51
|
Shah SZA, Zhao D, Khan SH, Yang L. Regulatory Mechanisms of Endoplasmic Reticulum Resident IP3 Receptors. J Mol Neurosci 2015; 56:938-948. [PMID: 25859934 DOI: 10.1007/s12031-015-0551-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
Dysregulated calcium signaling and accumulation of aberrant proteins causing endoplasmic reticulum stress are the early sign of intra-axonal pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum. The fate of the cell to undergo apoptosis is controlled by Ca2(+) signaling and dynamics at the level of the endoplasmic reticulum. Endoplasmic reticulum resident inositol 1,4,5-trisphosphate receptors (IP3R) play a pivotal role in cell death signaling by mediating Ca2(+) flux from the endoplasmic reticulum into the cytosol and mitochondria. Hence, many prosurvival and prodeath signaling pathways and proteins affect Ca2(+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. Here, in this review, we summarize the regulatory mechanisms of inositol triphosphate receptors in calcium regulation and initiation of apoptosis during unfolded protein response.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sher Hayat Khan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
52
|
Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Crockett AM, Adzovic L, Wenk GL. Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation. J Neuroinflammation 2015; 12:56. [PMID: 25888781 PMCID: PMC4377218 DOI: 10.1186/s12974-015-0262-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background Chronic neuroinflammation and calcium (Ca+2) dysregulation are both components of Alzheimer’s disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca+2 homeostasis via L-type voltage-dependent Ca+2 channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca+2 dysregulation. Methods The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. Results LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca+2 uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. Conclusions Taken together, these data indicate that Ca+2 dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca+2 channels are dysregulated during chronic neuroinflammation. Ca+2-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca+2 dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.
Collapse
Affiliation(s)
- Sarah C Hopp
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Heather M D'Angelo
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Sarah E Royer
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Roxanne M Kaercher
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Alexis M Crockett
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA. .,Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Linda Adzovic
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Gary L Wenk
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA. .,Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
53
|
Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease. Transl Psychiatry 2014; 4:e489. [PMID: 25514752 PMCID: PMC4270312 DOI: 10.1038/tp.2014.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/12/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (Aβ) peptides by decreasing the cleavage of amyloid precursor protein (APP) by β-secretase, without notably affecting α- and γ-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates.
Collapse
|
54
|
Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1980-91. [PMID: 25461839 DOI: 10.1016/j.bbamcr.2014.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
The two major calcium (Ca²⁺) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²⁺ release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
55
|
Almasi-Nasrabadi M, Gharedaghi MH, Rezazadeh P, Dehpour AR, Javadi-Paydar M. NMDA receptors interact with the retrieval memory enhancing effect of pioglitazone in mice. Pharmacol Biochem Behav 2014; 126:136-45. [DOI: 10.1016/j.pbb.2014.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/28/2022]
|
56
|
Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Adzovic L, Wenk GL. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism. Neuroscience 2014; 280:10-8. [PMID: 25224829 DOI: 10.1016/j.neuroscience.2014.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 10/25/2022]
Abstract
Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.
Collapse
Affiliation(s)
- S C Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - H M D'Angelo
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - S E Royer
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - R M Kaercher
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - L Adzovic
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - G L Wenk
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
57
|
Kyratzi E, Efthimiopoulos S. Calcium regulates the interaction of amyloid precursor protein with Homer3 protein. Neurobiol Aging 2014; 35:2053-63. [DOI: 10.1016/j.neurobiolaging.2014.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 01/28/2023]
|
58
|
Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci 2014; 34:6910-23. [PMID: 24828645 DOI: 10.1523/jneurosci.5441-13.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exaggerated intracellular Ca(2+) signaling is a robust proximal phenotype observed in cells expressing familial Alzheimer's disease (FAD)-causing mutant presenilins (PSs). The mechanisms that underlie this phenotype are controversial and their in vivo relevance for AD pathogenesis is unknown. Here, we used a genetic approach to identify the mechanisms involved and to evaluate their role in the etiology of AD in two FAD mouse models. Genetic reduction of the type 1 inositol trisphosphate receptor (InsP3R1) by 50% normalized exaggerated Ca(2+) signaling observed in cortical and hippocampal neurons in both animal models. In PS1M146V knock-in mice, reduced InsP3R1 expression restored normal ryanodine receptor and cAMP response element-binding protein (CREB)-dependent gene expression and rescued aberrant hippocampal long-term potentiation (LTP). In 3xTg mice, reduced InsP3R1 expression profoundly attenuated amyloid β accumulation and tau hyperphosphorylation and rescued hippocampal LTP and memory deficits. These results indicate that exaggerated Ca(2+) signaling, which is associated with FAD PS, is mediated by InsP3R and contributes to disease pathogenesis in vivo. Targeting the InsP3 signaling pathway could be considered a potential therapeutic strategy for patients harboring mutations in PS linked to AD.
Collapse
|
59
|
Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9:21. [PMID: 24902695 PMCID: PMC4063224 DOI: 10.1186/1750-1326-9-21] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022] Open
Abstract
Perturbed Endoplasmic Reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in Alzheimer disease (AD). Accordingly, different studies have reported alterations of the expression and the function of Ryanodine Receptors (RyR) in human AD-affected brains, in cells expressing familial AD-linked mutations on the β amyloid precursor protein (βAPP) and presenilins (the catalytic core in γ-secretase complexes cleaving the βAPP, thereby generating amyloid β (Aβ) peptides), as well as in the brain of various transgenic AD mice models. Data converge to suggest that RyR expression and function alteration are associated to AD pathogenesis through the control of: i) βAPP processing and Aβ peptide production, ii) neuronal death; iii) synaptic function; and iv) memory and learning abilities. In this review, we document the network of evidences suggesting that RyR could play a complex dual "compensatory/protective versus pathogenic" role contributing to the setting of histopathological lesions and synaptic deficits that are associated with the disease stages. We also discuss the possible mechanisms underlying RyR expression and function alterations in AD. Finally, we review recent publications showing that drug-targeting blockade of RyR and genetic manipulation of RyR reduces Aβ production, stabilizes synaptic transmission, and prevents learning and memory deficits in various AD mouse models. Chemically-designed RyR "modulators" could therefore be envisioned as new therapeutic compounds able to delay or block the progression of AD.
