51
|
Abstract
Role of CFTR in Airway Disease. Physiol. Rev. 79, Suppl.: S215-S255, 1999. - Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), which accounts for the cAMP-regulated chloride conductance of airway epithelial cells. Lung disease is the chief cause of morbidity and mortality in CF patients. This review focuses on mechanisms whereby the deletion or impairment of CFTR chloride channel function produces lung disease. It examines the major themes of the channel hypothesis of CF, which involve impaired regulation of airway surface fluid volume or composition. Available evidence indicates that the effect of CFTR deletion alters physiological functions of both surface and submucosal gland epithelia. At the airway surface, deletion of CFTR causes hyperabsorption of sodium chloride and a reduction in the periciliary salt and water content, which impairs mucociliary clearance. In submucosal glands, loss of CFTR-mediated salt and water secretion compromises the clearance of mucins and a variety of defense substances onto the airway surface. Impaired mucociliary clearance, together with CFTR-related changes in the airway surface microenvironment, leads to a progressive cycle of infection, inflammation, and declining lung function. Here, we provide the details of this pathophysiological cascade in the hope that its understanding will promote the development of new therapies for CF.
Collapse
Affiliation(s)
- J M Pilewski
- Departments of Medicine and of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
52
|
Ulrich CD, Wood P, Hadac EM, Kopras E, Whitcomb DC, Miller LJ. Cellular distribution of secretin receptor expression in rat pancreas. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1437-44. [PMID: 9843782 DOI: 10.1152/ajpgi.1998.275.6.g1437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Secretin is an important regulator of pancreatic function, but the molecular basis of its actions is not well understood. We have, therefore, used in situ autoradiography, photoaffinity labeling, and RNase protection assays with healthy rat pancreas, dispersed acinar cells, and pancreas depleted of acinar cells to explore the cellular distribution and molecular identity of high-affinity secretin receptors in this complex organ. The autoradiographic examination of 125I-labeled [Tyr10]rat secretin-27 binding to normal pancreas demonstrated saturable and specific high-affinity binding sites on both acinar and duct cells, with a uniform lobular distribution, but with no binding above background over islets or vascular structures. Photoaffinity labeling demonstrated that the ductular binding site in acinar cell-depleted copper-deficient rat pancreas represented the same glycoprotein with a molecular weight of 50,000-62,000 that was present on acinar cells. RNase protection assays confirmed the molecular identity of the secretin receptors expressed on these distinct cells. The apparent absence or extreme low density of similar secretin receptors on islets and pancreatic vascular structures suggests that the pharmacological effects of secretin on those cells may either be indirect or mediated by another secretin family receptor that recognizes this hormone with lower affinity.
Collapse
Affiliation(s)
- C D Ulrich
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0595, USA
| | | | | | | | | | | |
Collapse
|
53
|
Cho WK, Mennone A, Boyer JL. Intracellular pH regulation in bombesin-stimulated secretion in isolated bile duct units from rat liver. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1028-36. [PMID: 9815033 DOI: 10.1152/ajpgi.1998.275.5.g1028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bombesin, a neuropeptide, stimulates fluid and HCO-3 secretion from cholangiocytes, but the underlying mechanisms are poorly understood. In this study, we aimed to examine the effects of bombesin on ion transport processes involved in the regulation of intracellular pH (pHi) and HCO-3 secretion in polarized cholangiocytes. Isolated bile duct units from normal rat liver were used to measure pHi by 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein 495 nm-to-440 nm dual ratio methods. Bombesin increased Cl--HCO-3 exchange activity but did not affect basal pHi or the activities of Na+/H+ exchange or Na+-HCO-3 symport. Depolarization of cholangiocytes increased basal pHi and the activity of Cl-/HCO-3 exchange, suggesting that an electrogenic Na+-HCO-3 symport might function as a counterregulatory pHi mechanism. Na+-independent acid-extruding mechanisms were not observed. We conclude that bombesin stimulates biliary secretion from cholangiocytes by activating luminal Cl-/HCO-3 exchange, which may be coupled to basolateral electrogenic Na+-HCO-3 symport.
