51
|
CAMARERO JULIOA. NEW DEVELOPMENTS FOR THE SITE-SPECIFIC ATTACHMENT OF PROTEIN TO SURFACES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site–specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein and the surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.
Collapse
Affiliation(s)
- JULIO A. CAMARERO
- Chemical Biology and Nuclear Science Division, Lawrence Livermore National Laboratory, University of California, 7000 East Avenue, L-232, Livermore, California 94550, USA
| |
Collapse
|
52
|
Polypeptide conjugates of D-penicillamine and idarubicin for anticancer therapy. J Control Release 2011; 158:215-23. [PMID: 22063001 DOI: 10.1016/j.jconrel.2011.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/20/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022]
Abstract
We investigated anticancer therapy with a novel combination of D-penicillamine (D-pen) and Idarubicin (Ida) in a synthetic dual drug conjugate (DDC). D-pen and Ida were covalently linked to poly(α)-L-glutamic acid (PGA) via reducible disulfide and acid-sensitive hydrazone bonds, respectively. The DDCs showed cell uptake and sustained release of the bound drugs in conditions mimicking the intracellular release media (10mM glutathione and pH 5.2). The in-vitro cytotoxicity of DDCs was comparable to unconjugated Ida in several sensitive and resistant cancer cell lines and correlated with the rate of cell uptake. In a single equivalent-dose pharmacokinetic study, DDCs enhanced the drug exposure by 7-fold and prolonged the plasma circulation half-life (t(1/2)) by 5-fold over unconjugated Ida. The therapeutic index of DDCs was 2-3-fold higher than unconjugated drugs. DDCs caused 89% tumor growth inhibition compared to 60% by unconjugated Ida alone and led to significant enhancement in the median survival (17%) of athymic nu/nu mice bearing NCI-H460 tumor xenografts.
Collapse
|
53
|
Kang DC, Venkataraman PA, Dumont ME, Maloney PC. Oligomeric state of the oxalate transporter, OxlT. Biochemistry 2011; 50:8445-53. [PMID: 21866906 DOI: 10.1021/bi201175y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.
Collapse
Affiliation(s)
- Di-Cody Kang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | | | | | | |
Collapse
|
54
|
Patient-to-patient variability in autologous pericardial matrix scaffolds for cardiac repair. J Cardiovasc Transl Res 2011; 4:545-56. [PMID: 21695575 DOI: 10.1007/s12265-011-9293-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/10/2011] [Indexed: 01/15/2023]
Abstract
The pursuit of alternate therapies for end-stage heart failure post-myocardial infarction has led to the development of a variety of in situ gelling materials to be used as cellular or acellular scaffolds for cardiac repair. Previously, a protocol was established to decellularize human and porcine pericardia and process the extracellular matrix (ECM) into an injectable form. The resulting gels were found to retain components of the native extracellular matrix; cell infiltration was facilitated in vivo, and neovascularization was observed by 2 weeks. However, the assertion that an injectable form of human pericardial tissue could be a potentially autologous scaffold for myocardial tissue engineering requires assessment of the patient-to-patient variability. With this work, seven human pericardia from a relevant patient demographic are processed into injectable matrix materials that gel when brought to physiologic conditions. The resulting materials are compared with respect to their protein composition, glycosaminoglycan content, in vitro degradation, in vivo gelation, and microstructure. It is observed that a diminished collagen content in a subset of samples prevents in vitro gelation but not in vivo gelation at lower ECM concentrations. The structure is similarly fibrous and porous across all samples, implying the cell infiltration may be similarly facilitated. The biochemical composition as characterized by tandem mass spectrometry is comparable; basic ECM components are conserved across all samples, and the presence of a wide variety of ECM proteins and glycoproteins demonstrate the retention of biochemical complexity post-processing. It is concluded that the variability within human pericardial tissue specimens does not prevent them from being processed into injectable scaffolds; therefore, pericardial tissue offers a promising source as an autologous, injectable biomaterial scaffold.
Collapse
|
55
|
Singelyn JM, Christman KL. Modulation of material properties of a decellularized myocardial matrix scaffold. Macromol Biosci 2011; 11:731-8. [PMID: 21322109 PMCID: PMC3280095 DOI: 10.1002/mabi.201000423] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/14/2010] [Indexed: 01/07/2023]
Abstract
Injectable materials offer the potential for minimally invasive therapy for myocardial infarction (MI), either as an acellular scaffold or as a cell delivery vehicle. A recently developed myocardial matrix hydrogel, derived from decellularized porcine ventricular tissue, has the potential to aid in cardiac repair following an MI. Herein, we set out to study the effects of cross-linking on the cardiac hydrogel stiffness, degradation properties, cellular migration, and catheter injectability in vitro. Cross-linking increased stiffness, while slowing degradation and cellular migration through the gels. Additionally, the cross-linked material was pushed through a clinically relevant catheter. These results demonstrate that the material properties of myocardial matrix can be tuned via cross-linking, while maintaining appropriate viscosity for catheter injectability.
Collapse
Affiliation(s)
- Jennifer M Singelyn
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
56
|
McDermott CM, Schrader LA. Activation of κ opioid receptors increases intrinsic excitability of dentate gyrus granule cells. J Physiol 2011; 589:3517-32. [PMID: 21606111 DOI: 10.1113/jphysiol.2011.211623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dentate gyrus of the hippocampus is thought to control information flow into the rest of the hippocampus. Under pathological conditions, such as epilepsy, this protective feature is circumvented and uninhibited activity flows throughout the hippocampus. Many factors can modulate excitability of the dentate gyrus and ultimately, the hippocampus. It is therefore of critical importance to understand the mechanisms involved in regulating excitability in the dentate gyrus. Dynorphin, the endogenous ligand for the kappa (κ) opioid receptor (KOR), is thought to be involved in neuromodulation in the dentate gyrus. Both dynorphin and its receptor are widely expressed in the dentate gyrus and have been implicated in epilepsy and other complex behaviours such as stress-induced deficits in learning and stress-induced depression-like behaviours. Administration of KOR agonists can prevent both the behavioural and electroencephalographic measures of seizures in several different models of epilepsy. Antagonism of the KORs also prevents stress-induced behaviours. This evidence suggests the KORs as possible therapeutic targets for various pathological conditions. In addition, KOR agonists prevent the induction of LTP. Although there are several mechanisms through which dynorphin could mediate these effects, no studies to date investigated the effects of KOR activation on intrinsic membrane properties and cell excitability. We used whole-cell, patch-clamp recordings from acute mouse hippocampus slices to investigate the effect of KOR activation on dentate gyrus granule cell excitability. The agonist U69,593 (U6, 1 μM) resulted in a lower spike threshold, a decreased latency to first spike, an increased spike half-width, and an overall increase in spike number with current injections ranging from 15 to 45 pA. There was also a reduction in the interspike interval (ISI) both early and late in the spike train, with no change in membrane potential or input resistance. Preincubation of the slice with the selective KOR antagonist, nor-binalthorphimine (BNI, 1 μM) inhibited the effect of U6 on the latency to first spike and spike half-width suggesting that these effects are mediated through KORs. The inclusion of GDP-βS (1 mM) in the recording pipette prevented all of the U6 effects, suggesting that all effects are mediated via a G-protein-dependent mechanism. Inclusion of the A-type K+ current blocker, 4-aminopyridine (4-AP, 5 mM) in the pipette also antagonised the effects of U6. Kv4.2 is one of the channel α subunits thought to be responsible for carrying the A-type K+ current. Incubation of hippocampus slices with U6 resulted in a decrease in the Kv4.2 subunit protein at the cell surface. These results are consistent with an increase in cell excitability in response to KOR activation and may reflect new possibilities for additional opioid functions.