Collapse
Affiliation(s)
| | - Frédéric Checler
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, Nice, F-06560 Valbonne, France.
| | | |
Collapse
|
60
|
Smolarkiewicz M, Skrzypczak T, Wojtaszek P. The very many faces of presenilins and the γ-secretase complex. PROTOPLASMA 2013; 250:997-1011. [PMID: 23504135 PMCID: PMC3788181 DOI: 10.1007/s00709-013-0494-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/01/2013] [Indexed: 05/02/2023]
Abstract
Presenilin is a central, catalytic component of the γ-secretase complex which conducts intramembrane cleavage of various protein substrates. Although identified and mainly studied through its role in the development of amyloid plaques in Alzheimer disease, γ-secretase has many other important functions. The complex seems to be evolutionary conserved throughout the Metazoa, but recent findings in plants and Dictyostelium discoideum as well as in archeons suggest that its evolution and functions might be much more diversified than previously expected. In this review, a selective survey of the multitude of functions of presenilins and the γ-secretase complex is presented. Following a brief overview of γ-secretase structure, assembly and maturation, three functional aspects are analyzed: (1) the role of γ-secretase in autophagy and phagocytosis; (2) involvement of the complex in signaling related to endocytosis; and (3) control of calcium fluxes by presenilins.
Collapse
Affiliation(s)
- Michalina Smolarkiewicz
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
61
|
Rubio-Moscardo F, Setó-Salvia N, Pera M, Bosch-Morató M, Plata C, Belbin O, Gené G, Dols-Icardo O, Ingelsson M, Helisalmi S, Soininen H, Hiltunen M, Giedraitis V, Lannfelt L, Frank A, Bullido M, Combarros O, Sánchez-Juan P, Boada M, Tárraga L, Pastor P, Pérez-Tur J, Baquero M, Molinuevo JL, Sánchez-Valle R, Fuentes-Prior P, Fortea J, Blesa R, Muñoz FJ, Lleó A, Valverde MA, Clarimón J. Rare variants in calcium homeostasis modulator 1 (CALHM1) found in early onset Alzheimer's disease patients alter calcium homeostasis. PLoS One 2013; 8:e74203. [PMID: 24069280 PMCID: PMC3775809 DOI: 10.1371/journal.pone.0074203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer’s disease (AD). Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca2+-permeable channel CALHM1. A genetic polymorphism (p. P86L) in CALHM1 reduces plasma membrane Ca2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD), we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H) and one (p.A213T) in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T) behaved as wild-type CALHM1 (CALHM1-WT), a complete abolishment of the Ca2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H). Notably, the previously reported p. P86L mutation was associated with an intermediate Ca2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß) production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.
Collapse
Affiliation(s)
- Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Núria Setó-Salvia
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Pera
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mònica Bosch-Morató
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Cristina Plata
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Gemma Gené
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Martin Ingelsson
- Department of Public Health, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Seppo Helisalmi
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and the Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and the Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and the Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Vilmantas Giedraitis
- Department of Public Health, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ana Frank
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Institute of Sanitary Research “Hospital la Paz” (IdIPaz), Madrid, Spain
| | - MªJesús Bullido
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Institute of Sanitary Research “Hospital la Paz” (IdIPaz), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Onofre Combarros
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Neurology Service, University Hospital Marqués de Valdecilla (University of Cantabria and IFIMAV), Santander, Spain
| | - Pascual Sánchez-Juan
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Neurology Service, University Hospital Marqués de Valdecilla (University of Cantabria and IFIMAV), Santander, Spain
| | - Mercè Boada
- Alzheimer Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
- Hospital Universitari Vall d’Hebron, Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Lluís Tárraga
- Alzheimer Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Pau Pastor
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Neurogenetics Laboratory, Division of Neurociences, Center for Applied Medical Research (CIMA) University of Navarra Medical School, Pamplona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- Institut de Biomedicina de Valencia-CSIC, Valencia, Spain
| | - Miquel Baquero
- Neurology Department, Hospital Universitario “La Fe”, Valencia, Spain
| | | | | | - Pablo Fuentes-Prior
- Molecular Basis of Diseases Unit, IIB-Sant Pau, Hospital de la Santa Creu i Sant, Pau, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Rafael Blesa
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- * E-mail: (JC); (MAV)
| | - Jordi Clarimón
- Memory Unit, Neurology Department, Hospital de Sant Pau (Sant Pau Biomedical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
- * E-mail: (JC); (MAV)
| |
Collapse
|
62
|
Ryazantseva M, Skobeleva K, Kaznacheyeva E. Familial Alzheimer's disease-linked presenilin-1 mutation M146V affects store-operated calcium entry: does gain look like loss? Biochimie 2013; 95:1506-9. [PMID: 23624206 DOI: 10.1016/j.biochi.2013.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to neuron death and synapse loss in the hippocampus and cortex, with consequent cognitive disability and dementia. Mutations in the presenilin-1 (PS1) gene lead to familial Alzheimer's disease (FAD). Here, we report that the expression of FAD-linked PS1 M146V mutant affects store-operated calcium channel activity (Isoc) in human neuroblastoma SK-N-SH cells. Electrophysiological measurements and calcium imaging experiments have revealed the emergent role of calcium sensor STIM2 in the inhibition of calcium release-activated calcium channel activity (Icrac) and enhancement of intracellular Ca(2+) stores content due to PS1 M146V mutant expression. In general, the results of this study suggest that the pathological inhibition of one type of store-operated calcium channels caused by FAD PS1 mutant expression may be accounted for by preceding gain of spontaneous activity of store-operated calcium channels driven by STIM2.
