vitro production of iHeps to reach clinical standards, and propose minimal criteria for their characterisation.
Collapse
Affiliation(s)
- Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
76
|
Cre Recombinase Driver Mice Reveal Lineage-Dependent and -Independent Expression of Brs3 in the Mouse Brain. eNeuro 2021; 8:ENEURO.0252-21.2021. [PMID: 34326065 PMCID: PMC8371926 DOI: 10.1523/eneuro.0252-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared Brs3 driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus). We detected Brs3 reporter expression in the dentate gyrus at day 23 but not at postnatal day 1 or 5 months of age. Hypothalamic sites expressed reporter at all three time points, and striatal patches expressed Brs3 reporter at 1 day but not 5 months. Parabrachial nucleus Brs3 neurons project to the preoptic area, hypothalamus, amygdala, and thalamus. Both Cre recombinase insertions reduced Brs3 mRNA levels and BRS3 function, causing obesity phenotypes of different severity. These results demonstrate that driver mice should be characterized phenotypically and illustrate the need for knock-in strategies with less effect on the endogenous gene.
Collapse
|
77
|
Yang J, Lee J, Land MA, Lai S, Igoshin OA, St-Pierre F. A synthetic circuit for buffering gene dosage variation between individual mammalian cells. Nat Commun 2021; 12:4132. [PMID: 34226556 PMCID: PMC8257781 DOI: 10.1038/s41467-021-23889-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Precise control of gene expression is critical for biological research and biotechnology. However, transient plasmid transfections in mammalian cells produce a wide distribution of copy numbers per cell, and consequently, high expression heterogeneity. Here, we report plasmid-based synthetic circuits - Equalizers - that buffer copy-number variation at the single-cell level. Equalizers couple a transcriptional negative feedback loop with post-transcriptional incoherent feedforward control. Computational modeling suggests that the combination of these two topologies enables Equalizers to operate over a wide range of plasmid copy numbers. We demonstrate experimentally that Equalizers outperform other gene dosage compensation topologies and produce as low cell-to-cell variation as chromosomally integrated genes. We also show that episome-encoded Equalizers enable the rapid generation of extrachromosomal cell lines with stable and uniform expression. Overall, Equalizers are simple and versatile devices for homogeneous gene expression and can facilitate the engineering of synthetic circuits that function reliably in every cell.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
78
|
Gatina DZ, Garanina EE, Zhuravleva MN, Synbulatova GE, Mullakhmetova AF, Solovyeva VV, Kiyasov AP, Rutland CS, Rizvanov AA, Salafutdinov II. Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. Int J Mol Sci 2021; 22:ijms22115922. [PMID: 34072943 PMCID: PMC8198600 DOI: 10.3390/ijms22115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses' furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Gulnaz E. Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Adelya F. Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Andrey P. Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| |
Collapse
|
79
|
Hasan MZ, Walter L. Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Front Immunol 2021; 12:678964. [PMID: 33968088 PMCID: PMC8102735 DOI: 10.3389/fimmu.2021.678964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be derived by genetic recombination of the region encoding the transmembrane and intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR possess a positively charged arginine residue in the transmembrane region. As human KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRγ) adaptor, we hypothesized that in contrast to human and great ape the activating KIRs of macaques associate with FcRγ instead of DAP12. By applying co-immunoprecipitation of transfected as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed associates with FcRγ and not with DAP12. This association with FcRγ results in increased and substantially stabilized surface expression of KIR3DS05. In addition, we demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011, resulted in signal transduction in the presence of FcRγ in contrast to DAP12.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
80
|
Franzese O, Di Francesco AM, Meco D, Graziani G, Cusano G, Levati L, Riccardi R, Ruggiero A. hTERT Transduction Extends the Lifespan of Primary Pediatric Low-Grade Glioma Cells While Preserving the Biological Response to NGF. Pathol Oncol Res 2021; 27:612375. [PMID: 34257579 PMCID: PMC8262147 DOI: 10.3389/pore.2021.612375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