Collapse
Affiliation(s)
- Carmel M McDermott
- Department of Cell and Molecular Biology, Tulane University, 6400 Freret St, New Orleans, LA 70118, USA
| | | |
Collapse
|
57
|
Religa TL, Ruschak AM, Rosenzweig R, Kay LE. Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. J Am Chem Soc 2011; 133:9063-8. [DOI: 10.1021/ja202259a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomasz L. Religa
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy M. Ruschak
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
58
|
Boutin C, Stopin A, Lenda F, Brotin T, Dutasta JP, Jamin N, Sanson A, Boulard Y, Leteurtre F, Huber G, Bogaert-Buchmann A, Tassali N, Desvaux H, Carrière M, Berthault P. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg Med Chem 2011; 19:4135-43. [PMID: 21605977 DOI: 10.1016/j.bmc.2011.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/26/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
Abstract
For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.
Collapse
Affiliation(s)
- Céline Boutin
- CEA, IRAMIS, SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, UMR CEA/CNRS 3299, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
A spectrophotometric assay for measuring acetyl–coenzyme A carboxylase. Anal Biochem 2011; 411:100-5. [DOI: 10.1016/j.ab.2010.11.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/24/2010] [Accepted: 11/30/2010] [Indexed: 01/11/2023]
|
60
|
Becker M, Cola LD, Studer A. Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions. Chem Commun (Camb) 2011; 47:3392-4. [DOI: 10.1039/c0cc05474g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Grotzky A, Manaka Y, Kojima T, Walde P. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation. Biomacromolecules 2010; 12:134-44. [PMID: 21171644 DOI: 10.1021/bm101074s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.
Collapse
Affiliation(s)
- Andrea Grotzky
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
62
|
Zheng B, Uenuma M, Uraoka Y, Yamashita I. Construction of a ferritin dimer by breaking its symmetry. NANOTECHNOLOGY 2010; 21:445602. [PMID: 20935356 DOI: 10.1088/0957-4484/21/44/445602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ferritin has a mono-dispersed structure and biomineralization properties that allow it to form various kinds of nanoparticles and play an important role in modern nanotechnology. Independent nanoparticles synthesized in ferritin are valuable, but moreover a pair of nanoparticles can bring new properties different from those of the independent nanoparticles. In this study, by breaking ferritin's symmetry, we successfully produced ferritin dimers which provide real protein frameworks for nanoparticle dimer formation. Identical nickel hydro-oxide nanoparticle dimers were produced by simply biomineralizing ferritin dimers. The method presented here can produce multi-functional ferritin dimers with different kinds of nanoparticles.
Collapse
Affiliation(s)
- B Zheng
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | |
Collapse
|
63
|
Krishnamurthy VR, Wilson JT, Cui W, Song X, Yi L, Cummings RD, Chaikof EL. Chemoselective immobilization of peptides on abiotic and cell surfaces at controlled densities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7675-7678. [PMID: 20450194 PMCID: PMC2894806 DOI: 10.1021/la101192v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report herein a new and enabling approach for decorating both abiotic and cell surfaces with the extracellular matrix IKVAV peptide in a site-specific manner using strain promoted azide-alkyne cycloaddition. A cyclooctyne-derivatized IKVAV peptide was synthesized and immobilized on the surface of pancreatic islets through strain-promoted azide-alkyne cycloaddition with cell surface azides generated by the electrostatic adsorption of a cytocompatible poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) copolymer bearing azido groups (PP-N(3)). Both "one-pot" and sequential addition of PP-N(3) and a cyclooctyne-derivatized IKVAV peptide conjugate enabled efficient modification of the pancreatic islet surface in less than 60 min. The ability to bind peptides at controlled surface densities was demonstrated in a quantitative manner using microarrays. Additionally, the technique is remarkably rapid and highly efficient, opening new avenues for the molecular engineering of cellular interfaces and protein and peptide microarrays.
Collapse
Affiliation(s)
| | - John T. Wilson
- Departments of Biomedical Engineering and Surgery, Emory University, Atlanta, GA-30322, USA
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA-30322, USA
| | - Wanxing Cui
- Departments of Biomedical Engineering and Surgery, Emory University, Atlanta, GA-30322, USA
| | - XueZheng Song
- Department of Biochemistry, Emory University, Atlanta, GA-30322, USA
| | - Lasanajak Yi
- Department of Biochemistry, Emory University, Atlanta, GA-30322, USA
| | | | - Elliot L. Chaikof
- Departments of Biomedical Engineering and Surgery, Emory University, Atlanta, GA-30322, USA
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA-30322, USA
| |
Collapse
|
64
|
Alonso CMA, Palumbo A, Bullous AJ, Pretto F, Neri D, Boyle RW. Site-Specific and Stoichiometric Conjugation of Cationic Porphyrins to Antiangiogenic Monoclonal Antibodies. Bioconjug Chem 2010; 21:302-13. [DOI: 10.1021/bc9003537] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina M. A. Alonso
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| | - Alessandro Palumbo
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| | - Aaron J. Bullous
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| | - Francesca Pretto
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| | - Ross W. Boyle
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, Kingston-upon-Hull, United Kingdom, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Str. 10, HCI G396, 8093 Zurich, Switzerland
| |
Collapse
|
65
|
Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, Reiss K, Maes E, Snellinx A, Serneels L, Nyabi O, Annaert W, Saftig P, Hartmann D, De Strooper B. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 2009; 284:11738-47. [PMID: 19213735 PMCID: PMC2670177 DOI: 10.1074/jbc.m805894200] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/10/2009] [Indexed: 11/06/2022] Open
Abstract
ADAM10 is involved in the proteolytic processing and shedding of proteins such as the amyloid precursor protein (APP), cadherins, and the Notch receptors, thereby initiating the regulated intramembrane proteolysis (RIP) of these proteins. Here, we demonstrate that the sheddase ADAM10 is also subject to RIP. We identify ADAM9 and -15 as the proteases responsible for releasing the ADAM10 ectodomain, and Presenilin/gamma-Secretase as the protease responsible for the release of the ADAM10 intracellular domain (ICD). This domain then translocates to the nucleus and localizes to nuclear speckles, thought to be involved in gene regulation. Thus, ADAM10 performs a dual role in cells, as a metalloprotease when it is membrane-bound, and as a potential signaling protein once cleaved by ADAM9/15 and the gamma-Secretase.