Collapse
Affiliation(s)
- W K Cho
- Division of Gastroenterology/Hepatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
54
|
Lansdell KA, Kidd JF, Delaney SJ, Wainwright BJ, Sheppard DN. Regulation of murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in Chinese hamster ovary cells. J Physiol 1998; 512 ( Pt 3):751-64. [PMID: 9769419 PMCID: PMC2231228 DOI: 10.1111/j.1469-7793.1998.751bd.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique. 2. The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl- channels that had previously been activated by protein kinase A. 3. Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl- channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux. 4. The alkaline phosphatase inhibitor, (-)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR. 5. As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR.
Collapse
Affiliation(s)
- K A Lansdell
- Human Genetics Unit, Department of Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
55
|
Novak I. beta-Adrenergic regulation of ion transport in pancreatic ducts: patch-clamp study of isolated rat pancreatic ducts. Gastroenterology 1998; 115:714-21. [PMID: 9721169 DOI: 10.1016/s0016-5085(98)70151-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS In the intact pancreas, bicarbonate secretion is thought to be controlled by a number of regulators, including adrenergic agonists. The aim of this study was to investigate the effects of adrenergic agonists on pancreatic ducts, which are the site of bicarbonate secretion. METHODS Small intralobular ducts were isolated from rat pancreas and studied in vitro by the whole-cell patch clamp technique. Cell membrane voltages and currents were indicators of cellular ion transport. In some ducts, intracellular Ca2+ activity was measured by fluorescence optical methods. RESULTS Unstimulated duct cells had a membrane voltage (Vm) of about -50 mV. Isoproterenol had a concentration-dependent effect on Vm; at 10(-7) mol/L, it depolarized Vm by 20-25 mV and the cell conductance increased by 100 nanosiemens. These effects were a result of opening of luminal Cl- channels. Phenylephrine had much smaller effects. At comparable concentrations, it depolarized Vm by a few millivolts. Neither agonist had significant effects on intracellular Ca2+. CONCLUSIONS This study provides the first direct evidence that adrenergic stimulation, namely, that of beta-adrenoceptors, controls ion transport in pancreatic ducts. Similar to secretin, isoproterenol stimulation leads to opening of luminal Cl- channels, and HCO3- enters the lumen in exchange for Cl-.
Collapse
Affiliation(s)
- I Novak
- August Krogh Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
56
|
Ishiguro H, Naruse S, Steward MC, Kitagawa M, Ko SB, Hayakawa T, Case RM. Fluid secretion in interlobular ducts isolated from guinea-pig pancreas. J Physiol 1998; 511 ( Pt 2):407-22. [PMID: 9706019 PMCID: PMC2231128 DOI: 10.1111/j.1469-7793.1998.407bh.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Pancreatic HCO3- and fluid secretion were studied by monitoring luminal pH (pHL) and luminal volume simultaneously in interlobular duct segments isolated from guinea-pig pancreas. The secretory rate and HCO3- flux were estimated from fluorescence images obtained following microinjection of BCECF-dextran (70 kDa, 20 microM) into the duct lumen. 2. Ducts filled initially with a Cl--rich solution swelled steadily (2.0 nl min-1 mm-2) when HCO3-/CO2 was introduced, and the luminal pH increased to 8.08. When Cl- was replaced by glucuronate, spontaneous fluid secretion was reduced by 75 %, and pHL did not rise above 7.3. 3. Cl--dependent spontaneous secretion was largely blocked by luminal H2DIDS (500 microM). We conclude that, in unstimulated ducts, HCO3- transport across the luminal membrane is probably mediated by Cl--HCO3- exchange. 4. Secretin (10 nM) and forskolin (1 microM) both stimulated HCO3- and fluid secretion. The final value of pHL (8.4) and the increase in secretory rate (1.5 nl min-1 mm-2) after secretin stimulation were unaffected by substitution of Cl-. 5. The Cl--independent component of secretin-evoked secretion was not affected by luminal H2DIDS. This suggests that a Cl--independent mechanism provides the main pathway for luminal HCO3- transport in secretin-stimulated ducts. 6. Ducts filled initially with a HCO3--rich fluid (125 mM HCO3-, 23 mM Cl-) secreted a Cl--rich fluid while unstimulated. This became HCO3--rich when secretin was applied. 7. Addition of H2DIDS and MIA (10 microM) to the bath reduced the secretory rate by 56 and 18 %, respectively. Applied together they completely blocked fluid secretion. We conclude that basolateral HCO3- transport is mediated mainly by Na+-HCO3- cotransport rather than by Na+-H+ exchange.