The neurotrophin nerve growth factor (NGF) modulates the growth of human gliomas and is able to induce cell differentiation through the engagement of tropomyosin receptor kinase A (TrkA) receptor, although the role played in controlling glioma survival has proved controversial. Unfortunately, the slow growth rate of low-grade gliomas (LGG) has made it difficult to investigate NGF effects on these tumors in preclinical models. In fact, patient-derived low-grade human astrocytoma cells duplicate only a limited number of times in culture before undergoing senescence. Nevertheless, replicative senescence can be counteracted by overexpression of hTERT, the catalytic subunit of telomerase, which potentially increases the proliferative potential of human cells without inducing cancer-associated changes. We have extended, by hTERT transduction, the proliferative in vitro potential of a human LGG cell line derived from a pediatric pilocytic astrocytoma (PA) surgical sample. Remarkably, the hTERT-transduced LGG cells showed a behavior similar to that of the parental line in terms of biological responses to NGF treatment, including molecular events associated with induction of NGF-related differentiation. Therefore, transduction of LGG cells with hTERT can provide a valid approach to increase the in vitro life-span of patient-derived astrocytoma primary cultures, characterized by a finite proliferative potential.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela M. Di Francesco
- Institute of Internal Medicine, Periodic Fever and Rare Diseases Center, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Meco
- UOC di Oncologia Pediatrica, “Fondazione Policlinico Universitario A. Gemelli”, IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gabriella Cusano
- UOC di Oncologia Pediatrica, “Fondazione Policlinico Universitario A. Gemelli”, IRCCS, Rome, Italy
| | | | - Riccardo Riccardi
- UOC di Oncologia Pediatrica, “Fondazione Policlinico Universitario A. Gemelli”, IRCCS, Rome, Italy
| | - Antonio Ruggiero
- UOC di Oncologia Pediatrica, “Fondazione Policlinico Universitario A. Gemelli”, IRCCS, Rome, Italy
| |
Collapse
|
81
|
Abstract
ABSTRACT Redirection of T cell cytotoxicity by the chimeric antigen receptor (CAR) structure may not be sufficient for optimal antitumor function in the patient tumor microenvironment. Comodifying CAR T cells to secrete different classes of proteins can be used to optimize CAR T cell function, overcome suppressive signals, and/or alter the tumor microenvironment milieu. These modifications aim to improve initial responses to therapy and enhance the durability of response. Furthermore, CAR T cells can deliver these molecules locally to the tumor microenvironment, avoiding systemic distribution. This approach has been tested in preclinical models using a variety of different classes of agonistic and antagonistic proteins, and clinical trials are currently underway to assess efficacy in patients.
Collapse
|
82
|
Spinal Excitatory Dynorphinergic Interneurons Contribute to Burn Injury-Induced Nociception Mediated by Phosphorylated Histone 3 at Serine 10 in Rodents. Int J Mol Sci 2021; 22:ijms22052297. [PMID: 33669046 PMCID: PMC7956488 DOI: 10.3390/ijms22052297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.
Collapse
|
83
|
Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, Ruella M, Savoldo B, Shah NN, Turtle CJ, Wayne AS, Abou-El-Enein M. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol 2021; 18:379-393. [PMID: 33633361 PMCID: PMC8923136 DOI: 10.1038/s41571-021-00476-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Patient-derived T cells genetically reprogrammed to express CD19-specific chimeric antigen receptors (CARs) have shown remarkable clinical responses and are commercially available for the treatment of patients with certain advanced-stage B cell malignancies. Nonetheless, several trials have revealed pre-existing and/or treatment-induced immune responses to the mouse-derived single-chain variable fragments included in these constructs. These responses might have contributed to both treatment failure and the limited success of redosing strategies observed in some patients. Data from early phase clinical trials suggest that CAR T cells are also associated with immunogenicity-related events in patients with solid tumours. Generally, the clinical implications of anti-CAR immune responses are poorly understood and highly variable between different CAR constructs and malignancies. These observations highlight an urgent need to uncover the mechanisms of immunogenicity in patients receiving CAR T cells and develop validated assays to enable clinical detection. In this Review, we describe the current clinical evidence of anti-CAR immune responses and discuss how new CAR T cell technologies might impact the risk of immunogenicity. We then suggest ways to reduce the risks of anti-CAR immune responses to CAR T cell products that are advancing towards the clinic. Finally, we summarize measures that investigators could consider in order to systematically monitor and better comprehend the possible effects of immunogenicity during trials involving CAR T cells as well as in routine clinical practice.