Collapse
Affiliation(s)
- Thomas Tousseyn
- Center for Human Genetics, Katholieke Universiteit Leuven (K. U. Leuven), Department for Developmental and Molecular Genetics, and Laboratory of Membrane Trafficking, Vlaams Instituut voor Biotechnologie (VIB), K. U. Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Noguchi T, Frank DJ, Isaji M, Miller KG. Coiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster. Mol Biol Cell 2008; 20:358-67. [PMID: 19005209 DOI: 10.1091/mbc.e08-07-0776] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin VI is a pointed-end-directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-defined role in actin stabilization during Drosophila spermatid individualization to test the importance in vivo of the predicted coiled coil. If myosin VI functions as a dimer, a forced dimer should fully rescue myosin VI loss of function defects, including actin stabilization, actin cone movement, and cytoplasmic exclusion by the cones. Conversely, a molecule lacking the coiled coil should not rescue at all. Surprisingly, neither prediction was correct, because each rescued partially and the molecule lacking the coiled coil functioned better than the forced dimer. In extracts, no cross-linking into higher molecular weight forms indicative of dimerization was observed. In addition, a sequence required for altering nucleotide kinetics to make myosin VI dimers processive is not required for myosin VI's actin stabilization function. We conclude that myosin VI does not need to dimerize via the predicted coiled coil to stabilize actin in vivo.
Collapse
|
67
|
Kiesewetter DO, Krämer-Marek G, Ma Y, Capala J. Radiolabeling of HER2 specific Affibody(R) molecule with F-18. J Fluor Chem 2008; 129:799-805. [PMID: 19727427 PMCID: PMC2630254 DOI: 10.1016/j.jfluchem.2008.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The presence of human epidermal growth factor type 2 (HER2) on 20-30% of human breast cancer is a prognostic indicator of more rapid disease progression and a therapeutic indicator for anti-HER2 monoclonal antibodies. Because the literature has demonstrated some discordance between primary and metastatic tumors in the same patient for expression of the HER2 marker, we set out to develop an imaging agent that could be used to assess the marker concentration in vivo in an individual patient. The pharmaceutical company Affibody AB has optimized the specificity of Affibody molecules for HER2. Two Affibody molecules, a 7 kD and an 8 kD protein, were designed with a single carboxy terminal cysteine in order to provide a specific location for the purposes of labeling for various types of imaging. We have prepared N-[2-(4-[(18)F]fluorobenzamido)ethyl]maleimide utilizing a coupling reaction between [(18)F]fluorobenzoic acid and aminoethylmaleimide. We then optimized the conjugation of this radiolabeled maleimide to the free sulfhydryl of cysteine by incubating at pH 7.4 in phosphate buffered saline containing 0.1% sodium ascorbate. An overall uncorrected yield of radiolabeled Affibody molecule of approximately 10% from [(18)F]fluoride was achieved in a 2 h synthesis. These conjugated Affibody molecules were obtained with a specific activity of 2.51 +/- 0.92 MBq/microg. Characterization of the product by HPLC-MS supported the conjugation of [(18)F]FBEM with the Affibody molecule. The radiolabeled Affibody molecule retained its binding specificity as demonstrated by successful imaging of xenografts expressing HER2.
Collapse
Affiliation(s)
- Dale O Kiesewetter
- Positron Emission Tomography Radiochemistry Group, NIBIB, Bethesda, MD 20892
| | | | - Ying Ma
- Positron Emission Tomography Radiochemistry Group, NIBIB, Bethesda, MD 20892
| | - Jacek Capala
- Radiation Oncology Branch, NCI, NIH, Bethesda, MD 20892
| |
Collapse
|
68
|
Chiellini F, Piras AM, Gazzarri M, Bartoli C, Ferri M, Paolini L, Chiellini E. Bioactive Polymeric Materials for Targeted Administration of Active Agents: Synthesis and Evaluation. Macromol Biosci 2008; 8:516-25. [DOI: 10.1002/mabi.200700228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Mouradov D, King G, Ross IL, Forwood JK, Hume DA, Sinz A, Martin JL, Kobe B, Huber T. Protein structure determination using a combination of cross-linking, mass spectrometry, and molecular modeling. Methods Mol Biol 2008; 426:459-474. [PMID: 18542884 DOI: 10.1007/978-1-60327-058-8_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cross-linking in combination with mass spectrometry can be used as a tool for structural modeling of protein complexes and multidomain proteins. Although cross-links represent only weak structural constraints, the combination of a limited set of experimental cross-links with molecular docking/modeling is often sufficient to determine the structure of a protein complex or multidomain protein at low resolution.
Collapse
Affiliation(s)
- Dmitri Mouradov
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mallik R, Wa C, Hage DS. Development of sulfhydryl-reactive silica for protein immobilization in high-performance affinity chromatography. Anal Chem 2007; 79:1411-24. [PMID: 17297940 PMCID: PMC2528201 DOI: 10.1021/ac061779j] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77-81% of this protein to maleimide- or iodoacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, nonspecific binding, stability, and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations.
Collapse
Affiliation(s)
| | | | - David S. Hage
- *Author for correspondence: Phone, 402-472-2744; FAX, 402-472-9402; E-mail,
| |
Collapse
|
71
|
Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 2007; 67:1602-8. [PMID: 17308100 DOI: 10.1158/0008-5472.can-06-2870] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells often fail to respond to stimuli that normally activate their intrinsic apoptotic machinery. Moreover, they are able to adapt to hypoxia by changing their glycolytic rate. Pyruvate kinase (PK) is a rate-limiting enzyme in glycolysis that is converted to a less active dimer form of PKM2 isoenzyme during oncogenesis. Here, we show that both somatostatin and the structural analogue TT-232 interact with the PKM subtype. We further show that the PKM2 is translocated to the nucleus in response to TT-232 and different apoptotic agents. Nuclear translocation of PKM2 is sufficient to induce cell death that is caspase independent, isoform specific, and independent of its enzymatic activity. These results show that the tumor marker PKM2 plays a general role in caspase-independent cell death of tumor cells and thereby defines this glycolytic enzyme as a novel target for cancer therapy development.
Collapse
Affiliation(s)
- Attila Steták
- Department of Molecular Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Babu KS, Li XC, Jacob MR, Zhang Q, Khan SI, Ferreira D, Clark AM. Synthesis, antifungal activity, and structure-activity relationships of coruscanone A analogues. J Med Chem 2007; 49:7877-86. [PMID: 17181171 PMCID: PMC2530892 DOI: 10.1021/jm061123i] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coruscanone A, a plant-derived cyclopentenedione derivative, showed potent in vitro antifungal activity against Candida albicans and Cryptococcus neoformans comparable to amphotericin B and fluconazole. A series of analogues have been synthesized by modification of the cyclopentenedione ring, the enolic methoxy functionality, and the side chain styryl moiety of this natural product lead. A structurally close 1,4-benzoquinone analogue was also prepared. All the compounds were examined for their in vitro activity against major opportunistic fungal pathogens including C. albicans, C. neoformans, and Aspergillus fumigatus and fluconazole-resistant C. albicans strains, with several analogues demonstrating potent antifungal activity. Structure-activity relationship studies indicate that the 2-methoxymethylenecyclopent-4-ene-1,3-dione structural moiety is the pharmacophore responsible for the antifungal activity of this class of compounds while the side chain styryl-like moiety plays an important complementary role, presumably contributing to target binding.