Collapse
Affiliation(s)
- M Ryazantseva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
63
|
Honarnejad K, Herms J. Presenilins: Role in calcium homeostasis. Int J Biochem Cell Biol 2012; 44:1983-6. [DOI: 10.1016/j.biocel.2012.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 01/30/2023]
|
64
|
Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia. J Neuroimmunol 2012; 251:73-9. [PMID: 22766135 DOI: 10.1016/j.jneuroim.2012.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/14/2012] [Accepted: 06/03/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.
Collapse
|
65
|
Shilling D, Mak DOD, Kang DE, Foskett JK. Lack of evidence for presenilins as endoplasmic reticulum Ca2+ leak channels. J Biol Chem 2012; 287:10933-44. [PMID: 22311977 DOI: 10.1074/jbc.m111.300491] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Familial Alzheimer disease (FAD) is linked to mutations in the presenilin (PS) homologs. FAD mutant PS expression has several cellular consequences, including exaggerated intracellular Ca(2+) ([Ca(2+)](i)) signaling due to enhanced agonist sensitivity and increased magnitude of [Ca(2+)](i) signals. The mechanisms underlying these phenomena remain controversial. It has been proposed that PSs are constitutively active, passive endoplasmic reticulum (ER) Ca(2+) leak channels and that FAD PS mutations disrupt this function resulting in ER store overfilling that increases the driving force for release upon ER Ca(2+) release channel opening. To investigate this hypothesis, we employed multiple Ca(2+) imaging protocols and indicators to directly measure ER Ca(2+) dynamics in several cell systems. However, we did not observe consistent evidence that PSs act as ER Ca(2+) leak channels. Nevertheless, we confirmed observations made using indirect measurements employed in previous reports that proposed this hypothesis. Specifically, cells lacking PS or expressing a FAD-linked PS mutation displayed increased area under the ionomycin-induced [Ca(2+)](i) versus time curve (AI) compared with cells expressing WT PS. However, an ER-targeted Ca(2+) indicator revealed that this did not reflect overloaded ER stores. Monensin pretreatment selectively attenuated the AI in cells lacking PS or expressing a FAD PS allele. These findings contradict the hypothesis that PSs form ER Ca(2+) leak channels and highlight the need to use ER-targeted Ca(2+) indicators when studying ER Ca(2+) dynamics.
Collapse
Affiliation(s)
- Dustin Shilling
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
66
|
Cellular model of Alzheimer's disease--relevance to therapeutic testing. Exp Neurol 2011; 233:733-9. [PMID: 22119424 DOI: 10.1016/j.expneurol.2011.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/26/2011] [Accepted: 11/08/2011] [Indexed: 12/29/2022]
|
67
|
Presenilins as endoplasmic reticulum calcium leak channels and Alzheimer's disease pathogenesis. SCIENCE CHINA-LIFE SCIENCES 2011; 54:744-51. [PMID: 21786197 DOI: 10.1007/s11427-011-4201-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca(2+)) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. Mutations in presenilin proteins account for majority of FAD cases. Presenilins function as catalytic subunit of γ-secretase involved in generation of Aβ peptide Recently, we discovered that presenilns function as low-conductance, passive ER Ca(2+) leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins result in loss of ER Ca(2+) leak function activity and Ca(2+) overload in the ER. These results provided potential explanation for abnormal Ca(2+) signaling observed in FAD cells with mutations in presenilns. Our latest work on studies of ER Ca(2+) leak channel function of presenilins and implications of these findings for understanding AD pathogenesis are discussed in this article.
Collapse
|
68
|
Supnet C, Bezprozvanny I. Presenilins function in ER calcium leak and Alzheimer's disease pathogenesis. Cell Calcium 2011; 50:303-9. [PMID: 21663966 DOI: 10.1016/j.ceca.2011.05.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca(2+)) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. Mutations in presenilin proteins account for the majority of FAD cases. Presenilins function as catalytic subunits of γ-secretase involved in the generation of Aβ peptide. Recently, we discovered that presenilns function as low-conductance, passive ER Ca(2+) leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins results in the loss of ER Ca(2+) leak function activity and Ca(2+) overload in the ER. These results provided potential explanation for abnormal Ca(2+) signaling observed in FAD cells with mutations in presenilns. The implications of these findings for understanding AD pathogenesis are discussed in this article.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, United States
| | | |
Collapse
|
69
|
Müller M, Cheung KH, Foskett JK. Enhanced ROS generation mediated by Alzheimer's disease presenilin regulation of InsP3R Ca2+ signaling. Antioxid Redox Signal 2011; 14:1225-35. [PMID: 20701429 PMCID: PMC3048838 DOI: 10.1089/ars.2010.3421] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein and presenilins (PS1, PS2). Many FAD-linked PS mutations affect intracellular calcium (Ca(2+)) homeostasis by proximal mechanisms independent of amyloid production by dramatically enhancing gating of the inositol trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel by a gain-of-function effect that mirrors genetics of FAD and is independent of secretase activity. Electrophysiological recordings of InsP(3)R in FAD patient B cells, cortical neurons of asymptomatic PS1-AD mice, and other cells revealed they have higher occupancy in a high open probability burst mode, resulting in enhanced Ca(2+) signaling. Exaggerated Ca(2+) signaling through this mechanism results in enhanced generation of reactive oxygen species, believed to be an important component in AD pathogenesis. Exaggerated Ca(2+) signaling through InsP(3)R-PS interaction is a disease specific and robust proximal mechanism in AD that may contribute to the pathology of AD by enhanced generation of reactive oxygen species.
Collapse
Affiliation(s)
- Marioly Müller
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
70
|
Itkin A, Dupres V, Dufrêne YF, Bechinger B, Ruysschaert JM, Raussens V. Calcium ions promote formation of amyloid β-peptide (1-40) oligomers causally implicated in neuronal toxicity of Alzheimer's disease. PLoS One 2011; 6:e18250. [PMID: 21464905 PMCID: PMC3065491 DOI: 10.1371/journal.pone.0018250] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/01/2011] [Indexed: 01/06/2023] Open
Abstract
Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca(2+) homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1-40) and that of Aβ(1-40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca(2+), Aβ(1-40) preferentially formed oligomers similar to those formed by Aβ(1-40)E22G with or without added Ca(2+), whereas in the absence of added Ca(2+) the Aβ(1-40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca(2+), Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1-40), that have been implicated in the pathogenesis of AD.
