51
|
Dong J, Wei Y, Sun C, Tian Y, Hu J, Shi H, Zhang D, Lu M, Ye X. Interaction of Group B Streptococcus sialylated capsular polysaccharides with host Siglec-like molecules dampens the inflammatory response in tilapia. Mol Immunol 2018; 103:182-190. [PMID: 30291999 DOI: 10.1016/j.molimm.2018.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
Abstract
Group B Streptococcus (GBS, S. agalactiae) infection in tilapia (Oreochromis niloticus) causes widespread death of this species and is a significant issue for the aquaculture industry. The major virulence factor for GBS is its sialylated capsular polysaccharides (CPs). These CPs interact with sialic acid-binding immunoglobulin-like lectins (Siglecs) on the host immune cells to regulate the downstream inflammatory response and evade detection. Previously, we cloned multiple Siglec-like molecules from an O. niloticus cDNA library, all of which were shown to interact with the sialylated CPs of GBS. In the present study, we investigated the effects of GBS infection on the expression of pro- and anti-inflammatory cytokines in O. niloticus as well as OnSiglec-like-transfected macrophage cells. Eukaryotic expression vectors containing full-length OnSiglec-1-like, -4b-like, -14-like were constructed and used to transfect RAW264 macrophages in vitro as well as live tilapia in vivo prior to GBS infection. The expression of the anti-inflammatory cytokine interleukin (IL)-10 and the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, IL-6, and interferon (INF)-β were then analyzed by qPCR. Our results indicate that as infection progressed, IL-10 expression was significantly upregulated, while that of TNF-α and IL-6 were significantly downregulated in the OnSiglec-like-transfected cells. INF-β expression was also downregulated in cells transfected with OnSiglec-1-like and -4b-like, but was not significantly effected in OnSiglec-14-like-transfected cells. Notably, the magnitude of these cytokine expression changes was greatly decreased when a ΔneuA GBS mutant was used to infect the OnSiglec-1-like-transfected cells. In GBS-infected tilapia, IL-10 expression was significantly upregulated in all tissues, whereas INF-β expression in the spleen, kidney, and gills was significantly downregulated at 12 hpi. While the expression of TNF-α was slightly upregulated, this change was not significant. In GBS ΔneuA mutant-infected O. niloticus, IL-10 expression in all of the tissues was significantly lower than that observed for the wild-type GBS group, while TNF-α expression was higher in the mutant infected group. There was no significant difference in INF-β expression between the two groups. Taken together, sialylated CPs on GBS appear to interact with host OnSiglec-like molecules to transmit negative regulatory signals via enhanced anti-inflammatory cytokine IL-10 production and reduced pro-inflammatory cytokine production, ultimately leading to dampening of the host immune response. The results of this study further elucidate the molecular mechanism underlying GBS infection in tilapia and also provide candidate drug target molecules.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuanzheng Wei
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hongya Shi
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Dengfeng Zhang
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
52
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
53
|
Chang P, Li W, Shi G, Li H, Yang X, Xia Z, Ren Y, Li Z, Chen H, Bei W. The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses. Virulence 2018; 9:771-782. [PMID: 29471718 PMCID: PMC5955479 DOI: 10.1080/21505594.2018.1428519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity.
Collapse
Affiliation(s)
- Peixi Chang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center of Sustainable Pig Production , Huazhong Agricultural University , Wuhan , China
| | - Weitian Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China
| | - Guolin Shi
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center of Sustainable Pig Production , Huazhong Agricultural University , Wuhan , China
| | - Huan Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center of Sustainable Pig Production , Huazhong Agricultural University , Wuhan , China
| | - Xiaoqing Yang
- c Huazhong Agricultural University hospital , Huazhong Agricultural University , Wuhan , China
| | - Zechen Xia
- d College of Food Science and Technology , Huazhong Agricultural University , Wuhan , China
| | - Yuan Ren
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China
| | - Zhiwei Li
- d College of Food Science and Technology , Huazhong Agricultural University , Wuhan , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center of Sustainable Pig Production , Huazhong Agricultural University , Wuhan , China
| | - Weicheng Bei
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center of Sustainable Pig Production , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
54
|
Zhang Y, Zong B, Wang X, Zhu Y, Hu L, Li P, Zhang A, Chen H, Liu M, Tan C. Fisetin Lowers Streptococcus suis serotype 2 Pathogenicity in Mice by Inhibiting the Hemolytic Activity of Suilysin. Front Microbiol 2018; 9:1723. [PMID: 30105012 PMCID: PMC6077255 DOI: 10.3389/fmicb.2018.01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a serious zoonotic pathogen and has attracted worldwide attention since the first human case was reported in Denmark in 1968. Some virulence factors have been reported to be involved in the pathogenesis of the infection caused by Streptococcus suis serotype 2, and then novel strategies to identify some anti-virulence compounds which can effectively inhibit the pathogenic bacterial infection have recently been reported. Suilysin is an essential virulence factor for Streptococcus suis serotype 2 since it creates pores in the target cells membranes, which aids bacterial colonization. The important role of suilysin in the virulence of Streptococcus suis serotype 2 renders it an ideal target for designing novel anti-virulence therapeutics. We find that fisetin, as a natural flavonoid, is a potent antagonist against suilysin-mediated hemolysis. The aim of this study is to evaluate the effect of fisetin on the hemolytic activity of suilysin from Streptococcus suis serotype 2. Fisetin is found to significantly inhibit the hemolytic activity of suilysin. Within the range of effective concentrations, fisetin does not influence the growth of Streptococcus suis serotype 2 and the expression of suilysin protein. In vitro, fisetin effectively inhibits the death of macrophages (J774A.1 and RAW264.7) infected with Streptococcus suis serotype 2 by weakening intracellular bacterial multiplication. Animal model experiment shows that fisetin effectively improves the survival rate of animals infected with Streptococcus suis serotype 2. Our findings suggest that fisetin could be used as an antitoxin against suilysin and be developed into a promising therapeutic candidate for treating Streptococcus suis serotype 2 infection.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
55
|
Fang L, Zhou J, Fan P, Yang Y, Shen H, Fang W. A serine/threonine phosphatase 1 of Streptococcus suis type 2 is an important virulence factor. J Vet Sci 2018; 18:439-447. [PMID: 28057904 PMCID: PMC5746436 DOI: 10.4142/jvs.2017.18.4.439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/30/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is regarded as one of the major pathogens of pigs, and Streptococcus suis type 2 (SS2) is considered a zoonotic bacterium based on its ability to cause meningitis and streptococcal toxic shock-like syndrome in humans. Many bacterial species contain genes encoding serine/threonine protein phosphatases (STPs) responsible for dephosphorylation of their substrates in a single reaction step. This study investigated the role of stp1 in the pathogenesis of SS2. An isogenic stp1 mutant (Δstp1) was constructed from SS2 strain ZJ081101. The Δstp1 mutant exhibited a significant increase in adhesion to HEp-2 and bEnd.3 cells as well as increased survival in RAW264.7 cells, as compared to the parent strain. Increased survival in macrophage cells might be related to resistance to reactive oxygen species since the Δstp1 mutant was more resistant than its parent strain to paraquat-induced oxidative stress. However, compared to parent strain virulence, deletion of stp1 significantly attenuated virulence of SS2 in mice, as shown by the nearly double lethal dose 50 value and the lower bacterial load in organs and blood in the murine model. We conclude that Stp1 has an essential role in SS2 virulence.