Collapse
Affiliation(s)
| | - Xing-Cong Li
- To whom correspondence should be addressed. Tel.: 662-915-6742. Fax: 662-915-7989. E-mail:
| | | | | | | | | | | |
Collapse
|
73
|
Kida S, Maeda M, Hojo K, Eto Y, Nakagawa S, Kawasaki K. Studies on Heterobifunctional Cross-Linking Reagents, 6-Maleimidohexanoic Acid Active Esters. Chem Pharm Bull (Tokyo) 2007; 55:685-7. [PMID: 17409574 DOI: 10.1248/cpb.55.685] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
6-maleimidohexanoic acid N-hydroxysuccinimide ester has been used widely for preparation of enzyme immunoconjugates as a unique heterobifunctional cross-linking reagent. Its heterobifunctional reactivity is good, but its ester portion hydrolyzes easily in the presence of water. Several 6-maleimidohexanoic acid active esters (6-maleimidohexanoic acid 4-nitrophenyl ester, 6-maleimidohexanoic acid N-hydroxy-5-norbornene-endo-2,3-dicarboximide ester, and 6-maleimidohexanoic acid pentafluorophenyl ester) were prepared and their reactivity and stability in an aqueous media were tested. Of the synthetic esters, the pentafluorophenyl ester exhibited the highest reactivity and stability in aqueous media.
Collapse
Affiliation(s)
- Shinya Kida
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. MASS SPECTROMETRY REVIEWS 2006; 25:663-82. [PMID: 16477643 DOI: 10.1002/mas.20082] [Citation(s) in RCA: 514] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Closely related to studying the function of a protein is the analysis of its three-dimensional structure and the identification of interaction sites with its binding partners. An alternative approach to the high-resolution methods for three-dimensional protein structure analysis, such as X-ray crystallography and NMR spectroscopy, consists of covalently connecting two functional groups of the protein(s) under investigation. The location of the created cross-links imposes a distance constraint on the location of the respective side chains and allows one to draw conclusions on the three-dimensional structure of the protein or a protein complex. Recently, chemical cross-linking of proteins has been combined with a mass spectrometric analysis of the created cross-linked products. This review article describes the most popular cross-linking reagents for protein structure analysis and gives an overview of the different available strategies that employ chemical cross-linking and different mass spectrometric techniques. The challenges for mass spectrometry caused by the enormous complexity of the cross-linking reaction mixtures are emphasized. The various approaches described in the literature to facilitate the mass spectrometric detection of cross-linked products as well as computer software for data analyses are reviewed.
Collapse
Affiliation(s)
- Andrea Sinz
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
75
|
Itoh R, Fujiki Y. Functional Domains and Dynamic Assembly of the Peroxin Pex14p, the Entry Site of Matrix Proteins. J Biol Chem 2006; 281:10196-205. [PMID: 16459329 DOI: 10.1074/jbc.m600158200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 41-kDa membrane-anchored peroxin Pex14p functions as the peroxisome targeting signal (PTS) receptor-mediated, initial import site for matrix proteins. We here identify the functional domains of Pex14p involved in the assembly of import site subcomplexes. The minimal region of Pex14p required for restoring impaired protein import in pex14 Chinese hamster ovary cell mutant lies at residues 21-260 in the primary sequence. A highly conserved N-terminal region, encompassing residues 21-70, interacts with the PTS1 receptor Pex5p, Pex13p, and Pex19p that is essential for membrane biogenesis. N-terminal residues 21-140, including a hydrophobic segment at 110-138, function as a topogenic sequence. Site-directed mutagenesis, size fractionation, and chemical cross-linking analyses demonstrate that the coiled-coil domain at residues 156-197 regulates homodimerization of Pex14p. Moreover, AXXXA and GXXXG motifs in the transmembrane segment mediate homomeric oligomerization of Pex14p, giving rise to assembly of high molecular mass complexes and thereby assuring Pex13p-dependent localization of Pex14p to peroxisomes. Pex5p, Pex13p, and Pex19p bind to Pex14p homo-oligomers with different molecular masses, whereas cargo-unloaded Pex5p apparently disassembles Pex14p homo-oligomers. Thus, Pex14p most likely forms several distinct peroxin complexes involved in peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Ryota Itoh
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
76
|
Akpinar P, Kuwajima S, Krützfeldt J, Stoffel M. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab 2005; 2:385-97. [PMID: 16330324 DOI: 10.1016/j.cmet.2005.11.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/25/2005] [Accepted: 11/03/2005] [Indexed: 01/09/2023]
Abstract
The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.
Collapse
Affiliation(s)
- Pinar Akpinar
- Laboratory of Metabolic Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
77
|
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC. Thiolation of Chitosan. Attachment of Proteins via Thioether Formation. Biomacromolecules 2005; 6:880-4. [PMID: 15762654 DOI: 10.1021/bm049352e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chitosan has a variety of biological functions through conjugating of other compounds to their amino and hydroxyl groups. To further expand applicability of chitosan, we have modified the amino group of chitosan with 2-iminothiolane to bestow thiol groups and obtained about 20% yield, which is equivalent to 913 microequiv SH/g chitosan or 457 nequiv SH/nmol chitosan. Bovine serum albumin (BSA) was reacted with N-(epsilon-maleimidocaproyloxy)sulfosuccinimide ester (sulfo-EMCS), and maleimide-modified BSA (MalN-BSA) was obtained. The yield of sulfo-EMCS addition was 12.8-36.8 mol MalN/mol BSA. When the chitosan-SH was reacted with MalN-BSA via thioether, 97.8% of the maleimide group was reacted, and 37.2% of the SH group was consumed. The remaining SH group was quenched by bromoacetamide. This is the first report of covalent conjugation of a protein to chitosan. Our method should find many applications in developing new chitosan-based biomedical materials containing other components such as growth factors and cell adhesion molecules, known to be crucial to cells. Our thiolated chitosan will facilitate conjugation of such biomedical components to provide new types of materials for tissue engineering.
Collapse
Affiliation(s)
- Tatsuya Masuko
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
Protein S-nitrosylation is a post-translational modification of cysteine residues elicited by nitric oxide (NO). Detection and quantification of protein nitrosothiols remains a challenge because of the lability of the nitrosothiol moiety. Here, we describe approaches for labeling S-nitrosylated proteins with affinity and radioactive tags to facilitate their detection, purification, and identification.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Psychology, Weill Medical College, Cornell University, New York, NY 10021, USA
| |
Collapse
|
79
|
Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Göpferich A. Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 2004; 58:385-407. [PMID: 15296963 DOI: 10.1016/j.ejpb.2004.03.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
This review describes recent developments in the emerging field of biomimetic polymeric biomaterials, which signal to cells via biologically active entities. The described biological effects are, in contrast to many other known interactions, receptor mediated and therefore very specific for certain cell types. As an introduction into this field, first some biological principles are illustrated such as cell attachment, cytokine signaling and endocytosis, which are some of the mechanisms used to control cells with biomimetic polymers. The next topics are then the basic design rules for the creation of biomimetic materials. Here, the major emphasis is on polymers that are assembled in separate building blocks, meaning that the biologically active entity is attached to the polymer in a separate chemical reaction. In that respect, first individual chemical standard reactions that may be used for this step are briefly reviewed. In the following chapter, the emphasis is on polymer types that have been used for the development of several biomimetic materials. There is, thereby, a delineation made between materials that are processed to devices exceeding cellular dimensions and materials predominantly used for the assembly of nanostructures. Finally, we give a few current examples for applications in which biomimetic polymers have been applied to achieve a better biomaterial performance.