Collapse
Affiliation(s)
- Dimitrios L Wagner
- Berlin Center for Advanced Therapies (BeCAT) and Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies (BeCAT) and Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Children's Hospital Los Angeles Cancer and Blood Disease Institute, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Nabil Ahmed
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Mohamad Hamieh
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Meenakshi Hegde
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Philadelphia, Philadelphia, PA, USA.,Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cameron J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alan S Wayne
- Cancer and Blood Disease Institute, Division of Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Abou-El-Enein
- Berlin Center for Advanced Therapies (BeCAT) and Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Division of Medical Oncology, Department of Medicine, and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Joint USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
84
|
Bartos Z, Homolya L. Identification of Specific Trafficking Defects of Naturally Occurring Variants of the Human ABCG2 Transporter. Front Cell Dev Biol 2021; 9:615729. [PMID: 33634118 PMCID: PMC7900420 DOI: 10.3389/fcell.2021.615729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Proper targeting of the urate and xenobiotic transporter ATP-binding transporter subfamily G member 2 (ABCG2) to the plasma membrane (PM) is essential for its normal function. The naturally occurring Q141K and M71V polymorphisms in ABCG2, associated with gout and hyperuricemia, affect the cellular routing of the transporter, rather than its transport function. The cellular localization of ABCG2 variants was formerly studied by immunolabeling, which provides information only on the steady-state distribution of the protein, leaving the dynamics of its cellular routing unexplored. In the present study, we assessed in detail the trafficking of the wild-type, M71V-, and Q141K-ABCG2 variants from the endoplasmic reticulum (ER) to the cell surface using a dynamic approach, the so-called Retention Using Selective Hooks (RUSH) system. This method also allowed us to study the kinetics of glycosylation of these variants. We found that the fraction of Q141K- and M71V-ABCG2 that passes the ER quality control system is only partially targeted to the PM; a subfraction is immobile and retained in the ER. Surprisingly, the transit of these variants through the Golgi apparatus (either the appearance or the exit) was unaffected; however, their PM delivery beyond the Golgi was delayed. In addition to identifying the specific defects in the trafficking of these ABCG2 variants, our study provides a novel experimental tool for studying the effect of drugs that potentially promote the cell surface delivery of mutant or polymorphic ABCG2 variants with impaired trafficking.
Collapse
Affiliation(s)
- Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| |
Collapse
|
85
|
Hasan ASH, Dinh TTH, Le HT, Mizuno-Iijima S, Daitoku Y, Ishida M, Tanimoto Y, Kato K, Yoshiki A, Murata K, Mizuno S, Sugiyama F. Characterization of a bicistronic knock-in reporter mouse model for investigating the role of CABLES2 in vivo. Exp Anim 2021; 70:22-30. [PMID: 32779618 PMCID: PMC7887623 DOI: 10.1538/expanim.20-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
Two members of the CDK5 and ABL enzyme substrate (CABLES) family, CABLES1 and CABLES2, share a highly homologous C-terminus. They interact and associate with cyclin-dependent kinase 3 (CDK3), CDK5, and c-ABL. CABLES1 mediates tumor suppression, regulates cell proliferation, and prevents protein degradation. Although Cables2 is ubiquitously expressed in adult mouse tissues at RNA level, the role of CABLES2 in vivo remains unknown. Here, we generated bicistronic Cables2 knock-in reporter mice that expressed CABLES2 tagged with 3×FLAG and 2A-mediated fluorescent reporter tdTomato. Cables2-3×FLAG-2A-tdTomato (Cables2Tom) mice confirmed the expression of Cables2 in various mouse tissues. Interestingly, high intensity of tdTomato fluorescence was observed in the brain, testis and ovary, especially in the corpus luteum. Furthermore, immunoprecipitation analysis using the brain and testis in Cables2Tom/Tom revealed interaction of CABLES2 with CDK5. Collectively, our new Cables2 knock-in reporter model will enable the comprehensive analysis of in vivo CABLES2 function.