Collapse
Affiliation(s)
- Lihua Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.,Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingjing Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Pengcheng Fan
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Yunkai Yang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Hongxia Shen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
56
|
Rui L, Weiyi L, Yu M, Hong Z, Jiao Y, Zhe M, Hongjie F. The serine/threonine protein kinase of Streptococcus suis serotype 2 affects the ability of the pathogen to penetrate the blood-brain barrier. Cell Microbiol 2018; 20:e12862. [PMID: 29797543 DOI: 10.1111/cmi.12862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes meningitis in humans and pigs. However, the mechanism whereby SS2 crosses the microvasculature endothelium of the brain is not understood. In this study, transposon (TnYLB-1) mutagenesis was used to identify virulence factors potentially associated with invasive ability in pathogenic SS2. A poorly invasive mutant was identified and was found to contain a TnYLB-1 insertion in the serine/threonine kinase (stk) gene. Transwell chambers containing hBMECs were used to model the blood-brain barrier (BBB). We observed that the SS2 wild-type ZY05719 strain crossed the BBB model more readily than the mutant strain. Hence, we speculated that STK is associated with the ability of crossing blood-brain barrier in SS2. In vitro, compared with ZY05719, the ability of the stk-deficient strain (Δstk) to adhere to and invade both hBMECs and bEnd.3 cells, as well as to cross the BBB, was significantly attenuated. Immunocytochemistry using antibodies against claudin-5 in bEnd.3 cells showed that infection by ZY05719 disrupted BBB tight junction proteins to a greater extent than in infection by Δstk. The studies revealed that SS2 initially binds at or near intercellular junctions and crosses the BBB via paracellular traversal. Claudin-5 mRNA levels were indistinguishable in ZY05719- and Δstk-infected cells. This result indicated that the decrease of claudin-5 was maybe induced by protein degradation. Cells infected by ZY05719 exhibited higher ubiquitination levels than cells infected by Δstk. This result indicated that ubiquitination was involved in the degradation of claudin-5. Differential proteomic analysis showed that E3 ubiquitin protein ligase HECTD1 decreased by 1.5-fold in Δstk-infected bEnd.3 cells relative to ZY05719-infected cells. Together, the results suggested that STK may affect the expression of E3 ubiquitin ligase HECTD1 and subsequently increase the degradation of claudin-5, thus enabling SS2 to traverse the BBB.
Collapse
Affiliation(s)
- Liu Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Academy of Agricultural Sciences, Veterinary Research Institute, Nanjing, China
| | - Li Weiyi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhou Hong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Jiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ma Zhe
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fan Hongjie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
57
|
Deng S, Xu T, Fang Q, Yu L, Zhu J, Chen L, Liu J, Zhou R. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis. Front Immunol 2018; 9:1063. [PMID: 29868022 PMCID: PMC5964162 DOI: 10.3389/fimmu.2018.01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA-deleted mutant strain ΔsntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔsntA. The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of ΔsntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2′,3′-cyclic nucleotide 2′-phosphodiesterase/3′-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Collapse
Affiliation(s)
- Simin Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Long Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Diseases (MOST), Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
58
|
Roy D, Takamatsu D, Okura M, Goyette-Desjardins G, Van Calsteren MR, Dumesnil A, Gottschalk M, Segura M. Capsular Sialyltransferase Specificity Mediates Different Phenotypes in Streptococcus suis and Group B Streptococcus. Front Microbiol 2018; 9:545. [PMID: 29666608 PMCID: PMC5891629 DOI: 10.3389/fmicb.2018.00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023] Open
Abstract
The capsular polysaccharide (CPS) represents a key virulence factor for most encapsulated streptococci. Streptococcus suis and Group B Streptococcus (GBS) are both well-encapsulated pathogens of clinical importance in veterinary and/or human medicine and responsible for invasive systemic diseases. S. suis and GBS are the only Gram-positive bacteria which express a sialylated CPS at their surface. An important difference between these two sialylated CPSs is the linkage between the side-chain terminal galactose and sialic acid, being α-2,6 for S. suis but α-2,3 for GBS. It is still unclear how sialic acid may affect CPS production and, consequently, the pathogenesis of the disease caused by these two bacterial pathogens. Here, we investigated the role of sialic acid and the putative effect of sialic acid linkage modification in CPS synthesis using inter-species allelic exchange mutagenesis. To this aim, a new molecular biogenetic approach to express CPS with modified sialic acid linkage was developed. We showed that sialic acid (and its α-2,6 linkage) is crucial for S. suis CPS synthesis, whereas for GBS, CPS synthesis may occur in presence of an α-2,6 sialyltransferase or in absence of sialic acid moiety. To evaluate the effect of the CPS composition/structure on sialyltransferase activity, two distinct capsular serotypes within each bacterial species were compared (S. suis serotypes 2 and 14 and GBS serotypes III and V). It was demonstrated that the observed differences in sialyltransferase activity and specificity between S. suis and GBS were serotype unrestricted. This is the first time that a study investigates the interspecies exchange of capsular sialyltransferase genes in Gram-positive bacteria. The obtained mutants represent novel tools that could be used to further investigate the immunomodulatory properties of sialylated CPSs. Finally, in spite of common CPS structural characteristics and similarities in the cps loci, sialic acid exerts differential control of CPS expression by S. suis and GBS.