Collapse
Affiliation(s)
- Anna Itkin
- Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
71
|
Gibson GE, Shi Q. A mitocentric view of Alzheimer's disease suggests multi-faceted treatments. J Alzheimers Dis 2010; 20 Suppl 2:S591-607. [PMID: 20463407 DOI: 10.3233/jad-2010-100336] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.g., genetic mutations lead to high Abeta1-42 or hyperphosphorylated tau proteins). In the vast majority of AD cases, the cause is unknown. Substantial evidence now suggests that abnormalities in glucose metabolism/mitochondrial function/oxidative stress (GMO) are an invariant feature of AD and occur at an early stage of the disease process in both genetic and non-genetic forms of AD. Indeed, decreases in brain glucose utilization are diagnostic for AD. Changes in calcium homeostasis also precede clinical manifestations of AD. Abnormal GMO can lead to plaques, tangles, and the calcium abnormalities that accompany AD. Abnormalities in GMO diminish the ability of the brain to adapt. Therapies targeting mitochondria may ameliorate abnormalities in plaques, tangles, calcium homeostasis, and cognition that comprise AD.
Collapse
Affiliation(s)
- Gary E Gibson
- Weill Cornell Medical College/Burke Medical Research Institute, White Plains, NY, USA.
| | | |
Collapse
|
72
|
Pharmacological and genetic reversal of age-dependent cognitive deficits attributable to decreased presenilin function. J Neurosci 2010; 30:9510-22. [PMID: 20631179 DOI: 10.1523/jneurosci.1017-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced.
Collapse
|
73
|
Foskett JK. Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch 2010; 460:481-94. [PMID: 20383523 DOI: 10.1007/s00424-010-0826-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 01/15/2023]
Abstract
The modulation of cytoplasmic Ca2+ concentration by release from internal stores through the inositol trisphosphate receptor (InsP3R) Ca2+ release channel is a ubiquitous signaling system involved in the regulation of numerous processes. Because of its ubiquitous expression and roles in regulating diverse cell physiological processes, it is not surprising that the InsP3R has been implicated in a number of disease states. However, relatively few mutations in InsP3R genes have been identified to date. Here, I will discuss mutations in the type 1 InsP3R that have been discovered by analyses of human patients and mice with neurological disorders. In addition, I will highlight diseases caused by mutations in other genes, including Huntington's and Alzheimer's diseases and some spinocerebellar ataxias, where the mutant proteins have been found to exert strong influences on InsP3R function that may link InsP3R to disease pathogenesis.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania School of Medicine, B39 Anatomy-Chemistry Bldg., 414 Guardian Dr., Philadelphia, PA 19104, USA.
| |
Collapse
|
74
|
Cheung KH, Mei L, Mak DOD, Hayashi I, Iwatsubo T, Kang DE, Foskett JK. Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer's disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 2010; 3:ra22. [PMID: 20332427 DOI: 10.1126/scisignal.2000818] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein or presenilins (PS1 and PS2). Many FAD-linked PS mutations affect intracellular calcium (Ca(2+)) homeostasis by mechanisms proximal to and independent of amyloid production, although the molecular details are controversial. We found that several FAD-causing PS mutants enhance gating of the inositol trisphosphate receptor (IP(3)R) Ca(2+) release channel by a gain-of-function effect that mirrored the genetics of FAD and was independent of secretase activity. In contrast, wild-type PS or PS mutants that cause frontotemporal dementia had no such effect. FAD-causing PS mutants altered the modes in which the IP(3)R channel gated. Recordings of endogenous IP(3)R in lymphoblasts derived from individuals with FAD or cortical neurons of asymptomatic PS1-AD mice revealed that they were more likely than IP(3)R in cells with wild-type PS to dwell in a high open-probability burst mode, resulting in enhanced Ca(2+) signaling. These results indicate that exaggerated Ca(2+) signaling through IP(3)R-PS interaction is a disease-specific and robust proximal mechanism in FAD.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
76
|
Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47:183-9. [PMID: 20080301 PMCID: PMC2834825 DOI: 10.1016/j.ceca.2009.12.014] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 11/24/2022]
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Abeta) peptide aggregates in AD brain are thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. In particular, Ca2+ dysregulation by the endoplasmic reticulum (ER) in AD mouse models results in augmented cytosolic Ca2+ levels which can trigger signalling cascades that are detrimental to neuronal function and health. However, there is growing evidence to suggest that not all forms of Ca2+ dysregulation in AD neurons are harmful and some of them instead may be compensatory. These changes may help modulate neuronal excitability and slow AD pathology, especially in the early stages of the disease. Clearly, a better understanding of how dysregulation of neuronal Ca2+ handling contributes to neurodegeneration and neuroprotection in AD is needed as Ca2+ signalling modulators are targets of great interest as potential AD therapeutics.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
77
|
Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S487-98. [PMID: 20413848 PMCID: PMC4996661 DOI: 10.3233/jad-2010-100306] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the aged worldwide. AD is characterized by extensive synaptic and neuronal loss that leads to impaired memory and cognitive decline. The cause of AD is not completely understood and no effective therapy has been developed. The accumulation of toxic amyloid-beta42 (Abeta42) peptide oligomers and aggregates in AD brain has been proposed to be primarily responsible for the pathology of the disease, an idea dubbed the 'amyloid hypothesis' of AD etiology. In addition to the increase in Abeta42 levels, disturbances in neuronal calcium (Ca2+) signaling and alterations in expression levels of Ca2+ signaling proteins have been observed in animal models of familial AD and in studies of postmortem brain samples from sporadic AD patients. Based on these data, the 'Ca2+ hypothesis of AD' has been proposed. In particular, familial AD has been linked with enhanced Ca2+ release from the endoplasmic reticulum and elevated cytosolic Ca2+ levels. The augmented cytosolic Ca2+ levels can trigger signaling cascades that affect synaptic stability and function and can be detrimental to neuronal health, such as activation of calcineurin and calpains. Here we review the latest results supporting the 'Ca2+ hypothesis' of AD pathogenesis. We further argue that over time, supranormal cytosolic Ca2+ signaling can impair mitochondrial function in AD neurons. We conclude that inhibitors and stabilizers of neuronal Ca2+ signaling and mitochondrial function may have therapeutic potential for AD treatment. We also discuss latest and planned AD therapeutic trials of agents targeting Ca2+ channels and mitochondria.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
78
|
Abstract
More than two decades ago, dysregulation of the intracellular Ca2+ homeostasis was suggested to underlie the development of Alzheimer’s disease (AD). This hypothesis was tested in numerous in vitro studies, which revealed multiple Ca2+ signalling pathways able to contribute to AD pathology. It remained, however, unclear whether these pathways are also activated in vivo, in cells involved in signal processing in the living brain. Here we review recent data analysing intracellular Ca2+ signalling in vivo in the context of previous in vitro findings. We particularly focus on the processes taking place in the immediate vicinity of amyloid plaques and on their possible role for AD-mediated brain dysfunction.