Collapse
Affiliation(s)
- H Ishiguro
- Internal Medicine II, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Hanrahan JW, Kone Z, Mathews CJ, Luo J, Jia Y, Linsdell P. Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods Enzymol 1998; 293:169-94. [PMID: 9711609 DOI: 10.1016/s0076-6879(98)93014-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
58
|
Els WJ, Liu X, Helman SI. Differential effects of phorbol ester (PMA) on blocker-sensitive ENaCs of frog skin and A6 epithelia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C120-9. [PMID: 9688842 DOI: 10.1152/ajpcell.1998.275.1.c120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) caused complex transient perturbations of amiloride-sensitive short-circuit Na+ currents (INa) in A6 epithelia and frog skins that were tissue and concentration dependent. A noninvasive channel blocker pulse method of noise analysis (18) was used to investigate how PMA caused time-dependent changes of apical membrane epithelial Na+ channel (ENaC) single-channel currents, channel open probabilities (Po), and channel densities (NT). In A6 epithelia, 5 and 50 nM PMA caused within 7 min concentration-dependent sustained decreases of Po (approximately 55% below control, 50 nM) and rapid compensatory transient increases of NT within 7 min ( approximately 220% above control, 50 nM), resulting in either small transient increases of INa at 5 nM PMA or small biphasic decreases of INa at 50 nM PMA. In contrast to A6 epithelia, 50 and 500 nM PMA in frog skin caused after a delay of at least 10 min transient increases of NT to approximately 60-70% above control at 30-60 min. Unlike A6 epithelia, Po was increased approximately 15% above control within 7 min and remained within +/-10-15% of control for the duration of the 2-h experiments. Despite differences in the time courses of secondary inhibition of transport in A6 epithelia and frog skin, the delayed downregulation of transport was due to time-dependent decreases of NT from their preelevated levels in both tissues. Whereas Po is decreased within minutes in A6 epithelia as measured by noise analysis or by patch clamp (8), the discrepancy in regulation of NT in A6 epithelia as measured by noise analysis and patch clamp is most likely explained by the inability of on-cell patches formed before treatment of tissues with PMA to respond to regulation of their channel densities.
Collapse
Affiliation(s)
- W J Els
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
59
|
Blazer-Yost BL, Liu X, Helman SI. Hormonal regulation of ENaCs: insulin and aldosterone. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1373-9. [PMID: 9612225 DOI: 10.1152/ajpcell.1998.274.5.c1373] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although a variety of hormones and other agents modulate renal Na+ transport acting by way of the epithelial Na+ channel (ENaC), the mode(s), pathways, and their interrelationships in regulation of the channel remain largely unknown. It is likely that several hormones may be present concurrently in vivo, and it is, therefore, important to understand potential interactions among the various regulatory factors as they interact with the Na+ transport pathway to effect modulation of Na+ reabsorption in distal tubules and other native tissues. This study represents specifically a determination of the interaction between two hormones, namely, aldosterone and insulin, which stimulate Na+ transport by entirely different mechanisms. We have used a noninvasive pulse protocol of blocker-induced noise analysis to determine changes in single-channel current (iNa), channel open probability (Po), and functional channel density (NT) of amiloride-sensitive ENaCs at various time points following treatment with insulin for 3 h of unstimulated control and aldosterone-pretreated A6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs (NT) involved in transport. The very early (10 min) increases of channel density were accompanied by relatively small decreases of iNa (10-20%) and decreases of p.o. (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes of iNa, p.o., and NT were transient, returning very slowly over 3 h toward their respective control values at the time of addition of insulin. We conclude that aldosterone and insulin act independently to stimulate apical Na+ entry into the cells of A6 epithelia by increase of channel density.
Collapse
Affiliation(s)
- B L Blazer-Yost
- Biology Department, Indiana University-Purdue University at Indianapolis 46202, USA
| | | | | |
Collapse
|
60
|
Luo J, Pato MD, Riordan JR, Hanrahan JW. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1397-410. [PMID: 9612228 DOI: 10.1152/ajpcell.1998.274.5.c1397] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels.