Collapse
Affiliation(s)
- David Roy
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Guillaume Goyette-Desjardins
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marie-Rose Van Calsteren
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, Canada
| | - Audrey Dumesnil
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
59
|
cas9 Enhances Bacterial Virulence by Repressing the regR Transcriptional Regulator in Streptococcus agalactiae. Infect Immun 2018; 86:IAI.00552-17. [PMID: 29229728 DOI: 10.1128/iai.00552-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) and their associated cas genes have been demonstrated to regulate self-genes and virulence in many pathogens. In this study, we found that inactivation of cas9 caused reduced adhesion and intracellular survival of the piscine Streptococcus agalactiae strain GD201008-001 and significantly decreased the virulence of this strain in zebrafish and mice. Further investigation indicated that the regR transcriptional regulator was upregulated in the Δcas9 mutant. As regR mediates the repression of hyaluronidase, a critical factor involved in opening the blood-brain barrier (BBB) in mice, cas9-mediated repression of regR transcription is important for S. agalactiae to open the BBB and thereby cause meningitis in animals. This study expands our understanding of endogenous gene regulation mediated by CRISPR-Cas systems in bacteria.
Collapse
|
60
|
A novel plasmid, pSAA0430-08, from Streptococcus anginosus subsp. anginosus strain 0430-08. Plasmid 2018; 95:16-27. [DOI: 10.1016/j.plasmid.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 11/21/2022]
|
61
|
Yu Y, Qian Y, Du D, Li Q, Xu C, Liu H, Chen M, Yao H, Lu C, Zhang W. Infection and adaption-based proteomic changes of Streptococcus suis serotype 2 in a pig model. J Proteomics 2017; 180:41-52. [PMID: 29247804 DOI: 10.1016/j.jprot.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic agent that is responsible for significant economic losses to the porcine industry worldwide. However, most research regarding the pathogenic mechanisms has used in vitro cultures of S. suis, which may not provide an accurate representation of the in vivo biological activities. In this study, 188 differential abundance S. suis proteins were identified in in vivo samples obtained from the blood of the infected pigs. These were compared with in vitro samples by a Tandem Mass Tags (TMT) experiment. Thus, a virulence associated network was established using the enriched differential abundance proteins (obtained via bioinformatics analysis in this study) and the previously reported putative virulence factors associated with in vivo infection. One of the most important up-regulated hubs in this network, adhE (an acetaldehyde-CoA/alcohol dehydrogenase) was found. Furthermore, knocking out adhE in S. suis serotype 2 strain ZY05719 decreased virulence. Cell culture experiments and far-western blot analysis showed that adhE is involved in adhesion to Caco-2 cells; Hsp60 could be one of the receptors for this protein. SIGNIFICANCE This study is a systematical research to identify in vivo regulated virulence associated proteins of S. suis in pigs. It constructs a network consisting of in vivo infection related factors for the first time to get to know the coordinated actions of a multitude of factors that lead to host pathogenicity and filter the most important hubs. The individual factors that contribute to infection is also identified. A novel differential protein adhE which is one of the most important hubs of this network and is up-regulated in abundance in vivo is found to moonlight as an important adhesion by binding Hsp60 and finally contributes to virulence.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yunyun Qian
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dechao Du
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quan Li
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chenyang Xu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hanze Liu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mianmian Chen
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huochun Yao
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine & OIE Swine Streptococcosis Diagnostic Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
62
|
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Xu B, Zhang P, Li W, Liu R, Tang J, Fan H. hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Front Microbiol 2017; 8:1524. [PMID: 28848531 PMCID: PMC5552720 DOI: 10.3389/fmicb.2017.01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM′, respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS′, that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Poultry Institute, Chinese Academy of Agricultural SciencesYangzhou, China
| | - Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jinsheng Tang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
64
|
Auger JP, Chuzeville S, Roy D, Mathieu-Denoncourt A, Xu J, Grenier D, Gottschalk M. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors. PLoS One 2017; 12:e0181920. [PMID: 28753679 PMCID: PMC5533308 DOI: 10.1371/journal.pone.0181920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Annabelle Mathieu-Denoncourt
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
65
|
Oda M, Domon H, Kurosawa M, Isono T, Maekawa T, Yamaguchi M, Kawabata S, Terao Y. Streptococcus pyogenes Phospholipase A 2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice. Front Cell Infect Microbiol 2017; 7:300. [PMID: 28713783 PMCID: PMC5491884 DOI: 10.3389/fcimb.2017.00300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The Streptococcus pyogenes phospholipase A2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes, which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the ΔslaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.
Collapse
Affiliation(s)
- Masataka Oda
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical UniversityKyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of DentistryOsaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of DentistryOsaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| |
Collapse
|
66
|
Abstract
The main components of the quorum-sensing system are expected to be favorable targets for drug development to combat various chronic infectious diseases. ComA of Streptococcus is an ATP-binding cassette transporter containing a peptidase domain (PEP), which is essential for the quorum-sensing signal production. Using high-throughput screening, we found a potent small molecule that suppressed the S. mutans quorum-sensing pathway through inhibition of PEP activity. The compound effectively attenuated the biofilm formation and competence development of S. mutans without inhibiting cell growth. The kinetic and structural studies with this molecule and a related compound unexpectedly revealed an allosteric site of PEP. This relatively hydrophobic site is thought to undergo large structural changes during the catalytic process. These compounds inhibit PEP activity by binding to and suppressing the structural changes of this site. These results showed that PEP is a good target for inhibitors of the Streptococcus quorum-sensing system.