Collapse
Affiliation(s)
- Marina Hermes
- University of Tübingen, Institute of Physiology II, Tübingen, Germany
| | | | | |
Collapse
|
79
|
Supnet C, Noonan C, Richard K, Bradley J, Mayne M. Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer's disease. J Neurochem 2009; 112:356-65. [PMID: 19903243 DOI: 10.1111/j.1471-4159.2009.06487.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cellular pathology of Alzheimer's disease is progressive and protracted leading eventually to considerable neuronal death. The underlying mechanisms of the pathology are complex but changes in the control of intracellular Ca2+ are believed to contribute to the demise of neurons. In this study, we investigated the functional consequences of an increase in the expression of the type 3 isoform of the ryanodine receptor (RyR3). We found that although cortical neurons from TgCRND8 mice secreted significantly more amyloid beta protein and showed significantly increased RyR3 expression, they were no more sensitive to cell stress than non-transgenic neurons. Furthermore, despite increased intracellular Ca2+ release in response to ryanodine, we found that basal Ca2+, K+-evoked Ca2+ responses, and capacitative Ca2+ entry were no different in TgCRND8 neurons compared with non-transgenic neurons. Therefore, as RyR3 up-regulation did not affect neuronal health or global Ca2+ homeostasis, we investigated the effect of reducing RyR3 expression using small interfering RNA. Surprisingly, a reduction of RyR3 expression in TgCRND8, but not in non-transgenic, neurons increased neuronal death. These data reveal a new role for RyR3 and indicate a novel potential therapeutic target to delay or prevent the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | | | | | | |
Collapse
|
80
|
Michno K, Knight D, Campusano JM, Campussano JM, van de Hoef D, Boulianne GL. Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS One 2009; 4:e6904. [PMID: 19730737 PMCID: PMC2733141 DOI: 10.1371/journal.pone.0006904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/01/2009] [Indexed: 01/07/2023] Open
Abstract
Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation.
Collapse
Affiliation(s)
- Kinga Michno
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Yu JT, Chang RCC, Tan L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 2009; 89:240-55. [PMID: 19664678 DOI: 10.1016/j.pneurobio.2009.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/28/2022]
Abstract
Calcium is involved in many facets of neuronal physiology, including activity, growth and differentiation, synaptic plasticity, and learning and memory, as well as pathophysiology, including necrosis, apoptosis, and degeneration. Though disturbances in calcium homeostasis in cells from Alzheimer's disease (AD) patients have been observed for many years, much more attention was focused on amyloid-beta (Abeta) and tau as key causative factors for the disease. Nevertheless, increasing lines of evidence have recently reported that calcium dysregulation plays a central role in AD pathogenesis. Systemic calcium changes accompany almost the whole brain pathology process that is observed in AD, including synaptic dysfunction, mitochondrial dysfunction, presenilins mutation, Abeta production and Tau phosphorylation. Given the early and ubiquitous involvement of calcium dysregulation in AD pathogenesis, it logically presents a variety of potential therapeutic targets for AD prevention and treatment, such as calcium channels in the plasma membrane, calcium channels in the endoplasmic reticulum membrane, Abeta-formed calcium channels, calcium-related proteins. The review aims to provide an overview of the current understanding of the molecular mechanisms involved in calcium dysregulation in AD, and an insight on how to exploit calcium regulation as therapeutic opportunities in AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province 266071, China
| | | | | |
Collapse
|
82
|
Puzianowska-Kuznicka M, Kuznicki J. The ER and ageing II: calcium homeostasis. Ageing Res Rev 2009; 8:160-72. [PMID: 19427411 DOI: 10.1016/j.arr.2009.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 11/29/2022]
Abstract
Increase in intracellular Ca(2+) concentration occurs by Ca(2+) influx through the plasma membrane and by Ca(2+) release from intracellular stores. The ER is the most important Ca(2+) store. Its stress, characterized by the impairment of Ca(2+) homeostasis and by the accumulation of misfolded proteins, can be induced by different factors. In turn, it induces defense mechanisms such as unfolded protein response, and when it is severe and prolonged, activation of the apoptotic pathway. Damage to the ER, impairment of its function, and a decreased level of its Ca(2+)-handling proteins might all play a role in physiological ageing by handicapping the ER stress response. Thus, healthy ageing is accompanied by subtle alterations of Ca(2+) homeostasis and signaling, including alterations in the ER Ca(2+) load and release. The expression and/or function of ryanodine receptors, IP3 receptors, and SERCA Ca(2+) pumps located in the ER membrane, and Ca(2+)-binding proteins within ER lumen all seem to be affected in aged cells. Data are presented on age-dependent, tissue-specific changes in ER-related Ca(2+) homeostasis in skeletal, cardiac and smooth muscles, as well as in the nervous and immune systems. Disturbances of Ca(2+) homeostasis and of signaling are potential targets for intervention in aged humans.