Collapse
Affiliation(s)
- Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Ministry of Works, Municipalities Affairs and Urban Planning, Building 86, Block 318, Sheikh Hamad Street 1802, Manama Diplomatic Area, Manama, Bahrain
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hoai Thu Le
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
86
|
Brücher D, Kirchhammer N, Smith SN, Schumacher J, Schumacher N, Kolibius J, Freitag PC, Schmid M, Weiss F, Keller C, Grove M, Greber UF, Zippelius A, Plückthun A. iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:572-586. [PMID: 33665227 PMCID: PMC7890373 DOI: 10.1016/j.omtm.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jatina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Corina Keller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Corresponding author: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
87
|
Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep 2021; 11:932. [PMID: 33441619 PMCID: PMC7806765 DOI: 10.1038/s41598-020-79656-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
Inborn errors of metabolism are often associated with neurodevelopmental disorders and brain injury. A deficiency of aminopeptidase P1, a proline-specific endopeptidase encoded by the Xpnpep1 gene, causes neurological complications in both humans and mice. In addition, aminopeptidase P1-deficient mice exhibit hippocampal neurodegeneration and impaired hippocampus-dependent learning and memory. However, the molecular and cellular changes associated with hippocampal pathology in aminopeptidase P1 deficiency are unclear. We show here that a deficiency of aminopeptidase P1 modifies the glial population and neuronal excitability in the hippocampus. Microarray and real-time quantitative reverse transcription-polymerase chain reaction analyses identified 14 differentially expressed genes (Casp1, Ccnd1, Myoc, Opalin, Aldh1a2, Aspa, Spp1, Gstm6, Serpinb1a, Pdlim1, Dsp, Tnfaip6, Slc6a20a, Slc22a2) in the Xpnpep1−/− hippocampus. In the hippocampus, aminopeptidase P1-expression signals were mainly detected in neurons. However, deficiency of aminopeptidase P1 resulted in fewer hippocampal astrocytes and increased density of microglia in the hippocampal CA3 area. In addition, Xpnpep1−/− CA3b pyramidal neurons were more excitable than wild-type neurons. These results indicate that insufficient astrocytic neuroprotection and enhanced neuronal excitability may underlie neurodegeneration and hippocampal dysfunction in aminopeptidase P1 deficiency.
Collapse
|
88
|
Kondrashov A, Karpova E. Notes on Functional Modules in the Assembly of CRISPR/Cas9-Mediated Epigenetic Modifiers. Methods Mol Biol 2021; 2198:401-428. [PMID: 32822047 DOI: 10.1007/978-1-0716-0876-0_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CRISPR/cas9 is a popular tool, widely used today for genome editing. However, the modular organization of this tool allows it to be used not only for DNA modifications but also for introducing epigenetic modifications both in DNA (methylation/demethylation) and in histones (acetylation/deacetylation). In these notes we will concentrate on the ways to adapt the CRISPR/cas9 system for epigenetic DNA modification of specific regions of interest. The modular organization represents a universal principal, that allows to create infinite number of functions with a limited number of tools. CRISPR/cas9, in which each subunit can be adapted for a particular task, is an excellent example of this rule. Made of two main subunits, it can be modified for targeted delivery of foreign activity (effector, an epigenetic enzyme in our case) to a selected part of the genome. In doing this the CRISPR/cas9 system represents a unique method that allows the introduction of both genomic and epigenetic modifications. This chapter gives a detailed review of how to prepare DNA for the fully functional CRISPR/cas9 system, able to introduce required modifications in the region of interest. We will discuss specific requirements for each structural component of the system as well as for auxiliary elements (modules), which are needed to ensure efficient expression of the elements of the system within the cell and the needs of selection and visualization.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.
| | | |
Collapse
|
89
|
Slobodkina E, Boldyreva M, Karagyaur M, Eremichev R, Alexandrushkina N, Balabanyan V, Akopyan Z, Parfyonova Y, Tkachuk V, Makarevich P. Therapeutic Angiogenesis by a "Dynamic Duo": Simultaneous Expression of HGF and VEGF165 by Novel Bicistronic Plasmid Restores Blood Flow in Ischemic Skeletal Muscle. Pharmaceutics 2020; 12:E1231. [PMID: 33353116 PMCID: PMC7766676 DOI: 10.3390/pharmaceutics12121231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest. Studies in HEK293T culture showed that all plasmids provided synthesis of HGF and VEGF165 proteins and stimulated capillary formation by human umbilical vein endothelial cells (HUVEC), indicating the biological potency of expressed factors. Tests in skeletal muscle explants showed a dramatic difference and most plasmids failed to express HGF and VEGF165 in a significant quantity. However, a bicistronic plasmid with two independent promoters (cytomegalovirus (CMV) for HGF and chicken b-actin (CAG) for VEGF165) provided expression of both grow factors in skeletal muscle at an equimolar ratio. Efficacy tests of bicistronic plasmid were performed in a mouse model of hind limb ischemia. Intramuscular administration of plasmid induced significant restoration of perfusion compared to an empty vector and saline. These findings were supported by increased CD31+ capillary density in animals that received pHGF/VEGF. Overall, our study reports a first-in-class candidate gene therapy drug to deliver two pivotal angiogenic growth factors (HGF and VEGF165) with properties that provide basis for future development of treatment for an unmet medical need-peripheral artery disease and associated limb ischemia.