Collapse
|
67
|
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Front Cell Infect Microbiol 2017; 7:66. [PMID: 28326294 PMCID: PMC5339665 DOI: 10.3389/fcimb.2017.00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wen Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meifang Tan
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences Nanchang, China
| | - Mengmeng Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ting Gao
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
68
|
Yuan F, Tan C, Liu Z, Yang K, Zhou D, Liu W, Duan Z, Guo R, Chen H, Tian Y, Bei W. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Microb Pathog 2017; 104:137-145. [DOI: 10.1016/j.micpath.2016.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/03/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
|
69
|
Xiao G, Wu Z, Zhang S, Tang H, Wang F, Lu C. Mac Protein is not an Essential Virulence Factor for the Virulent Reference Strain Streptococcus suis P1/7. Curr Microbiol 2016; 74:90-96. [PMID: 27847975 DOI: 10.1007/s00284-016-1160-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus suis is a major pathogen of pigs and also an important zoonotic agent for humans. A S. suis protein containing Mac-1 domain (designated Mac) is a protective antigen, exclusively cleaves porcine IgM, and contributes to complement evasion with the presence of high titers of specific porcine anti-S. suis IgM, but its role in S. suis virulence has not been investigated in natural healthy host without specific IgM. In this study, a mac deletion mutant was constructed by homologous recombination in S. suis serotype 2 virulent reference strain P1/7. Deletion of mac did not significantly influence phagocytosis or intracellular survival within murine macrophages RAW264.7, or the oxidative-burst induction of RAW264.7 and murine neutrophils. Furthermore, the mutant is as virulent as the wild-type strain in pig, mouse, and zebrafish infection models. Our data suggest that Mac is not essential for S. suis virulence in strain P1/7 in natural healthy host without specific IgM, and the immunogenicity of Mac does not appear to correlate with its significance for virulence.
Collapse
Affiliation(s)
- Genhui Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Shouming Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Huanyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Fengqiu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
70
|
Zheng C, Xu J, Shi G, Zhao X, Ren S, Li J, Chen H, Bei W. Formate-tetrahydrofolate ligase is involved in the virulence of Streptococcus suis serotype 2. Microb Pathog 2016; 98:149-54. [PMID: 27427088 DOI: 10.1016/j.micpath.2016.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Streptococcus suis is an emerging zoonotic pathogen that causes severe infections in pigs and humans. However, the pathogenesis of S. suis remains unclear. The present study targeted a putative virulence-associated factor (fhs, encoding the formate-tetrahydrofolate ligase) of S. suis. To investigate the role of fhs in the virulence potential of S. suis serotype 2, an fhs deletion mutant (Δfhs) and the corresponding complementation strain (CΔfhs) were generated. The Δfhs mutant displayed similar growth compared to that of the wild-type and complementation strains. Using murine and pig infection models, we demonstrated for the first time that the formate-tetrahydrofolate ligase is required for the full virulence of S. suis 2. Our findings provide a new insight into the pathogenesis of S. suis 2.
Collapse
Affiliation(s)
- Chengkun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiali Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guolin Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sujing Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
71
|
Zheng C, Ren S, Xu J, Zhao X, Shi G, Wu J, Li J, Chen H, Bei W. Contribution of NADH oxidase to oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Virulence 2016; 8:53-65. [PMID: 27315343 DOI: 10.1080/21505594.2016.1201256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Streptococcus suis is a major swine and zoonotic pathogen that causes severe infections. Previously, we identified 2 Spx regulators in S. suis, and demonstrated that SpxA1 affects oxidative stress tolerance and virulence. However, the mechanism behind SpxA1 function remains unclear. In this study, we targeted 4 genes that were expressed at significantly reduced levels in the spxA1 mutant, to determine their specific roles in adaptation to oxidative stress and virulence potential. The Δnox strain exhibited impaired growth under oxidative stress conditions, suggesting that NADH oxidase is involved in oxidative stress tolerance. Using murine and pig infection models, we demonstrate for the first time that NADH oxidase is required for virulence in S. suis 2. Furthermore, the enzymatic activity of NADH oxidase has a key role in oxidative stress tolerance and a secondary role in virulence. Collectively, our findings reveal that NADH oxidase plays an important part in SpxA1 function and provide a new insight into the pathogenesis of S. suis 2.
Collapse
Affiliation(s)
- Chengkun Zheng
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Sujing Ren
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Jiali Xu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Xigong Zhao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Guolin Shi
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Jianping Wu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Jinquan Li
- d College of Food Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| | - Weicheng Bei
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University , Wuhan , China.,c The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
72
|
Li M, Shao ZQ, Guo Y, Wang L, Hou T, Hu D, Zheng F, Tang J, Wang C, Feng Y, Gao J, Pan X. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence. Virulence 2016; 6:631-41. [PMID: 26151575 PMCID: PMC4720241 DOI: 10.1080/21505594.2015.1056971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcal histidine triad proteins HTPs are widely distributed within the Streptococcus genus. Based on the phylogenetic relationship and domain composition, HTPs are classified into type I and type II subfamilies. Previous studies revealed that several pathogenic streptococci contain more than one htp gene. We found that the highly virulent strain of Streptococcus suis 2 (S. suis 2), 05ZYH33 encodes 3 HTPs, designated HtpsA (previously described as HtpS), HtpsB, and HtpsC. Among them, HtpsC is the only member that contains leucine-rich repeat (LRR) domains at the C-terminal. In this study, we demonstrated that the recombinant HtpsC could bind to 2 different components of human ECM complex laminin and fibronectin in vitro, suggesting that it is a novel adhesin of S. suis 2. Having constructed an htpsC mutant, we evaluated its role in the pathogenesis of the highly virulent S. suis 2 strain 05ZYH33. Our data showed that inactivation of htpsC significantly affected adherence of S. suis 2 to Hep-2 cells and shortened the survival of the bacteria in whole blood. Furthermore, deletion of htpsC significantly attenuated the virulence of S. suis 2 in mice. These results demonstrated that htpsC was involved in the pathogenesis of the highly virulent S. suis 2 strain 05ZYH33. In line with the observation, immunization with HtpsC significantly prolonged mice's survival after S. suis 05ZYH33 challenge, indicating its potential use in the vaccine development against S. suis.
Collapse
Affiliation(s)
- Min Li
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Zhu-Qing Shao
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,c State Key Laboratory of Pharmaceutical Biotechnology ; School of Life Sciences ; Nanjing University ; Nanjing , China
| | - Yuqing Guo
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Ling Wang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,d School of Life Sciences ; Nanjing Normal University ; Nanjing , China
| | - Tianqing Hou
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Dan Hu
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Feng Zheng
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Jiaqi Tang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China.,e Institute of Laboratory Medicine ; Jinling Hospital ; Nanjing , China
| | - Changjun Wang
- b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| | - Youjun Feng
- f Center for Infection & Immunity ; Department of Medical Microbiology & Parasitology ; Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China
| | - Jimin Gao
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China
| | - Xiuzhen Pan
- a School of Laboratory Medicine and Life Science ; Wenzhou Medical University ; Wenzhou , China.,b Department of Epidemiology ; Research Institute for Medicine of Nanjing Command ; Nanjing , China
| |
Collapse
|
73
|
Liu R, Zhang P, Su Y, Lin H, Zhang H, Yu L, Ma Z, Fan H. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation. Sci Rep 2016; 6:27133. [PMID: 27256117 PMCID: PMC4891806 DOI: 10.1038/srep27133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/13/2016] [Indexed: 01/30/2023] Open
Abstract
The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis.