Collapse
|
83
|
Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 2009; 109:1800-11. [PMID: 19453298 DOI: 10.1111/j.1471-4159.2009.06107.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, 800 Rose Street, MS 310, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Shaked GM, Chauv S, Ubhi K, Hansen LA, Masliah E. Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimer's disease. FEBS J 2009; 276:2736-51. [PMID: 19368557 DOI: 10.1111/j.1742-4658.2009.06997.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is characterized by neuropathological accumulations of amyloid beta(1-42) [A beta(1-42)], a cleavage product of the amyloid precursor protein (APP). Recent studies have highlighted the role of APP in A beta-mediated toxicity and have implicated the G-protein system; however, the exact mechanisms underlying this pathway are as yet undetermined. In this context, we sought to investigate the role of calcium upregulation following APP-dependent, A beta-mediated G-protein activation. Initial studies on the interaction between APP, A beta and Go proteins demonstrated that the interaction between APP, specifically its C-terminal -YENPTY- region, and Go was reduced in the presence of A beta. Cell death and calcium influx in A beta-treated cells were shown to be APP dependent and to involve G-protein activation because these effects were blocked by use of the G-protein inhibitor, pertussis toxin. Collectively, these results highlight a role for the G-protein system in APP-dependent, A beta-induced toxicity and calcium dysregulation. Analysis of the APP:Go interaction in human brain samples from Alzheimer's disease patients at different stages of the disease revealed a decrease in the interaction, correlating with disease progression. Moreover, the reduced interaction between APP and Go was shown to correlate with an increase in membrane A beta levels and G-protein activity, showing for first time that the APP:Go interaction is present in humans and is responsive to A beta load. The results presented support a role for APP in A beta-induced G-protein activation and suggest a mechanism by which basal APP binding to Go is reduced under pathological loads of A beta, liberating Go and activating the G-protein system, which may in turn result in downstream effects including calcium dysregulation. These results also suggest that specific antagonists of G-protein activity may have a therapeutic relevance in Alzheimer's disease.
Collapse
Affiliation(s)
- Gideon M Shaked
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
85
|
Bojarski L, Pomorski P, Szybinska A, Drab M, Skibinska-Kijek A, Gruszczynska-Biegala J, Kuznicki J. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1050-7. [PMID: 19111578 DOI: 10.1016/j.bbamcr.2008.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Mutations in presenilin 1 (PS1), which are the major cause of familial Alzheimer's disease (FAD), are involved in perturbations of cellular Ca2+ homeostasis. Attenuation of capacitative Ca2+ entry (CCE) is the most often observed alteration of Ca2+ homeostasis in cells bearing FAD PS1 mutations. However, molecular mechanisms underlying this CCE impairment remains elusive. We demonstrate that cellular levels of STIM1 and STIM2 proteins, which are key players in CCE, depend on presenilins. We found increased level of STIM1 and decreased level of STIM2 proteins in mouse embryonic fibroblasts lacking presenilins. Fura-2 ratiometric assays revealed that CCE is enhanced in these cells after Ca2+ stores depletion by thapsigargin treatment. In turn, overexpression of PS1 with FAD mutations in HEK293 cells led to an attenuation of CCE. Although, no changes in STIM protein levels were observed in these HEK293 cells, FAD mutations in endogenous PS1 in human B lymphocytes resulted in a decreased expression of STIM2 in parallel to an attenuation of CCE. Our experiments showing that knock-out of presenilins in MEF cells and FAD mutations in endogenous PS1 in lymphocytes affect both CCE and the cellular level of STIM proteins open new perspectives for studies on CCE in FAD.
Collapse
Affiliation(s)
- Lukasz Bojarski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
86
|
Hass MR, Sato C, Kopan R, Zhao G. Presenilin: RIP and beyond. Semin Cell Dev Biol 2008; 20:201-10. [PMID: 19073272 DOI: 10.1016/j.semcdb.2008.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 12/22/2022]
Abstract
Over the years the presenilins (PSENs), a family of multi-transmembrane domain proteins, have been ascribed a number of diverse potential functions. Recent in vivo evidence has supported the existence of PSEN functions beyond its well-established role in regulated intramembrane proteolysis. In this review, we will briefly discuss the ability of PSEN to modulate cellular signaling pathways through gamma-secretase cleavage of transmembrane proteins. Additionally, we will critically examine the proposed roles of PSEN in the regulation of beta-catenin function, protein trafficking, calcium regulation, and apoptosis.
Collapse
Affiliation(s)
- Matthew R Hass
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | | | | | | |
Collapse
|
87
|
Cheung KH, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871-83. [PMID: 18579078 DOI: 10.1016/j.neuron.2008.04.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/05/2008] [Accepted: 04/16/2008] [Indexed: 01/24/2023]
Abstract
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bojarski L, Herms J, Kuznicki J. Calcium dysregulation in Alzheimer's disease. Neurochem Int 2007; 52:621-33. [PMID: 18035450 DOI: 10.1016/j.neuint.2007.10.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is the most common form of adult dementia. Its pathological hallmarks are synaptic degeneration, deposition of amyloid plaques and neurofibrillary tangles, leading to neuronal loss. A few hypotheses have been proposed to explain AD pathogenesis. The beta-amyloid (Abeta) and hyperphosphorylated tau hypotheses suggest that these proteins are the main players in AD development. Another hypothesis proposes that the dysregulation of calcium homeostasis may be a key factor in accelerating other pathological changes. Although Abeta and tau have been extensively studied, recently published data provide a growing body of evidence supporting the critical role of calcium signalling in AD. For example, presenilins, which are mutated in familial cases of AD, were demonstrated to form low conductance calcium channels in the ER and elevated cytosolic calcium concentration increases amyloid generation. Moreover, memantine, an antagonist of the NMDA-calcium channel receptor, has been found to have a beneficial effect for AD patients offering novel possibilities for a calcium signalling targeted therapy of AD. This review underscores the growing importance of calcium ions in AD development and focuses on the relevant aspects of calcium homeostasis.