Collapse
Affiliation(s)
- Ekaterina Slobodkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Boldyreva
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), 109028 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalia Alexandrushkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Yelena Parfyonova
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Pavel Makarevich
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
90
|
Giorgio E, Pesce E, Pozzi E, Sondo E, Ferrero M, Morerio C, Borrelli G, Della Sala E, Lorenzati M, Cortelli P, Buffo A, Pedemonte N, Brusco A. A high-content drug screening strategy to identify protein level modulators for genetic diseases: A proof-of-principle in autosomal dominant leukodystrophy. Hum Mutat 2020; 42:102-116. [PMID: 33252173 DOI: 10.1002/humu.24147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022]
Abstract
In genetic diseases, the most prevalent mechanism of pathogenicity is an altered expression of dosage-sensitive genes. Drugs that restore physiological levels of these genes should be effective in treating the associated conditions. We developed a screening strategy, based on a bicistronic dual-reporter vector, for identifying compounds that modulate protein levels, and used it in a pharmacological screening approach. To provide a proof-of-principle, we chose autosomal dominant leukodystrophy (ADLD), an ultra-rare adult-onset neurodegenerative disorder caused by lamin B1 (LMNB1) overexpression. We used a stable Chinese hamster ovary (CHO) cell line that simultaneously expresses an AcGFP reporter fused to LMNB1 and a Ds-Red normalizer. Using high-content imaging analysis, we screened a library of 717 biologically active compounds and approved drugs, and identified alvespimycin, an HSP90 inhibitor, as a positive hit. We confirmed that alvespimycin can reduce LMNB1 levels by 30%-80% in five different cell lines (fibroblasts, NIH3T3, CHO, COS-7, and rat primary glial cells). In ADLD fibroblasts, alvespimycin reduced cytoplasmic LMNB1 by about 50%. We propose this approach for effectively identifying potential drugs for treating genetic diseases associated with deletions/duplications and paving the way toward Phase II clinical trials.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marta Ferrero
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Cristina Morerio
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giusy Borrelli
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Edoardo Della Sala
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy
| | - Martina Lorenzati
- Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Torino, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Torino, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, Medical Genetics Unit, University of Torino, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| |
Collapse
|
91
|
High-resolution mouse subventricular zone stem-cell niche transcriptome reveals features of lineage, anatomy, and aging. Proc Natl Acad Sci U S A 2020; 117:31448-31458. [PMID: 33229571 DOI: 10.1073/pnas.2014389117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well-validated stem/progenitor-specific reporter transgene in concert with single-cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional datasets allow precise identification of the varied cell types embedded in the SVZ including specialized parenchymal cells (neurons, glia, microglia) and noncentral nervous system cells (endothelial, immune). Initial mining of the data delineates four quiescent NSC and three progenitor-cell subpopulations formed in a linear progression. Further evidence indicates that distinct stem and progenitor populations reside in different regions of the SVZ. As stem/progenitor populations progress from neonatal to advanced age, they acquire a deficiency in transition from quiescence to proliferation. Further data mining identifies stage-specific biological processes, transcription factor networks, and cell-surface markers for investigation of cellular identities, lineage relationships, and key regulatory pathways in adult NSC maintenance and neurogenesis.