Collapse
Affiliation(s)
- Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqi Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, 266000, China
| | - Lei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
74
|
Xu B, Yang X, Zhang P, Ma Z, Lin H, Fan H. The arginine deiminase system facilitates environmental adaptability of Streptococcus equi ssp. zooepidemicus through pH adjustment. Res Microbiol 2016; 167:403-12. [PMID: 27068185 DOI: 10.1016/j.resmic.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
The arginine deiminase system (ADS) is a secondary metabolic system found in many different bacterial pathogens and it is often associated with virulence. Here, a systematic study of ADS functions in Streptococcus equi subsp. zooepidemicus (SEZ) was performed. Transcriptional levels of ADS operon genes were observed to be significantly increased when SEZ was grown under acidic conditions. We constructed arcA and arcD deletion mutants (SEZ ΔarcA and SEZ ΔarcD, respectively) and found that SEZ ΔarcA was unable to metabolize arginine and synthesize ammonia; however, arcD deletion resulted in an initial decrease in arginine consumption and ammonia production, followed by recovery to the levels of wild-type SEZ after 24 h of cultivation. Cell extracts of SEZ ΔarcA showed no arginine deiminase (AD) activity, whereas no difference in AD activity between SEZ ΔarcD and wild-type SEZ was observed. SEZ survival tests demonstrated a significant decrease in survival for SEZ ΔarcA, when compared with wild-type SEZ, under acidic conditions and in epithelial cells. These findings indicate that ADS in SEZ contributes to environmental adaptability via ammonia synthesis to reduce pH stress.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
75
|
Ji X, Sun Y, Liu J, Zhu L, Guo X, Lang X, Feng S. A novel virulence-associated protein, vapE, in Streptococcus suis serotype 2. Mol Med Rep 2016; 13:2871-7. [PMID: 26821177 DOI: 10.3892/mmr.2016.4818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important pathogen that affects pigs. However, neither its virulence nor its pathogenesis of infection has yet to be fully elucidated. The present study identifies a novel virulence‑associated protein E gene (vapE) of SS2. To investigate the importance of vapE in SS2 infection, a vapE knock‑out mutant based on SS2 wild‑type strain ZY458 was designated 458ΔvapE. 458ΔvapE was generated through homologous recombination, using a combined plasmid with a vapE knock‑out fragment and a pSET4s suicide vector. Additionally, the 458ΔvapE strain was transformed by a pAT18 shuttle plasmid containing the vapE gene. A functionally complemented strain for the vapE gene [termed 458ΔvapE (pvapE)] was constructed. Animal experiments demonstrated that mice infected with ZY458 and 458ΔvapE (pvapE) exhibited severe clinical symptoms, including depression, apathy, fever, anorexia, emaciation, swollen eyes and neural disorders, and died within two days of infection. All mice infected with ZY458, and 85% of mice infected with 458ΔvapE (pvapE), died within 2 days of infection. In contrast, mice inoculated with 458ΔvapE exhibited only mild clinical symptoms in the first 2 days following infection, and recovered within a week. A bacterial colonization assay demonstrated the ability of the 458ΔvapE mutant SS2 strain to colonize the heart, liver, spleen, lung and kidney of infected mice. PCR analysis of the vapE gene revealed that functional vapE was detected in virulent strains, but not in avirulent and carrier strains of S. suis SS2. These findings indicate that vapE is important for the pathogenesis of SS2.
Collapse
Affiliation(s)
- Xue Ji
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Yang Sun
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Jun Liu
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Lingwei Zhu
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Xuejun Guo
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Xulong Lang
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Shuzhang Feng
- Molecular Bacteriology Department, Institute of Military Veterinary Science, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| |
Collapse
|
76
|
Yu Y, Qian Y, Du D, Xu C, Dai C, Li Q, Liu H, Shao J, Wu Z, Zhang W. SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis. MOLECULAR BIOSYSTEMS 2016; 12:1948-62. [DOI: 10.1039/c6mb00059b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Comparative proteomics analysis using the proteomes of the two mutants with different virulence found a promising putative virulence factor, SBP2, which can bind fibronectin and laminin.
Collapse
|
77
|
Zhang H, Ravcheev DA, Hu D, Zhang F, Gong X, Hao L, Cao M, Rodionov DA, Wang C, Feng Y. Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections. Microbiologyopen 2015; 4:983-1000. [PMID: 26540018 PMCID: PMC4694137 DOI: 10.1002/mbo3.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Bacterial pathogens can exploit metabolic pathways to facilitate their successful infection cycles, but little is known about roles of d‐galactosamine (GalN)/N‐acetyl‐d‐galactosamine (GalNAc) catabolism pathway in bacterial pathogenesis. Here, we report the genomic reconstruction of GalN/GalNAc utilization pathway in Streptococci and the diversified aga regulons. We delineated two new paralogous AgaR regulators for the GalN/GalNAc catabolism pathway. The electrophoretic mobility shift assays experiment demonstrated that AgaR2 (AgaR1) binds the predicted palindromes, and the combined in vivo data from reverse transcription quantitative polymerase chain reaction and RNA‐seq suggested that AgaR2 (not AgaR1) can effectively repress the transcription of the target genes. Removal of agaR2 (not agaR1) from Streptococcus suis 05ZYH33 augments significantly the abilities of both adherence to Hep‐2 cells and anti‐phagocytosis against RAW264.7 macrophage. As anticipated, the dysfunction in AgaR2‐mediated regulation of S. suis impairs its pathogenicity in experimental models of both mice and piglets. Our finding discovered two novel regulators specific for GalN/GalNAc catabolism and assigned them distinct roles into bacterial infections. To the best of our knowledge, it might represent a first paradigm that links the GalN/GalNAc catabolism pathway to bacterial pathogenesis.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4360, Luxembourg
| | - Dan Hu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Fengyu Zhang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Xiufang Gong
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lina Hao
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Min Cao
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Changjun Wang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
78
|
Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Sci Rep 2015; 5:13125. [PMID: 26272287 PMCID: PMC4536659 DOI: 10.1038/srep13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in Escherichia coli and various other bacteria. However, their presence in the genome of Streptococcus suis, an important zoonotic pathogen, has received little attention. In this study, we describe the identification and characterization of a type II TA system, comprising the chromosomal yefM-yoeB locus of S. suis. The yefM-yoeB locus is present in the genome of most serotypes of S. suis. Overproduction of S. suis YoeB toxin inhibited the growth of E. coli, and the toxicity of S. suis YoeB could be alleviated by the antitoxin YefM from S. suis and Streptococcus pneumoniae, but not by E. coli YefM. More importantly, introduction of the S. suis yefM-yoeB system into E. coli could affect cell growth. In a murine infection model, deletion of the yefM-yoeB locus had no effect on the virulence of S. suis serotype 2. Collectively, our data suggested that the yefM-yoeB locus of S. suis is an active TA system without the involvement of virulence.