Collapse
Affiliation(s)
- S Drotleff
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Sinz A. Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1225-1237. [PMID: 14696200 DOI: 10.1002/jms.559] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical cross-linking of proteins, an established method in protein chemistry, has gained renewed interest in combination with mass spectrometric analysis of the reaction products for elucidating low-resolution three-dimensional protein structures and interacting sequences in protein complexes. The identification of the large number of cross-linking sites from the complex mixtures generated by chemical cross-linking, however, remains a challenging task. This review describes the most popular cross-linking reagents for protein structure analysis and gives an overview of the strategies employing intra- or intermolecular chemical cross-linking and mass spectrometry. The various approaches described in the literature to facilitate detection of cross-linking products and also computer software for data analysis are reviewed. Cross-linking techniques combined with mass spectrometry and bioinformatic methods have the potential to provide the basis for an efficient structural characterization of proteins and protein complexes.
Collapse
Affiliation(s)
- Andrea Sinz
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
81
|
Tuckey CD, Noren CJ. Selection for mutants improving expression of an anti-MAP kinase monoclonal antibody by filamentous phage display. J Immunol Methods 2002; 270:247-57. [PMID: 12379329 DOI: 10.1016/s0022-1759(02)00331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has recently been reported that single amino acid residues can strongly influence the expression of recombinant antibody fragments in Escherichia coli. Prediction of these critical positions can be difficult even with prior knowledge of the primary sequence and the three-dimensional folded structure of the antibody. To circumvent this, a Fab phage display library containing random point mutations was generated from a hybridoma specific for activated p44/p42 mitogen-activated protein (MAP) kinases. Clones that express Fab were selected by panning against the target antigen. It was found that a cysteine-to-serine substitution at position 91 in the CDR3 of the light chain was responsible for allowing expression of Fab. Site-directed mutagenesis was performed to effect this substitution and others at cysteine 91 on a nonexpressing clone. Mutants containing serine, glycine or alanine at position 91 expressed Fab and bound to target antigen. In contrast, tyrosine mutants had moderate Fab expression but no detectable binding to antigen. These results demonstrate that by using phage display, one can select for the expression of antibody fragments while retaining biological activity.
Collapse
|
82
|
Oleksiewicz MB, Kristensen B, Ladekjaer-Mikkelsen AS, Nielsen J. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I). Vet Immunol Immunopathol 2002; 86:55-77. [PMID: 11943330 DOI: 10.1016/s0165-2427(02)00015-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class I) were cloned and sequenced for two haplotypes (H4 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs. The extracellular domain of SLA-I was connected to porcine beta2 microglobulin by glycine-rich linkers. The engineered single-chain proteins, consisting of fused SLA-I and beta2 microglobulin, were overexpressed as inclusion bodies in Escherichia coli. Also, variants were made of the single-chain proteins, by linking them through glycine-rich linkers to peptides representing T-cell epitopes from classical swine fever virus (CSFV) and foot-and-mouth disease virus (FMDV). An in vitro refold assay was developed, using a monoclonal anti-SLA antibody (PT85A) to gauge refolding. The single best-defined, SLA-I restricted porcine CD8(+) T-cell epitope currently known is a 9-residue peptide from the polyprotein of CSFV (J. Gen. Virol. 76 (1995) 3039). Based on results with the CSFV epitope and two porcine haplotypes (H4 and H7), the in vitro refold assay appeared able to discriminate between peptide-free and peptide-occupied forms of SLA-I. It remains to be seen whether the rapid and technically very simple in vitro refold assay described here will prove generally applicable for the screening of virus-derived peptides for SLA-I binding.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Danish Veterinary Institute for Virus Research, 4771 Kalvehave, Lindholm, Denmark.
| | | | | | | |
Collapse
|
83
|
Perez-Jannotti RM, Klein SM, Bogenhagen DF. Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes. J Biol Chem 2001; 276:48978-87. [PMID: 11598119 DOI: 10.1074/jbc.m107177200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length cDNAs for DNA ligase IV and the alpha and beta isoforms of DNA ligase III were cloned from Xenopus laevis to permit study of the genes encoding mitochondrial DNA ligase. DNA ligase III alpha and III beta share a common NH(2) terminus that encodes a mitochondrial localization signal capable of targeting green fluorescent protein to mitochondria while the NH(2) terminus of DNA ligase IV does not. Reverse transcriptase-polymerase chain reaction analyses with adult frog tissues demonstrate that while DNA ligase III alpha and DNA ligase IV are ubiquitously expressed, DNA ligase III beta expression is restricted to testis and ovary. Mitochondrial lysates from X. laevis oocytes contain both DNA ligase III alpha and III beta but no detectable DNA ligase IV. Gel filtration, sedimentation, native gel electrophoresis, and in vitro cross-linking experiments demonstrate that mtDNA ligase III alpha exists as a high molecular weight complex. We discuss the possibility that DNA ligase III alpha exists in mitochondria in association with novel mitochondrial protein partners or as a homodimer.
Collapse
Affiliation(s)
- R M Perez-Jannotti
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
84
|
Abstract
UNLABELLED Polyethyleneimine (PEI) can be used as a DNA delivery mechanism in cell culture and in vivo. Cells can be transfected by using surface-bound PEI, as well as by PEI/DNA microparticles. In the present experiments we extended these observations by preparing microspheres with covalently attached PEI. Blends of poly(epsilon-CBZ-L-lysine) mixed with poly(D,L-lactic-co-glycolic acid) were formed into microspheres using a double-emulsification/solvent evaporation procedure. CBZ (carbobenzoxy) groups on the surface of microspheres were removed by Li(0) /liquid ammonia reduction. Surface amino groups were used for covalent attachment of PEI and other molecules. Silica microspheres with bonded-phase PEI were also used. Microspheres were mixed with plasmid DNA encoding green fluorescent protein and added to cultured cells. PEI-coated microspheres transfected cultured Caco cells and MH-S alveolar macrophages. Expression of the transfected DNA increased over several days. MH-S cells phagocytosed PEI-coated silica microspheres, which were shown to reside in an acidic subcellular compartment. This was demonstrated by conjugating a pH-sensitive fluorescent dye (seminaphthofluorescein, SNAFL) to the microsphere surface. Transfection of MH-S cells was increased when plasmid DNA was complexed with histone on the surface of the microspheres. CONCLUSION PEI-coated microspheres have potential as a DNA delivery device with advantages of the unique properties of PEI and ease of surface chemical modification.
Collapse
Affiliation(s)
- W S Manuel
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | | | | |
Collapse
|
85
|
Weber C, Reiss S, Langer K. Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. Int J Pharm 2000; 211:67-78. [PMID: 11137340 DOI: 10.1016/s0378-5173(00)00590-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of the present study was to establish several methods for the introduction of thiol groups onto the surface of human serum albumin (HSA) nanoparticles. Besides the epsilon-amino groups of lysine, the carboxyl groups of asparaginic and glutaminic acid, and the carbonyl groups of the cross-linker glutaraldehyde, sulfhydryl groups are possible targets for the covalent linkage of drugs to particle surfaces. In principle, the thiol groups were introduced by the reaction with dithiotreitol (DDT) or 2-iminothiolane, by quenching reactive aldehyde residues with cystaminiumdichloride or by coupling L-cysteine and cystaminiumdichloride by the aqueous carbodiimide reaction. The resulting nanoparticulate systems were characterised concerning the number of available sulfhydryl groups, particle size and particle density. It was shown, that by variation of the reaction conditions, e.g., the concentration of the coupling reagent or the sulfhydryl containing component as well as the reaction time, the proposed methods enabled the preparation of HSA nanoparticles with a well defined surface characteristic. Stability studies showed that the introduced thiol groups were relatively stable and lost their reactivity with a half-life of 28.2 days independently of the method used for the sulfhydryl group introduction. Besides the quantification of free sulfhydryl groups the covalent attachment of cystaminiumdichloride by the carbodiimide reaction was used to calculate the amount of free carboxyl groups on the surface of the nanoparticles. The toxicity of the modified nanoparticles was evaluated in cell culture experiments.