Collapse
|
92
|
Quarton T, Kang T, Papakis V, Nguyen K, Nowak C, Li Y, Bleris L. Uncoupling gene expression noise along the central dogma using genome engineered human cell lines. Nucleic Acids Res 2020; 48:9406-9413. [PMID: 32810265 PMCID: PMC7498316 DOI: 10.1093/nar/gkaa668] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic protein synthesis is an inherently stochastic process. This stochasticity stems not only from variations in cell content between cells but also from thermodynamic fluctuations in a single cell. Ultimately, these inherently stochastic processes manifest as noise in gene expression, where even genetically identical cells in the same environment exhibit variation in their protein abundances. In order to elucidate the underlying sources that contribute to gene expression noise, we quantify the contribution of each step within the process of protein synthesis along the central dogma. We uncouple gene expression at the transcriptional, translational, and post-translational level using custom engineered circuits stably integrated in human cells using CRISPR. We provide a generalized framework to approximate intrinsic and extrinsic noise in a population of cells expressing an unbalanced two-reporter system. Our decomposition shows that the majority of intrinsic fluctuations stem from transcription and that coupling the two genes along the central dogma forces the fluctuations to propagate and accumulate along the same path, resulting in increased observed global correlation between the products.
Collapse
Affiliation(s)
- Tyler Quarton
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Taek Kang
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Vasileios Papakis
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Khai Nguyen
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chance Nowak
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
93
|
Abstract
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France.,Faculty of Sciences and Techniques, University of Orléans, Orléans 45071 Cedex 02, France
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| |
Collapse
|
94
|
Jensen O, Ansari S, Gebauer L, Müller SF, Lowjaga KAAT, Geyer J, Tzvetkov MV, Brockmöller J. A double-Flp-in method for stable overexpression of two genes. Sci Rep 2020; 10:14018. [PMID: 32820202 PMCID: PMC7441062 DOI: 10.1038/s41598-020-71051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Overexpression of single genes in mammalian cells is widely used to investigate protein function in basic and applied biosciences and in drug research. A better understanding of interactions of two proteins is an important next step in the advancement of our understanding of complex biological systems. However, simultaneous and robust overexpression of two or more genes is challenging. The Flp-In system integrates a vector into cell lines at a specific genomic locus, but has not been used for integration of more than one gene. Here we present a modification of the Flp-In system that enables the simultaneous targeted integration of two genes. We describe the modification and generation of the vectors required and give the complete protocol for transfection and validation of correct genomic integration and expression. We also provide results on the stability and reproducibility, and we functionally validated this approach with a pharmacologically relevant combination of a membrane transporter facilitating drug uptake and an enzyme mediating drug metabolism.
Collapse
Affiliation(s)
- Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Salim Ansari
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Simon F Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Kira A A T Lowjaga
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Mladen V Tzvetkov
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medical Center Greifswald, 17489, Greifswald, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
95
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
96
|
Khosla A, Rodriguez‐Furlan C, Kapoor S, Van Norman JM, Nelson DC. A series of dual-reporter vectors for ratiometric analysis of protein abundance in plants. PLANT DIRECT 2020; 4:e00231. [PMID: 32582876 PMCID: PMC7306620 DOI: 10.1002/pld3.231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 05/06/2023]
Abstract
Ratiometric reporter systems enable comparisons of the abundance of a protein of interest, or "target," relative to a reference protein. Both proteins are encoded on a single transcript but are separated during translation. This arrangement bypasses the potential for discordant expression that can arise when the target and reference proteins are encoded by separate genes. We generated a set of 18 Gateway-compatible vectors termed pRATIO that combine a variety of promoters, fluorescent, and bioluminescent reporters, and 2A "self-cleaving" peptides. These constructs are easily modified to produce additional combinations or introduce new reporter proteins. We found that mScarlet-I provides the best signal-to-noise ratio among several fluorescent reporter proteins during transient expression experiments in Nicotiana benthamiana. Firefly and Gaussia luciferase also produce high signal-to-noise in N. benthamiana. As proof of concept, we used this system to investigate whether degradation of the receptor KAI2 after karrikin treatment is influenced by its subcellular localization. KAI2 is normally found in the cytoplasm and the nucleus of plant cells. In N. benthamiana, karrikin-induced degradation of KAI2 was only observed when it was retained in the nucleus. These vectors are tools to easily monitor in vivo the abundance of a protein that is transiently expressed in plants, and will be particularly useful for investigating protein turnover in response to different stimuli.