Collapse
Affiliation(s)
- J Luo
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
61
|
Abstract
Chloride channels are widely expressed and play important roles in cell volume regulation, transepithelial transport, intracellular pH regulation, and membrane excitability. Most chloride channels have yet to be identified at a molecular level. The ClC gene family and the cystic fibrosis transmembrane conductance regulator (CFTR) are distinct chloride channels expressed in many cell types, and mutations in their genes are the cause of several diseases including myotonias, cystic fibrosis, and kidney stones. Because of their molecular definition and roles in disease, these channels have been studied intensively over the past several years. The focus of this review is on recent studies that have provided new insights into the mechanisms governing the opening and closing, i.e. gating, of the ClC and CFTR chloride channels.
Collapse
Affiliation(s)
- J K Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6100, USA.
| |
Collapse
|
62
|
Mathews CJ, Tabcharani JA, Chang XB, Jensen TJ, Riordan JR, Hanrahan JW. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel. J Physiol 1998; 508 ( Pt 2):365-77. [PMID: 9508802 PMCID: PMC2230889 DOI: 10.1111/j.1469-7793.1998.365bq.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023] Open
Abstract
1. The relationship between phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and its gating by nucleotides was examined using the patch clamp technique by comparing strongly phosphorylated wild-type (WT) channels with weakly phosphorylated mutant channels lacking four (4SA) or all ten (10SA) dibasic consensus sequences for phosphorylation by protein kinase A (PKA). 2. The open probability (Po) of strongly phosphorylated WT channels in excised patches was about twice that of 4SA and 10SA channels, after correcting for the number of functional channels per patch by addition of adenylylimidodiphosphate (AMP-PNP). The mean burst durations of WT and mutant channels were similar, and therefore the elevated Po of WT was due to its higher bursting rate. 3. The ATP dependence of the 10SA mutant was shifted to higher nucleotide concentrations compared with WT channels. The relationship between Po and [ATP] was noticeably sigmoid for 10SA channels (Hill coefficient, 1.8), consistent with positive co-operativity between two sites. Increasing ATP concentration to 10 mM caused the Po of both WT and 10SA channels to decline. 4. Wild-type and mutant CFTR channels became locked in open bursts when exposed to mixtures of ATP and the non-hydrolysable analogue AMP-PNP. The rate at which the low phosphorylation mutants became locked open was about half that of WT channels, consistent with Po being the principal determinant of locking rate in WT and mutant channels. 5. We conclude that phosphorylation at 'weak' PKA sites is sufficient to sustain the interactions between the ATP binding domains that mediate locking by AMP-PNP. Phosphorylation of the strong dibasic PKA sites controls the bursting rate and Po of WT channels by increasing the apparent affinity of CFTR for ATP.
Collapse
Affiliation(s)
- C J Mathews
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in mammalian cells. J Physiol 1998; 508 ( Pt 2):379-92. [PMID: 9508803 PMCID: PMC2230885 DOI: 10.1111/j.1469-7793.1998.379bq.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. To investigate the function of the murine cystic fibrosis transmembrane conductance regulator (CFTR), a full-length cDNA encoding wild-type murine CFTR was assembled and stably expressed in Chinese hamster ovary (CHO) cells. 2. Like human CFTR, murine CFTR formed Cl- channels that were regulated by cAMP-dependent phosphorylation and intracellular ATP. However, murine CFTR Cl- channels had a reduced single-channel conductance and decreased open probability (Po) compared with those of human CFTR. 3. Analysis of the dwell time distributions of single channels suggested that the reduced Po of murine CFTR was caused by both decreased residence in the open state and transitions to a new closed state, described by an intermediate closed time constant. 4. For both human and murine CFTR, ATP and ADP regulated the rate of exit from the long-lived closed state. 5. 5'-Adenylylimidodiphosphate (AMP-PNP) and pyrophosphate, two compounds that disrupt cycles of ATP hydrolysis, stabilized the open state of human CFTR. However, neither agent locked murine CFTR Cl- channels open, although AMP-PNP increased the Po of murine CFTR. 6. The data indicate that although human and murine CFTR have many properties in common, some important differences in function are observed. These differences could be exploited in future studies to provide new understanding about CFTR.