Collapse
|
79
|
Abstract
Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.
Collapse
|
80
|
Ma Z, Yu L, Zhou H, Liu T, Xu B, Ma F, Peng J, Fan H. Identification of novel genes expressed during host infection in Streptococcus equi ssp. zooepidemicus ATCC35246. Microb Pathog 2015; 79:31-40. [PMID: 25595678 DOI: 10.1016/j.micpath.2015.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Infection with Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) can cause septicemia, meningitis, and mastitis in domesticated species. Identification of this organism's virulence factors is an effective way of clarifying its pathogenic mechanism. We employed in vivo-induced antigen technology (IVIAT) to find bacterial genes that were only expressed or upregulated in an infected host (IVI genes). Convalescent-phase sera from pigs infected with SEZ were pooled, adsorbed against in vitro antigens, and used to screen SEZ genomic expression libraries. This analysis identified 43 genes as IVI genes. Six of these 43 genes were verified via real-time PCR. Following the analysis, we were able to assign a putative function to 36 of the 43 proteins. These proteins included those involved in virulence and adaptation; formation of intermediary products; gene replication, transcription and expression; energy metabolism; transport and also various proteins of unknown function. The relationship between sagD gene and bacterial virulence was confirmed. This study provides new molecular data for the study of streptococcal disease in swine and is important for identifying the pathogenic mechanisms of SEZ.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Lei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Peng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
81
|
Hu J, You W, Wang B, Hu X, Tan C, Liu J, Chen H, Bei W. Construction, characterization and evaluation of the protective efficacy of the Streptococcus suis double mutant strain ΔSsPep/ΔSsPspC as a live vaccine candidate in mice. Microbiol Res 2015; 170:87-94. [DOI: 10.1016/j.micres.2014.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 11/26/2022]
|
82
|
Liu G, Zhang W, Liu Y, Yao H, Lu C, Xu P. Identification of a virulence-related surface protein XF in piscine Streptococcus agalactiae by pre-absorbed immunoproteomics. BMC Vet Res 2014; 10:259. [PMID: 25344337 PMCID: PMC4219122 DOI: 10.1186/s12917-014-0259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. Results A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. Conclusions The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0259-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangjin Liu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Wei Zhang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Yongjie Liu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Huochun Yao
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Chengping Lu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
83
|
Effect of Tran on virulence through regulating metabolism and stress tolerance of Streptococcus suis serotype 2. Microbiol Res 2014; 169:666-74. [DOI: 10.1016/j.micres.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 11/19/2022]
|
84
|
The Truncated Major Pilin Subunit Sbp2 of the srtBCD Pilus Cluster Still Contributes to Streptococcus suis Pathogenesis in the Absence of Pilus Shaft. Curr Microbiol 2014; 69:703-7. [DOI: 10.1007/s00284-014-0642-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
|
85
|
Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA (NEW YORK, N.Y.) 2014; 20:882-898. [PMID: 24759092 PMCID: PMC4024642 DOI: 10.1261/rna.041822.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Na Pei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
86
|
Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression. Infect Immun 2014; 82:2615-25. [PMID: 24711564 DOI: 10.1128/iai.00022-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
Collapse
|
87
|
Lakkitjaroen N, Takamatsu D, Okura M, Sato M, Osaki M, Sekizaki T. Capsule loss or death: The position of mutations among capsule genes sways the destiny ofStreptococcus suis. FEMS Microbiol Lett 2014; 354:46-54. [DOI: 10.1111/1574-6968.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nattakan Lakkitjaroen
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu Japan
| | - Masatoshi Okura
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Masumi Sato
- Epidemiological Information Section; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Makoto Osaki
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
88
|
Zhu H, Zhou J, Ni Y, Yu Z, Mao A, Hu Y, Wang W, Zhang X, Wen L, Li B, Wang X, Yu Y, Lv L, Guo R, Lu C, He K. Contribution of eukaryotic-type serine/threonine kinase to stress response and virulence of Streptococcus suis. PLoS One 2014; 9:e91971. [PMID: 24637959 PMCID: PMC3956855 DOI: 10.1371/journal.pone.0091971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen responsible for septicemia and meningitis. The bacterial homologues of eukaryotic-type serine/threonine kinases (ESTKs) have been reported to play critical roles in various cellular processes. To investigate the role of STK in SS2, an isogenic stk mutant strain (Δstk) and a complemented strain (CΔstk) were constructed. The Δstk showed a significant decrease in adherence to HEp-2 cells, compared with the wild-type strain, and a reduced survival ratio in whole blood. In addition, the Δstk exhibited a notable reduced tolerance of environmental stresses including high temperature, acidic pH, oxidative stress, and high osmolarity. More importantly, the Δstk was attenuated in both the CD1 mouse and piglet models of infection. The results of quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that the expressions of a few genes involving in adherence, stress response and virulence were clearly decreased in the Δstk mutant strain. Our data suggest that SsSTK is required for virulence and stress response in SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lixin Lv
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
89
|
The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence. Sci Rep 2014; 4:4140. [PMID: 24556915 PMCID: PMC3931136 DOI: 10.1038/srep04140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 12/27/2022] Open
Abstract
Streptococcal pathogens have evolved to express exoglycosidases, one of which is BgaC β-galactosidase, to deglycosidate host surface glycolconjucates with exposure of the polysaccharide receptor for bacterial adherence. The paradigm BgaC protein is the bgaC product of Streptococcus, a bacterial surface-exposed β-galactosidase. Here we report the functional definition of the BgaC homologue from an epidemic Chinese strain 05ZYH33 of the zoonotic pathogen Streptococcus suis. Bioinformatics analyses revealed that S. suis BgaC shared the conserved active sites (W240, W243 and Y454). The recombinant BgaC protein of S. suis was purified to homogeneity. Enzymatic assays confirmed its activity of β-galactosidase. Also, the hydrolysis activity was found to be region-specific and sugar-specific for the Gal β-1,3-GlcNAc moiety of oligosaccharides. Flow cytometry analyses combined with immune electron microscopy demonstrated that S. suis BgaC is an atypical surface-anchored protein in that it lacks the “LPXTG” motif for typical surface proteins. Integrative evidence from cell lines and mice-based experiments showed that an inactivation of bgaC does not significantly impair the ability of neither adherence nor anti-phagocytosis, and consequently failed to attenuate bacterial virulence, which is somewhat similar to the scenario seen with S. pneumoniae. Therefore we concluded that S. suis BgaC is an atypical surface-exposed protein without the involvement of bacterial virulence.