Collapse
Affiliation(s)
- Lukasz Bojarski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
89
|
Ahtiainen L, Kolikova J, Mutka AL, Luiro K, Gentile M, Ikonen E, Khiroug L, Jalanko A, Kopra O. Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiol Dis 2007; 28:52-64. [PMID: 17656100 DOI: 10.1016/j.nbd.2007.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/30/2007] [Accepted: 06/08/2007] [Indexed: 11/22/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell 2007; 6:307-17. [PMID: 17465978 PMCID: PMC1974776 DOI: 10.1111/j.1474-9726.2007.00295.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+ transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca2+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | |
Collapse
|
91
|
Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Ann N Y Acad Sci 2007; 1097:265-77. [PMID: 17413028 DOI: 10.1196/annals.1379.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intracellular Ca(2+) signaling involves Ca(2+) liberation through both inositol triphosphate and ryanodine receptors (IP(3)R and RyR). However, little is known of the functional interactions between these Ca(2+) sources in either neuronal physiology, or during Ca(2+) disruptions associated with Alzheimer's disease (AD). By the use of whole-cell recordings and 2-photon Ca(2+) imaging in cortical slices we distinguished between IP(3)R- and RyR-mediated Ca(2+) components in nontransgenic (non-Tg) and AD mouse models and demonstrate powerful signaling interactions between these channels. Ca(2+)-induced Ca(2+) release (CICR) through RyR contributed modestly to Ca(2+) signals evoked by photoreleased IP(3) in cortical neurons from non-Tg mice. In contrast, the exaggerated signals in 3xTg-AD and PS1(KI) mice resulted primarily from enhanced CICR through RyR, rather than through IP(3)R, and were associated with increased RyR expression levels. Moreover, membrane hyperpolarizations evoked by IP(3) in neurons from AD mouse models were even greater than expected simply from the exaggerated Ca(2+) signals, pointing to an increased coupling efficiency between cytosolic [Ca(2+)] and K(+) channel regulation. Our results highlight the critical roles of RyR-mediated Ca(2+) signaling in both neuronal physiology and pathophysiology, and point to presenilin-linked disruptions in RyR signaling as an important genetic factor in AD.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Nelson O, Tu H, Lei T, Bentahir M, de Strooper B, Bezprozvanny I. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 2007; 117:1230-9. [PMID: 17431506 PMCID: PMC1847535 DOI: 10.1172/jci30447] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 02/13/2007] [Indexed: 01/19/2023] Open
Abstract
Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.
Collapse
Affiliation(s)
- Omar Nelson
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Huiping Tu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Tianhua Lei
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Mostafa Bentahir
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Bart de Strooper
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, Flanders Institute for Biotechnology, Leuven, Belgium
| |
Collapse
|
93
|
Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 2006; 26:5180-9. [PMID: 16687509 PMCID: PMC6674246 DOI: 10.1523/jneurosci.0739-06.2006] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuronal Ca2+ signaling through inositol triphosphate receptors (IP3R) and ryanodine receptors (RyRs) must be tightly regulated to maintain cell viability, both acutely and over a lifetime. Exaggerated intracellular Ca2+ levels have been associated with expression of Alzheimer's disease (AD) mutations in young mice, but little is known of Ca2+ dysregulations during normal and pathological aging processes. Here, we used electrophysiological recordings with two-photon imaging to study Ca2+ signaling in nontransgenic (NonTg) and several AD mouse models (PS1KI, 3xTg-AD, and APPSweTauP301L) at young (6 week), adult (6 months), and old (18 months) ages. At all ages, the PS1KI and 3xTg-AD mice displayed exaggerated endoplasmic reticulum (ER) Ca2+ signals relative to NonTg mice. The PS1 mutation was the predominant "calciopathic" factor, because responses in 3xTg-AD mice were similar to PS1KI mice, and APPSweTauP301L mice were not different from controls. In addition, we uncovered powerful signaling interactions and differences between IP3R- and RyR-mediated Ca2+ components in NonTg and AD mice. In NonTg mice, RyR contributed modestly to IP3-evoked Ca2+, whereas the exaggerated signals in 3xTg-AD and PS1KI mice resulted primarily from enhanced RyR-Ca2+ release and were associated with increased RyR expression across all ages. Moreover, IP3-evoked membrane hyperpolarizations in AD mice were even greater than expected from exaggerated Ca2+ signals, suggesting increased coupling efficiency between cytosolic [Ca2+] and K+ channel regulation. We conclude that lifelong ER Ca2+ disruptions in AD are related to a modulation of RyR signaling associated with PS1 mutations and represent a discrete "calciumopathy," not merely an acceleration of normal aging.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Zhu X, Lee HG, Moreira PI, Smith MA, Perry G. Presenilin mutation: a deadly first hit in Alzheimer disease. A commentary on "aging sensitizes towards ROS formation and lipid peroxidation in PS1M146L transgenic mice". Free Radic Biol Med 2006; 40:737-9. [PMID: 16520226 DOI: 10.1016/j.freeradbiomed.2005.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 02/03/2023]
Affiliation(s)
- Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, OH 44106, USA
| | | | | | | | | |
Collapse
|
95
|