Collapse
Affiliation(s)
- Aashima Khosla
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| | | | - Suraj Kapoor
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | | | - David C. Nelson
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
97
|
Ong TT, Ang Z, Verma R, Koean R, Tam JKC, Ding JL. pHLuc, a Ratiometric Luminescent Reporter for in vivo Monitoring of Tumor Acidosis. Front Bioeng Biotechnol 2020; 8:412. [PMID: 32457886 PMCID: PMC7225611 DOI: 10.3389/fbioe.2020.00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Even under normoxia, cancer cells exhibit increased glucose uptake and glycolysis, an occurrence known as the Warburg effect. This altered metabolism results in increased lactic acid production, leading to extracellular acidosis and contributing to metastasis and chemoresistance. Current pH imaging methods are invasive, costly, or require long acquisition times, and may not be suitable for high-throughput pre-clinical small animal studies. Here, we present a ratiometric pH-sensitive bioluminescence reporter called pHLuc for in vivo monitoring of tumor acidosis. pHLuc consists of a pH-sensitive GFP (superecliptic pHluorin or SEP), a pH-stable OFP (Antares), and Nanoluc luciferase. The resulting reporter produces a pH-responsive green 510nm emission (from SEP) and a pH-insensitive red-orange 580nm emission (from Antares). The ratiometric readout (R580 / 510) is indicative of changes in extracellular pH (pHe). In vivo proof-of-concept experiments with NSG mice model bearing human synovial sarcoma SW982 xenografts that stably express the pHLuc reporter suggest that the level of acidosis varies across the tumor. Altogether, we demonstrate the diagnostic value of pHLuc as a bioluminescent reporter for pH variations across the tumor microenvironment. The pHLuc reporter plasmids constructed in this work are available from Addgene.
Collapse
Affiliation(s)
- Tiffany T Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiwei Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Riva Verma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricky Koean
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - John Kit Chung Tam
- Division of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
98
|
He L, Zhang Z, Yu Q. Expression of Two Foreign Genes by a Newcastle Disease Virus Vector From the Optimal Insertion Sites through a Combination of the ITU and IRES-Dependent Expression Approaches. Front Microbiol 2020; 11:769. [PMID: 32411112 PMCID: PMC7198723 DOI: 10.3389/fmicb.2020.00769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
Abstract
Many Newcastle disease virus (NDV) strains have been developed as vectors to express a foreign gene (FG) for vaccine and cancer therapy purposes. The non-coding region between the phosphoprotein (P) and matrix protein (M) genes and the non-coding region behind the NP gene open reading frame (ORF) in the NDV genome have been identified as the optimal insertion sites for efficient FG expression through the independent transcription unit (ITU) and the internal ribosomal entry site (IRES) dependent expression approaches, respectively. To date, however, the majority of these NDV vectors express only a single or two FGs from suboptimal insertion sites in the NDV genome, obtaining various levels of FG expression. To improve the FG expression, we generated NDV LaSota vaccine strain-based recombinant viruses expressing two FGs, GFP, and RFP, from the identified optimal insertion sites through a combination of the ITU and IRES-dependent approaches. Biological assessments of the recombinant viruses indicated that the recombinants expressing two FGs were slightly attenuated with approximately one order of magnitude lower in virus titers when compared to the viruses containing a single FG. The FG expression efficiencies from the two-FG viruses were also lower than those from the single-FG viruses. However, the expression of two FGs from the optimal insertion sites was significantly (p < 0.05) higher than those from the suboptimal insertion sites. The expressions of FGs as monocistronic ITU were approximately 4-fold more efficient than those expressed by the bicistronic IRES-dependent approach. These results suggest that the NDV LaSota vector could efficiently express two FGs from the identified optimal insertions sites. The ITU strategy could be used for “vectoring” FGs in circumstances where high expression of gene products (e.g., antigens) is warranted, whereas, the IRES-dependent tactic might be useful when lower amounts of IRES-directed FG products are needed.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, Henan, China.,Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Zhenyu Zhang
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| |
Collapse
|
99
|
Mizote Y, Masumi-Koizumi K, Katsuda T, Yamaji H. Production of an antibody Fab fragment using 2A peptide in insect cells. J Biosci Bioeng 2020; 130:205-211. [PMID: 32284303 DOI: 10.1016/j.jbiosc.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
Antibody Fab fragments consist of heavy chain (Hc) and light chain (Lc) polypeptides assembled with a disulphide bond. The production of a recombinant Fab fragment requires the simultaneous expression of two genes encoding both an Hc and an Lc in the same host cell. In the present study, we investigated the production of Fab fragments in lepidopteran insect cells using a bicistronic plasmid vector carrying the Hc and Lc genes linked with a 2A self-cleaving peptide sequence from the porcine teschovirus-1. We also examined the arrangement of a GSG spacer sequence and a furin cleavage site sequence with the 2A sequence. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) of culture supernatants showed that Trichoplusia ni BTI-TN-5B1-4 (High Five) cells transfected with a plasmid in which the Hc and Lc genes were joined by the 2A sequence successfully secreted Fab fragments with antigen-binding activity after self-cleavage of the 2A peptide. The GSG linker enhanced 2A cleavage efficiency, and the furin recognition site was useful for removal of 2A residues from the Hc. Transfection with a single plasmid that contained sequences for GSG, the furin cleavage site, GSG, and the 2A peptide between the Hc and Lc genes exhibited a higher productivity than co-transfection with a set of plasmids separately carrying the Hc or Lc gene. These results demonstrate that bicistronic expression with the appropriate combination of a furin recognition site, GSG linkers, and a 2A peptide may be an effective way to efficiently produce recombinant antibody molecules in insect cells.