Collapse
|
90
|
Roy D, Fittipaldi N, Dumesnil A, Lacouture S, Gottschalk M. The protective protein Sao (surface antigen one) is not a critical virulence factor for Streptococcus suis serotype 2. Microb Pathog 2014; 67-68:31-5. [DOI: 10.1016/j.micpath.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 11/24/2022]
|
91
|
Wang X, Chen W, Tian Y, Mao Q, Lv X, Shang M, Li X, Yu X, Huang Y. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 2014; 32:1338-45. [PMID: 24486347 DOI: 10.1016/j.vaccine.2014.01.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023]
Abstract
Clonorchis sinensis (C. sinensis) infections remain the common public health problem in freshwater fish consumption areas. New effective prevention strategies are still the urgent challenges to control this kind of foodborne infectious disease. The biochemical importance and biological relevance render C. sinensis enolase (Csenolase) as a potential vaccine candidate. In the present study, we constructed Escherichia coli/Bacillus subtilis shuttle genetic engineering system and investigated the potential of Csenolase as an oral vaccine candidate for C. sinensis prevention in different immunization routes. Our results showed that, compared with control groups, both recombinant Csenolase protein and nucleic acid could induce a mixed IgG1/IgG2a immune response when administrated subcutaneously (P<0.001), intraperitoneally (P<0.01) and intramuscularly (P<0.001) with worm reduction rate of 56.29%, 15.38% and 37.42%, respectively. More importantly, Csenolase could be successfully expressed as a fusion protein (55kDa) on B. subtilis spore indicated by immunoblot and immunofluorescence assays. Killed spores triggered reactive Th1/Th2 immune response and exhibited protective efficacy against C. sinensis infection. Csenolase derived oral vaccine conferred worm reduction rate and egg reduction rate at 60.07% (P<0.001) and 80.67% (P<0.001), respectively. The shuttle genetic engineering system facilitated the development of oral vaccine with B. subtilis stably overexpressing target protein. Comparably vaccinal trails with Csenolase in different immunization routes potentialize Csenolase an oral vaccine candidate in C. sinensis prevention.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
92
|
Du B, Ji W, An H, Shi Y, Huang Q, Cheng Y, Fu Q, Wang H, Yan Y, Sun J. Functional analysis of c-di-AMP phosphodiesterase, GdpP, in Streptococcus suis serotype 2. Microbiol Res 2014; 169:749-58. [PMID: 24680501 DOI: 10.1016/j.micres.2014.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/19/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes serious diseases in pigs and humans. GdpP protein is a recently discovered specific phosphodiesterase that degrades cyclic diadenosine monophosphate (c-di-AMP). It is widely distributed among the firmicutes phylum and altered expression of GdpP is associated with several phenotypes in various bacterial strains. We investigated the role of GdpP in physiology and virulence in SS2. An in-frame mutant of gdpP was constructed using homologous recombination and bacterial growth, biofilm formation, hemolytic activity, cell adherence and invasion, expression of virulence factors, and virulence were evaluated. Disruption of gdpP increased intracellular c-di-AMP level and affected growth and increased biofilm formation of SS2. Simultaneously, the gdpP mutant strain exhibited a significant decrease in hemolytic activity and adherence to and invasion of HEp-2 cells compared with the parental strain. Quantitative reverse transcriptase polymerase chain reaction indicated significantly reduced expression of the known virulence genes cps2, sly, fpbs, mrp, ef and gdh in the gdpP mutant. In murine infection models, the gdpP mutant strain was attenuated, and impaired bacterial growth was observed in specific organs. All these findings revealed a significant contribution of gdpP and its substrate (c-di-AMP) to the biology and virulence of SS2.
Collapse
Affiliation(s)
- Bin Du
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Wenhui Ji
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Huiting An
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Yibo Shi
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Qingqing Huang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Yuqiang Cheng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Qiang Fu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Hengan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China
| | - Yaxian Yan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China.
| | - Jianhe Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Shanghai 200240, PR China.
| |
Collapse
|
93
|
Takeuchi D, Akeda Y, Nakayama T, Kerdsin A, Sano Y, Kanda T, Hamada S, Dejsirilert S, Oishi K. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J Infect Dis 2013; 209:1509-19. [PMID: 24285845 DOI: 10.1093/infdis/jit661] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is an emerging zoonotic pathogen, and causes sepsis and meningitis in humans. Although sequence type (ST) 1 and ST104 strains are capable of causing sepsis, ST1 strains commonly cause meningitis. In this study, we investigated the role of suilysin, a member of cholesterol-dependent cytolysins, in differential pathogenicity between ST1 and ST104 strains. METHODS The levels of transcription and translation of the sly gene and messenger RNA of both ST strains were compared by means of quantitative polymerase chain reaction and Western blotting. Survival rates and bacterial densities in brain were compared between mice infected with wild-type and sly-knockout ST1 strain. ST104 infections with or without complementation of suilysin were also assessed. RESULTS The amounts of suilysin produced by ST1 strains were much higher than those produced by ST104 strains. Lower production of suilysin by ST104 strains were attributed to the attenuated sly gene expression, which seemed to be associated with 2 nucleotide insertions in sly promoter region. Furthermore, suilysin contributed to the higher bacterial density and enhanced inflammation in brain and increased mortality. CONCLUSIONS Our data may explain why ST1 strains, but not ST104 strains, commonly cause meningitis and also suggest the contribution of suilysin to the pathogenesis of meningitis in humans.