Collapse
Affiliation(s)
- C Weber
- Institut für Pharmazeutische Technologie, Biozentrum Niederursel, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 9, D-60439, Frankfurt am Main, Germany
| | | | | |
Collapse
|
86
|
Stimmel JB, Merrill BM, Kuyper LF, Moxham CP, Hutchins JT, Fling ME, Kull FC. Site-specific conjugation on serine right-arrow cysteine variant monoclonal antibodies. J Biol Chem 2000; 275:30445-50. [PMID: 10880507 DOI: 10.1074/jbc.m001672200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have engineered a cysteine residue at position 442 (EU/OU numbering) in the third constant domain (C(H)3) of the heavy chain of several IgGs with different specificities, isoforms, and variants with the intent to introduce a site for chemical conjugation. The variants were expressed in NS0 mouse myeloma cells, where monomeric IgG is the major form and formation of aggregate was minimal. Monomeric IgG contained no free thiol; however, it was discovered that the engineered thiols were reversibly blocked and could be reduced under controlled conditions. Following reduction, reactive thiol was conjugated with a cysteine-specific bifunctional chelator, bromoacetyl-TMT to a humanized 323/A3 IgG4 variant. Conjugation had no significant effect on antibody affinity. To prove that the conjugation was site-specific, an antibody-TMT conjugate was labeled with lutetium-177 and subjected to peptide mapping followed by sequence analysis. Glu-C digestion demonstrated that 91% of the label was recovered in the COOH-terminal peptide fragment containing the engineered cysteine.
Collapse
Affiliation(s)
- J B Stimmel
- Department of Molecular Sciences, the Department of Structural Chemistry, Glaxo Wellcome, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Ikemoto H, Tani E, Ozaki I, Kitagawa H, Arita N. Calphostin C-mediated translocation and integration of Bax into mitochondria induces cytochrome c release before mitochondrial dysfunction. Cell Death Differ 2000; 7:511-20. [PMID: 10822274 DOI: 10.1038/sj.cdd.4400682] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.
Collapse
Affiliation(s)
- H Ikemoto
- Molecular Biology Research Laboratory, Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | |
Collapse
|
88
|
Lukacin R, Urbanke C, Gröning I, Matern U. The monomeric polypeptide comprises the functional flavanone 3beta-hydroxylase from Petunia hybrida. FEBS Lett 2000; 467:353-8. [PMID: 10675568 DOI: 10.1016/s0014-5793(00)01116-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Flavanone 3beta-hydroxylase catalyzes the Fe(II)/oxoglutarate-dependent hydroxylation of (2S)-flavanones to (2R,3R)-dihydroflavonols in the biosynthesis of flavonoids, catechins and anthocyanidins. The enzyme had been partially purified from Petunia hybrida and proposed to be active as a dimer of roughly 75 kDa in size. More recently, the Petunia 3beta-hydroxylase was cloned and shown to be encoded in a 41655 Da polypeptide. In order to characterize the molecular composition, the enzyme was expressed in a highly active state in Escherichia coli and purified to apparent homogeneity. Size exclusion chromatographies of the pure, recombinant enzyme revealed that this flavanone 3beta-hydroxylase exists in functional monomeric and oligomeric forms. Protein cross-linking experiments employing a specific homobifunctional sulfhydryl group reagent or the photochemical activation of tryptophan residues confirmed the tendency of the enzyme to aggregate to oligomeric complexes in solution. Thorough equilibrium sedimentation analyses, however, revealed a molecular mass of 39. 2+/-12 kDa for the recombinant flavanone 3beta-hydroxylase. The result implies that the monomeric polypeptide comprises the catalytically active flavanone 3beta-hydroxylase of P. hybrida, which may readily associate in vivo with other proteins.
Collapse
Affiliation(s)
- R Lukacin
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | | | |
Collapse
|
89
|
Rappsilber J, Siniossoglou S, Hurt EC, Mann M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem 2000; 72:267-75. [PMID: 10658319 DOI: 10.1021/ac991081o] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Most cellular functions are performed by multi-protein complexes. The identity of the members of such complexes can now be determined by mass spectrometry. Here we show that mass spectrometry can also be used in order to define the spatial organization of these complexes. In this approach, components of a protein complex are purified via molecular interactions using an affinity tagged member and the purified complex is then partially cross-linked. The products are separated by gel electrophoresis and their constituent components identified by mass spectrometry yielding nearest-neighbor relationships. In this study, a member of the yeast nuclear pore complex (Nup85p) was tagged and a six-member sub-complex of the pore was cross-linked and analyzed by 1D SDS-PAGE. Cross-linking reactions were optimized for yield and number of products. Analysis by MALDI mass spectrometry resulted in the identification of protein constituents in the cross-linked bands even at a level of a few hundred femtomoles. Based on these results, a model of the spatial organization of the complex was derived that was later supported by biological experiments. This work demonstrates, that the use of mass spectrometry is the method of choice for analyzing cross-linking experiments aiming on nearest neighbor relationships.
Collapse
Affiliation(s)
- J Rappsilber
- Protein Interaction Laboratory, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
90
|
Zhang HH, Blanco DR, Exner MM, Shang ES, Champion CI, Phillips ML, Miller JN, Lovett MA. Renaturation of recombinant Treponema pallidum rare outer membrane protein 1 into a trimeric, hydrophobic, and porin-active conformation. J Bacteriol 1999; 181:7168-75. [PMID: 10572117 PMCID: PMC103676 DOI: 10.1128/jb.181.23.7168-7175.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously observed that while native Treponema pallidum rare outer membrane protein 1 (Tromp1) is hydrophobic and has porin activity, recombinant forms of Tromp1 do not possess these properties. In this study we show that these properties are determined by conformation and can be replicated by proper renaturation of recombinant Tromp1. Native Tromp1, but not the 47-kDa lipoprotein, extracted from whole organisms by using Triton X-114, was found to lose hydrophobicity after treatment in 8 M urea, indicating that Tromp1's hydrophobicity is conformation dependent. Native Tromp1 was purified from 0.1% Triton X-100 extracts of whole organisms by fast-performance liquid chromatography (FPLC) and shown to have porin activity in planar lipid bilayers. Cross-linking studies of purified native Tromp1 with an 11 A cross-linking agent showed oligomeric forms consistent with dimers and trimers. For renaturation studies of recombinant Tromp1 (rTromp1), a 31,109-Da signal-less construct was expressed in Escherichia coli and purified by FPLC. FPLC-purified rTromp1 was denatured in 8 M urea and then renatured in the presence of 0.5% Zwittergent 3,14 during dialysis to remove the urea. Renatured rTromp1 was passed through a Sephacryl S-300 gel exclusion column previously calibrated with known molecular weight standards. While all nonrenatured rTromp1 eluted from the column at approximately the position of the carbonic anhydrase protein standard (29 kDa), all renatured rTromp1 eluted at the position of the phosphorylase b protein standard (97 kDa), suggesting a trimeric conformation. Trimerization was confirmed by using an 11 A cross-linking agent which showed both dimers and trimers similar to that of native Tromp1. Triton X-114 phase separations showed that all of renatured rTromp1, but none of nonrenatured rTromp1, phase separated exclusively into the hydrophobic detergent phase, similar to native Tromp1. Circular dichroism of nonrenatured and renatured rTromp1 showed a marked loss in alpha-helical secondary structure of renatured rTromp1 compared to the nonrenatured form. Finally, renatured rTromp1, but not the nonrenatured form, showed porin activity in planar liquid bilayers. These results demonstrate that proper folding of rTromp1 results in a trimeric, hydrophobic, and porin-active conformation similar to that of the native protein.