Oh YS, Turner RJ. Effect of gamma-secretase inhibitors on muscarinic receptor-mediated calcium signaling in human salivary epithelial cells. Am J Physiol Cell Physiol 2006; 291:C76-82. [PMID: 16467403 DOI: 10.1152/ajpcell.00508.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered intracellular Ca(2+) signaling has been observed in cells derived from Alzheimer's disease patients, and a possible link between gamma-secretase activity and the content of intracellular Ca(2+) stores has been suggested. To test this hypothesis we studied the effects of several gamma-secretase inhibitors on muscarinic receptor-mediated intracellular calcium release in the human salivary gland cell line HSG. Although several inhibitors in the peptide aldehyde class partially blocked carbachol-induced Ca(2+) transients, these effects did not appear to be due to gamma-secretase inhibition, and overall we found no evidence that inhibition of gamma-secretase activity had any significant effect on agonist-induced intracellular calcium release in HSG cells. In complementary experiments with presenilin-null cells we found that the reconstitution of gamma-secretase activity by transfection with wild-type presenilin 1 likewise had no significant effect on thapsigargin-induced Ca(2+) release. In a test of the specific hypothesis that the level of APP intracellular domain (AICD), the intracellular fragment of the beta-amyloid precursor protein (APP) resulting from gamma-secretase cleavage, can modulate the Ca(2+) content of the endoplasmic reticulum, we were unable to demonstrate any effect of APP small interfering RNA on the magnitude of carbachol-induced intracellular calcium release in HSG cells. Together our data cast considerable doubt on the hypothesis that there is a direct link between gamma-secretase activity and the content of intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- Young S Oh
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bldg 10, Rm. 1A01, GTTB, Bethesda, MD 20892, USA
| | | |
Collapse
|
96
|
McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer's disease patients. J Neurosci Res 2005; 81:426-35. [PMID: 15948178 DOI: 10.1002/jnr.20487] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium-sensitive fluorescence microscopy has been used to study Ca2+-dependent signal transduction pathways in microglia obtained from Alzheimer's disease (AD) patients and non-demented (ND) individuals. Data were obtained from nine AD cases and seven ND individuals and included basal levels of intracellular Ca2+ [Ca2+]i, peak amplitudes (Delta[Ca2+]i) and time courses of adenosine triphosphate (ATP) responses and amplitudes of an initial transient response and a subsequent second component of Ca2+ influx through store-operated channels (SOC) induced by platelet-activating factor (PAF). Overall, AD microglia were characterized by significantly higher (20%) basal Ca2+ [Ca2+]i relative to ND cells. The Delta[Ca2+]i of ATP and initial phase of PAF responses, which reflect rapid depletion of Ca2+ from endoplasmic reticulum stores, were reduced by respective values of 63% and 59% in AD cells relative to amplitudes recorded from ND microglia. Additionally, AD microglia showed diminished amplitudes (reduction of 61%) of SOC-mediated Ca2+ entry induced by PAF and prolonged time courses (increase of 60%) of ATP responses with respect to ND microglia. We have generally replicated these results with exposure of human fetal microglia to beta amyloid (5 microM Abeta1-42 applied for 24 hr). Overall, these data indicate significant abnormalities are present in Ca2+-mediated signal transduction in microglia isolated from AD patients.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
97
|
Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: Recent advances gained from genetically modified animals. Cell Calcium 2005; 38:427-37. [PMID: 16125228 DOI: 10.1016/j.ceca.2005.06.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease is a progressive and irreversible neurodegenerative disorder that leads to cognitive, memory and behavioural impairments. Two decades of research have implicated disturbances of intracellular calcium homeostasis as playing a proximal pathological role in the neurodegeneration associated with Alzheimer's disease. A large preponderance of evidence has been gained from the use of a diverse range of cell lines. Whilst useful in understanding the principal mechanism of neurotoxicity associated with Alzheimer's disease, technical differences, such as cell type or even the form of amyloid-beta used often underlie conflicting results. In this review, we discuss recent contributions that transgenic technology has brought to this field. For example, the triple transgenic mouse model of Alzheimer's disease has implicated intraneuronal accumulation of the amyloid-beta peptide as an initiating factor in synaptic dysfunction and behavioural deficits. Importantly, this synaptic dysfunction occurs prior to cell loss or extracellular amyloid plaque accumulation. The cause of synaptic dysfunction is unknown but it is likely that amyloid-beta and its ability to disrupt intracellular calcium homeostasis plays a key role in this process.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, 1109 Gillespie Neuroscience Building, Irvine CA 92697-4545, USA
| | | | | |
Collapse
|
98
|
Gibson GE, Huang HM. Oxidative stress in Alzheimer's disease. Neurobiol Aging 2005; 26:575-8. [PMID: 15708429 DOI: 10.1016/j.neurobiolaging.2004.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 07/09/2004] [Indexed: 12/01/2022]
Affiliation(s)
- Gary E Gibson
- Weill Medical College of Cornell University, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | |
Collapse
|
99
|
Giacomello M, Barbiero L, Zatti G, Squitti R, Binetti G, Pozzan T, Fasolato C, Ghidoni R, Pizzo P. Reduction of Ca2+ stores and capacitative Ca2+ entry is associated with the familial Alzheimer's disease presenilin-2 T122R mutation and anticipates the onset of dementia. Neurobiol Dis 2005; 18:638-48. [PMID: 15755689 DOI: 10.1016/j.nbd.2004.10.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/04/2004] [Accepted: 10/26/2004] [Indexed: 11/17/2022] Open
Abstract
Mutations in the presenilin genes PS1 and PS2, the major cause of familial Alzheimer's disease (FAD), are associated with alterations in Ca2+ signalling. In contrast to the majority of FAD-linked PS1 mutations, which cause an overload of intracellular Ca2+ pools, the FAD-linked PS2 mutation M239I reduces Ca2+ release from intracellular stores [Zatti, G., Ghidoni, R., Barbiero, L., Binetti, G., Pozzan, T., Fasolato, C., Pizzo, P., 2004. The presenilin 2 M239I mutation associated with Familial Alzheimer's Disease reduces Ca2+ release from intracellular stores. Neurobiol. Dis. 15/2, 269-278]. We here show that in human FAD fibroblasts another PS2 mutation (T122R) reduces both Ca2+ release and capacitative Ca2+ entry. The observation, done in two monozygotic twins, is of note since only one of the subjects showed overt signs of disease at the time of biopsy whereas the other one developed the disease 3 years later. This finding indicates that Ca2+ dysregulation anticipates the onset of dementia. A similar Ca2+ alteration occurred in HeLa and HEK293 cells transiently expressing PS2-T122R. Based on these data, the "Ca2+ overload" hypothesis in AD pathogenesis is here discussed and reformulated.
Collapse
Affiliation(s)
- Marta Giacomello
- Department of Biomedical Sciences, University of Padova, Via G. Colombo, 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|