Collapse
Affiliation(s)
- Dan Takeuchi
- Laboratory for Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase. Biotechnol Lett 2013; 36:327-35. [DOI: 10.1007/s10529-013-1363-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/18/2013] [Indexed: 11/26/2022]
|
95
|
Zheng JX, Li Y, Zhang H, Fan HJ, Lu CP. Identification and characterization of a novel hemolysis-related gene in Streptococcus suis serotype 2. PLoS One 2013; 8:e74674. [PMID: 24069329 PMCID: PMC3775796 DOI: 10.1371/journal.pone.0074674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcussuis serotype 2 (SS 2) is an important zoonotic pathogen that has caused two major infectious outbreaks of streptococcal toxic shock syndrome (STSS) in China. A novel gene located in the 89K pathogenicity island (PAI) encoding a putative hemolysin-III-related protein (Hhly3) has been previously characterized. In this study, the SS2 deletion mutant of the exogenous gene hhly3 was constructed by homologous recombination. This protein was found to exhibit cytolytic activity, and hemolytic activity of the hhly3 gene knockout mutant (Δhhly3) was significantly lower than that in the wild-type strain ZY05719. In addition, qRT-PCR revealed that Hhly3 played an important role in the expression of the secreted hemolysin SLY, which may be the key reason for the decreased hemolytic activity. Consequently, compared with the WT strain, the infection and pathogenicity of Δhhly3 was also decreased, as evidenced by in vitro bacterial growth in whole blood and by the in vivo zebrafish test, suggesting that hhly3 is a novel exogenous hemolysis-related gene in SS2 strains.
Collapse
Affiliation(s)
- Jun-xi Zheng
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hong-jie Fan
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| | - Cheng-ping Lu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
96
|
Development of a markerless gene deletion system for Streptococcus zooepidemicus: functional characterization of hyaluronan synthase gene. Appl Microbiol Biotechnol 2013; 97:8629-36. [DOI: 10.1007/s00253-013-5058-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/25/2022]
|
97
|
LacR mutations are frequently observed in Streptococcus intermedius and are responsible for increased intermedilysin production and virulence. Infect Immun 2013; 81:3276-86. [PMID: 23798532 DOI: 10.1128/iai.00638-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus intermedius secretes a human-specific cytolysin, intermedilysin (ILY), which is considered to be the major virulence factor of this pathogen. We screened for a repressor of ily expression by using random gene disruption in a low-ILY-producing strain (PC574). Three independent high-ILY-producing colonies that had plasmid insertions within a gene that has high homology to lacR were isolated. Validation of these observations was achieved through disruption of lacR in strain PC574 with an erythromycin cassette, which also led to higher hemolytic activity, increased transcription of ily, and higher cytotoxicity against HepG2 cells, compared to the parental strain. The direct binding of LacR within the ily promoter region was shown by a biotinylated DNA probe pulldown assay, and the amount of ILY secreted into the culture supernatant by PC574 cells was increased by adding lactose or galactose to the medium as a carbon source. Furthermore, we examined lacR nucleotide sequences and the hemolytic activity of 50 strains isolated from clinical infections and 7 strains isolated from dental plaque. Of the 50 strains isolated from infections, 13 showed high ILY production, 11 of these 13 strains had one or more point mutations and/or an insertion mutation in LacR, and almost all mutations were associated with a marked decline in LacR function. These results strongly suggest that mutation in lacR is required for the overproduction of ILY, which is associated with an increase in pathogenicity of S. intermedius.
Collapse
|
98
|
Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis. Appl Environ Microbiol 2013; 79:4768-71. [PMID: 23728809 PMCID: PMC3719504 DOI: 10.1128/aem.01195-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Here we show that the frequency of mutant isolation by two-step allele exchange can be improved by increasing the length of homologous DNA and the opportunity for recombination, obviating the need for counterselection markers. These principles are demonstrated in Clostridium difficile and Streptococcus suis but are likely to be generally applicable.
Collapse
|
99
|
Identification of mutations involved in the requirement of potassium for growth of typical Melissococcus plutonius strains. Appl Environ Microbiol 2013; 79:3882-6. [PMID: 23584776 DOI: 10.1128/aem.00598-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melissococcus plutonius is a fastidious honeybee pathogen, and the addition of KH(2)PO(4) to culture medium is required for its growth. Using genome sequences and a newly developed vector, we showed that mutations in genes encoding Na(+)/H(+) antiporter and cation-transporting ATPase are involved in the potassium requirement for growth.
Collapse
|
100
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Lu CP, Fan HJ. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus equi ssp. zooepidemicus. Pathog Dis 2013; 67:174-83. [PMID: 23620180 DOI: 10.1111/2049-632x.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/27/2022] Open
Abstract
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for a wide variety of infections in many species. Fibronectin-binding protein is a bacterial cell surface protein, which specifically binds fibronectin (FN). Considering the specific role of FN-binding protein in host-pathogen interactions, we investigated the function of a novel FN-binding domain in the FN-binding protein (FNZ) of S. zooepidemicus. Five recombinant FNZ gene fragments [N1 (amino acids, 38-197), N2 (amino acids, 38-603), N3 (amino acids, 41-315), N4 (amino acids, 192-370), and N5 (amino acids, 38-225)] were expressed in Escherichia coli, and their FN-binding activities were tested. The results showed that amino acids 192-225 in the NH2 -terminal region of FNZ could be responsible for binding fibronectin. The FNZ knockout mutant was constructed in S. zooepidemicus, which results in the reduced capacity to adhere to HEp-2 cell, defective virulence in vivo, decreased biofilm formation, and decreased colonization capacity in blood, liver, lung, and spleen tissues of mice as compared to the wild type. These results suggest that FNZ participates in biofilm formation, FN binding, cell adhesion, and pathogenesis of S. zooepidemicus. Furthermore, this work offers a novel FN-binding domain within FNZ, which will help in further characterization of S. zooepidemicus FN-binding properties.
Collapse
Affiliation(s)
- Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|