Collapse
Affiliation(s)
- H H Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Saxon ML, Lee DC. Mutagenesis reveals a role for epidermal growth factor receptor extracellular subdomain IV in ligand binding. J Biol Chem 1999; 274:28356-62. [PMID: 10497195 DOI: 10.1074/jbc.274.40.28356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular domain of the epidermal growth factor (EGF) receptor (EGFR) comprises four subdomains (I-IV) and mediates binding of several different polypeptide ligands, including EGF, transforming growth factor-alpha, and heparin-binding EGF. Previous studies have predominantly implicated subdomain III in ligand binding. To investigate a possible role for sequences in subdomain IV, we constructed several mutant EGFRs in which clusters of charged or aromatic amino acids were replaced with alanine. Analysis of stably transfected Chinese hamster ovary cells expressing mutant EGFRs confirmed that they were present on the cell surface at levels approaching that of the wild-type receptor. Although tyrosine phosphorylation of most mutants was markedly induced by EGF, a cluster mutation (mt25) containing four alanine substitutions in the span of residues 521-527 failed to respond. EGF-induced tyrosine phosphorylation of an alternative mutant (DeltaEN) with amino acids 518-589 deleted was also greatly diminished. Larger doses of EGF or heparin-binding EGF induced only weak tyrosine phosphorylation of mt25, whereas the response to transforming growth factor-alpha was undetectable. These results suggest that mt25 might be defective with respect to either ligand binding or receptor dimerization. Quantitative analyses showed that binding of (125)I-EGF to mt25 and DeltaEN was reduced to near background levels, whereas binding of EGF to other cluster mutants was reduced 60-70% compared with wild-type levels. Among the mutants, only mt25 and DeltaEN failed to form homodimers or to transphosphorylate HER2/Neu in response to EGF treatment. Collectively, our results are the first to provide direct evidence that discrete subdomain IV residues are required for normal binding of EGF family ligands. Significantly, they were obtained with the full-length receptor in vivo, rather than a soluble truncated receptor, which has been frequently used for structure/function studies of the EGFR extracellular region.
Collapse
Affiliation(s)
- M L Saxon
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|
92
|
Adachi S, Nakano T, Vliagoftis H, Metcalfe DD. Receptor-Mediated Modulation of Murine Mast Cell Function by α-Melanocyte Stimulating Hormone. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The proopiomelanocortin (POMC)-derived neuropeptide α-melanocyte stimulating hormone (α-MSH) is known to modulate some aspects of inflammation through direct effects on T cells, B cells, and monocytes. To determine whether α-MSH might similarly influence mast cell responsiveness, mast cells were examined to see if they expressed the receptor for α-MSH, melanocortin-1 (MC-1), and whether α-MSH altered mast cell function. We thus first identified MC-1 on bone marrow cultured murine mast cells (BMCMC) and a murine mast cell line (MCP-5) employing flow cytometry and through detection of specific binding. Subsequent treatment of mast cells with α-MSH increased the cAMP concentration in a characteristic biphasic pattern, demonstrating that α-MSH could affect intracellular processes. We next examined the effect of α-MSH on mediator release and cytokine expression. IgE/DNP-human serum albumin-stimulated histamine release from mast cells was inhibited by ∼60% in the presence of α-MSH. Although activation of BMCMC induced the expression of mRNAs for the inflammatory cytokines IL-1β, IL-4, IL-6, TNF-α, and the chemokine lymphotactin, mRNAs for IL-1β, TNF-α, and lymphotactin were down-modulated in the presence of α-MSH. Finally, IL-3-dependent proliferative activity of BMCMC was slightly but significantly augmented by α-MSH. Taken together, these observations suggest that α-MSH may exert an inhibitory effect on the mast cell-dependent component of a specific inflammatory response.
Collapse
Affiliation(s)
- Shiro Adachi
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Teruaki Nakano
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Harrisios Vliagoftis
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
93
|
Huang SM, Leventhal PS, Wiepz GJ, Bertics PJ. Calcium and phosphatidylserine stimulate the self-association of conventional protein kinase C isoforms. Biochemistry 1999; 38:12020-7. [PMID: 10508405 DOI: 10.1021/bi990594m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conflicting evidence exists as to whether "conventional" protein kinase C isoforms (cPKCs) function as monomers or oligomers. In this report, we demonstrate that purified cPKC isoforms can be rapidly cross-linked by the sulfhydryl-selective cross-linker bis(maleimido)hexane, but only in the presence of both Ca(2+) and phosphatidylserine; cross-linking was minimal in the presence of either of these activators alone. In addition, cross-linking of these cPKCs did not require Mg(2+) or ATP. Among the various phospholipids tested, phosphatidylserine was found to be the most effective in the promotion of cPKC self-association and for the stimulation of protein kinase activity toward the exogenous substrate histone. Phosphatidic acid and phosphatidylinositol were less effective in this regard, whereas phosphatidylcholine exhibited little ability to induce cPKC self-association or to stimulate kinase activity. An examination of the mechanism by which the cPKC isoforms self-associate in the presence of phospholipid/Ca(2+) revealed that this process occurred independently of phospholipid aggregation. Moreover, self-association was not inhibited by saturating the enzyme active site with a peptide substrate, suggesting that self-association is distinct from an enzyme-substrate interaction. Isoform-specific antibodies revealed that all cPKC isoforms (alpha, beta, and gamma) self-associate and that, in a mixture of cPKC isoforms, PKC-alpha forms primarily alpha-alpha homodimers. Besides cPKC interactions detected with purified enzyme, PKC-alpha also appeared capable of self-association in murine B82L fibroblasts that were treated with calcium ionophore, phorbol ester, or epidermal growth factor but not in untreated cells. Collectively, these data indicate that self-association occurs in parallel with cPKC activation, that self-association is not mediated by the substrate binding site, and, at least in the case of PKC-alpha, that the formation of isoform homodimers predominates.
Collapse
Affiliation(s)
- S M Huang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
94
|
Hrabie JA, Saavedra JE, Roller PP, Southan GJ, Keefer LK. Conversion of proteins to diazeniumdiolate-based nitric oxide donors. Bioconjug Chem 1999; 10:838-42. [PMID: 10502351 DOI: 10.1021/bc990035s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Michael reaction of the methoxymethyl-protected monodiazeniumdiolate of piperazine (MOM-PIPERAZI/NO) with 4-maleimidobutyric acid followed by its conversion to the N-hydroxy-succinimido ester produces a reagent capable of transferring the nitric oxide (NO)-donating diazeniumdiolate group to the terminal amines of the lysine residues contained in proteins. The reagent has been used to produce diazeniumdiolated bovine serum albumin (D-BSA) and diazeniumdiolated human serum albumin (D-HSA) containing 22 and 19 modified lysyl groups, respectively. Upon dissolution in pH 7.4 phosphate buffer at 37 degrees C, these albumin derivatives gradually released all of their contained NO (approximately 40 mol/mol of protein) with initial rates of about 30-40 pmol/min/mg and half-lives on the order of 3 weeks. This methodology is now available for use in exploiting the unique specific metabolic interactions of proteins to target NO therapy to specific physiological processes in vivo.