Collapse
Affiliation(s)
- Yu Mizote
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kyoko Masumi-Koizumi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Manufacturing Technology Association of Biologics, c/o Integrated Research Center of Kobe University, 7-1-49 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tomohisa Katsuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Manufacturing Technology Association of Biologics, c/o Integrated Research Center of Kobe University, 7-1-49 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hideki Yamaji
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Manufacturing Technology Association of Biologics, c/o Integrated Research Center of Kobe University, 7-1-49 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
100
|
Comparative Molecular Biology Approaches for the Production of Poliovirus Virus-Like Particles Using Pichia pastoris. mSphere 2020; 5:5/2/e00838-19. [PMID: 32161150 PMCID: PMC7067596 DOI: 10.1128/msphere.00838-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the current poliovirus immunization program has been extremely successful in reducing the number of cases of paralytic polio worldwide, now more cases are caused by vaccine-derived polioviruses than by wild poliovirus. Switching to inactivated poliovirus vaccines will reduce this over time; however, their production requires the growth of large amounts of virus. This biosafety concern can be addressed by producing just the virus capsid. The capsid serves to protect the genetic material, which causes disease when introduced into a cell. Therefore, empty capsids (virus-like particles [VLPs]), which lack the viral RNA genome, are safe both to make and to use. We exploit yeast as a versatile model expression system to produce VLPs, and here we specifically highlight the potential of this system to supply next-generation poliovirus vaccines to secure a polio-free world for the future. For enteroviruses such as poliovirus (PV), empty capsids, which are antigenically indistinguishable from mature virions, are produced naturally during viral infection. The production of such capsids recombinantly, in heterologous systems such as yeast, have great potential as virus-like particle (VLP) vaccine candidates. Here, using PV as an exemplar, we show the production of VLPs in Pichia pastoris by coexpression of the structural precursor protein P1 and the viral protease 3CD. The level of expression of the potentially cytotoxic protease relative to that of the P1 precursor was modulated by three different approaches: expression of the P1 precursor and protease from different transcription units, separation of the P1 and protease proteins using the Thosea asigna virus (TaV) 2A translation interruption sequence, or separation of the P1 and protease-coding sequences by an internal ribosome entry site sequence from Rhopalosiphum padi virus (RhPV). We also investigate the antigenicity of VLPs containing previously characterized mutations when produced in Pichia. Finally, using transmission electron microscopy and two-dimensional classification, we show that Pichia-derived VLPs exhibited the classical icosahedral capsid structure displayed by enteroviruses. IMPORTANCE Although the current poliovirus immunization program has been extremely successful in reducing the number of cases of paralytic polio worldwide, now more cases are caused by vaccine-derived polioviruses than by wild poliovirus. Switching to inactivated poliovirus vaccines will reduce this over time; however, their production requires the growth of large amounts of virus. This biosafety concern can be addressed by producing just the virus capsid. The capsid serves to protect the genetic material, which causes disease when introduced into a cell. Therefore, empty capsids (virus-like particles [VLPs]), which lack the viral RNA genome, are safe both to make and to use. We exploit yeast as a versatile model expression system to produce VLPs, and here we specifically highlight the potential of this system to supply next-generation poliovirus vaccines to secure a polio-free world for the future.
Collapse
|