Collapse
Affiliation(s)
- J A Hrabie
- Chemical Synthesis and Analysis Laboratory and Intramural Research Support Program, SAIC Frederick, NCI-FCRDC, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
95
|
Tebbey PW, Hagen M, Hancock GE. Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. J Exp Med 1998; 188:1967-72. [PMID: 9815273 PMCID: PMC2212411 DOI: 10.1084/jem.188.10.1967] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We analyzed the immune responses evoked by a series of overlapping peptides to better understand the molecular basis for respiratory syncytial virus (RSV) G protein-induced eosinophilia in BALB/c mice. In vitro stimulation of spleen cells from natural G protein-primed mice showed dominant proliferative and cytokine (interferon [IFN]-gamma and interleukin [IL]-5) responses to a peptide encompassing amino acids 184-198. Mice vaccinated with peptide 184- 198 conjugated to keyhole limpet hemocyanin showed significant pulmonary eosinophilia (39.5%) after challenge with live RSV. In contrast, mice immunized with a peptide (208-222) conjugate associated with induction of IFN-gamma secreting spleen cells did not exhibit pulmonary eosinophilia after challenge. The in vivo depletion of CD4(+) cells abrogated pulmonary eosinophilia in mice vaccinated with the peptide 184-198 conjugate, whereas the depletion of CD8(+) cells had a negligible effect. Therefore, we have identified an association between peptide 184- 198 of natural G protein and the CD4(+) T cell-mediated induction of pulmonary eosinophilia after live RSV challenge. Out of 43 human donors, 6 provided peripheral blood mononuclear cells that showed reactivity to G protein from RSV A2, 3 of which responded to peptide 184- 198. The results have important implications for the development of a vaccine against RSV.
Collapse
Affiliation(s)
- P W Tebbey
- Department of Immunology Research, Wyeth-Lederle Vaccines and Pediatrics, West Henrietta, New York 14586-9728, USA
| | | | | |
Collapse
|
96
|
Pan OH, Beck K. The C-terminal domain of matrilin-2 assembles into a three-stranded alpha-helical coiled coil. J Biol Chem 1998; 273:14205-9. [PMID: 9603923 DOI: 10.1074/jbc.273.23.14205] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilin-2 is a member of von Willebrand factor A containing extracellular matrix proteins in which the cDNA-derived sequence shows similar domain organization to cartilage matrix protein/matrilin-1, but information on the protein structure is limited. Here we studied the oligomerization potential of a synthetic peptide NH2-ENLILFQNVANEEVRKLTQRLEEMTQRMEALENRLKYR-COOH corresponding to the C-terminal sequence of mouse matrilin-2. The central portion of this sequence shows a periodicity of hydrophobic residues occupying positions a and d of a heptad pattern (abcdefg)n, which is characteristic for alpha-helical coiled-coil proteins. Circular dichroism spectroscopy revealed a high alpha-helical content, and the shape of the spectra is indicative for a coiled-coil conformation. Chemical cross-linking and size exclusion chromatography suggest a homotrimeric configuration. Thermal denaturation in benign buffer shows a single cooperative transition with DeltaH0 = -375 kJ/mol. Melting temperatures Tm varied from 38 to 51 degreesC within a concentration range of 10 to 85 microM, which is about 35 degreesC lower than determined for a peptide corresponding to the C-terminal domain of matrilin-1. The data suggest that despite the low sequence identity within this region, matrilin-2 will form a homotrimer as matrilin-1 does.
Collapse
Affiliation(s)
- O H Pan
- Department of Biological Science, Rutgers-The State University of New Jersey, Piscataway, New Jersey 08855, USA
| | | |
Collapse
|
97
|
Tournier E, Wallach J, Blond P. Sulfosuccinimidyl 4-(N-maleimidomethyl)-1-cyclohexane carboxylate as a bifunctional immobilization agent. Optimization of the coupling conditions. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00008-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Löster K, Josić D. Analysis of protein aggregates by combination of cross-linking reactions and chromatographic separations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:439-61. [PMID: 9392387 DOI: 10.1016/s0378-4347(97)00215-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical cross-linking provides a method that covalently bridges near-neighbour associations within proteins and protein aggregates. Combined with chromatographic separations and protein-chemical methods, it may be used to localize and to investigate three-dimensional relations as present under natural conditions. This paper reviews the chemistry and application of cross-linking reagents and the development of combination experimental approaches in view of chromatographic separations and cross-linking reactions. Investigations of homooligomeric and heterooligomeric protein associations as well as conformational analysis are presented.
Collapse
Affiliation(s)
- K Löster
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | |
Collapse
|
99
|
Haward SR, Napier JA, Gray JC. Chloroplast SecA functions as a membrane-associated component of the Sec-like protein translocase of pea chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:724-30. [PMID: 9342223 DOI: 10.1111/j.1432-1033.1997.00724.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein cross-linking studies with a thylakoid membrane translocation intermediate were used to demonstrate that chloroplast SecA functions as a membrane-associated component of the Sec-like ATP-dependent protein translocase of pea chloroplasts. In assays with isolated thylakoids, it was observed that translocation of the 33-kDa protein of the oxygen-evolving complex of photosystem II (OE33) decreased when the ATP concentration was low, and that the protein accumulated as a bound precursor. The bound precursor was able to be translocated into the lumen when the ATP concentration was raised, indicating that the precursor was bound to the translocation apparatus. Inclusion of apyrase in the import reaction prevented translocation but did not affect precursor binding to the membrane. When this translocation intermediate was treated with the cross-linking agent disuccinimidyl suberate, a single predominant cross-linked product of 120 kDa was produced. This conjugate could be immunoprecipitated with antibodies to pea chloroplast SecA, identifying the cross-linking partner as SecA. This provides direct evidence for a functional interaction between a thylakoid precursor protein and a component of the thylakoid protein-translocation apparatus.
Collapse
Affiliation(s)
- S R Haward
- Department of Plant Sciences and Cambridge Centre for Molecular Recognition, University of Cambridge, England
| | | | | |
Collapse
|
100
|
Kim KS, Wegiel J, Sapienza V, Chen J, Hong H, Wisniewski HM. Immunoreactivity of presenilin-1 in human, rat and mouse brain. Brain Res 1997; 757:159-63. [PMID: 9200512 DOI: 10.1016/s0006-8993(97)00243-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibodies (mAbs) D3G6 and C8A5, specific for amino acid residues 160-168 of S182 protein, immunolabeled neurons, ependymal and choroid plexus cells, and myocytes in brain sections from normal subjects and people with Alzheimer disease or Down syndrome and in rats and mice. Oligodendroglia, microglia, and the majority of astrocytes were negative. S182 protein or a fragment of the protein detected with these mAbs is not a constituent of amyloid-beta deposits or tangles.
Collapse
Affiliation(s)
- K S Kim
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | | | | | |
Collapse
|