Collapse
Affiliation(s)
- K A Lansdell
- Human Genetics Unit, Department of Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
64
|
Sohma Y, Harris A, Argent BE, Gray MA. A novel type of internal barium block of a maxi-K+ channel from human vas deferens epithelial cells. Biophys J 1998; 74:199-209. [PMID: 9449323 PMCID: PMC1299375 DOI: 10.1016/s0006-3495(98)77780-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently shown that a maxi-K+ channel from vas deferens epithelial cells contains two Ba2+-binding sites accessible from the external side: a "flickering" site located deep in the channel pore and a "slow" site located close to the extracellular mouth of the channel. Using the patch-clamp technique, we have now studied the effect of internal Ba2+ on this channel. Cytoplasmic Ba2+ produced a voltage- and concentration-dependent "slow" type of block with a dissociation constant of approximately 100 microM. However, based on its voltage dependence and sensitivity to K+ concentration, this block was clearly different from the external "slow" Ba2+ block previously described. Kinetic analysis also revealed a novel "fast flickering" block restricted to channel bursts, with an unblocking rate of approximately 310 s(-1), some 10-fold faster than the external "flickering" block. Taken together, these results show that this channel contains multiple Ba2+-binding sites within the conduction pore. We have incorporated this information into a new model of Ba2+ block, a novel feature of which is that internal "slow" block results from the binding of at least two Ba2+ ions. Our results suggest that current models for Ba2+ block of maxi-K+ channels need to be revised.
Collapse
Affiliation(s)
- Y Sohma
- Department of Physiological Sciences, University Medical School, Newcastle upon Tyne, England
| | | | | | | |
Collapse
|
65
|
Tabcharani JA, Linsdell P, Hanrahan JW. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 1997; 110:341-54. [PMID: 9379167 PMCID: PMC2229372 DOI: 10.1085/jgp.110.4.341] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Accepted: 07/11/1997] [Indexed: 02/05/2023] Open
Abstract
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22 degrees C or 8.7 pS at 37 degrees C. The current-voltage relationship became linear when patches were excised into symmetrical, -tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22 degrees C to 10.9 pS at 37 degrees C. The conductance at 22 degrees C was approximately 1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten-type function having a of approximately 38 mM and maximum conductance of 10 pS at 22 degrees C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (P/P = 0.003-0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated P(1.8) > P(1. 3) > P(1.0) > P(0.17), consistent with a "weak field strength" selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1-2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (P/P< 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of P/P ratios that have been reported for the CFTR channel. The low P/P ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a "weak field strength" anion selectivity sequence.
Collapse
Affiliation(s)
- J A Tabcharani
- Department of Physiology, McGill University, Montréal, Québec Canada H3G 1Y6
| | | | | |
Collapse
|
66
|
Reid GJ, Hyde K, Ho SB, Harris A, Weatherall D. Cystic Fibrosis of the Pancreas: Involvement of MUC6 Mucin in Obstruction of Pancreatic Ducts. Mol Med 1997. [DOI: 10.1007/bf03401687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
67
|
Jilling T, Kirk KL. The biogenesis, traffic, and function of the cystic fibrosis transmembrane conductance regulator. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:193-241. [PMID: 9102394 DOI: 10.1016/s0074-7696(08)62361-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel that is encoded by the gene that is defective in cystic fibrosis. This ion channel resides at the luminal surfaces and in endosomes of epithelial cells that line the airways, intestine, and a variety of exocrine glands. In this article we discuss current hypotheses regarding how CFTR functions as a regulated ion channel and how CF mutations lead to disease. We also evaluate the emerging notion that CFTR is a multifunctional protein that is capable of regulating epithelial physiology at several levels, including the modulation of other ion channels and the regulation of intracellular membrane traffic. Elucidating the various functions of CFTR should contribute to our understanding of the pathology in cystic fibrosis, the most common lethal genetic disorder among Caucasians.
Collapse
Affiliation(s)
- T Jilling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
68
|
Affiliation(s)
- S C Martin
- Department of Physiology, University of Rochester, School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
69
|
Sørensen JB, Larsen EH. Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin. J Gen Physiol 1996; 108:421-33. [PMID: 8923267 PMCID: PMC2229347 DOI: 10.1085/jgp.108.5.421] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The isolated epithelium of toad skin was disintegrated into single cells by treatment with collagenase and trypsine. Chloride channels of cell-attached and excised inside-out apical membrane-patches of mitochondria-rich cells were studied by the patch-clamp technique. The major population of Cl- channels constituted small 7-pS linear channels in symmetrical solutions (125 mM Cl-). In cell-attached and inside-out patches the single channel i/V-relationship could be described by electrodiffusion of Cl- with a Goldmann-Hodgkin-Katz permeability of, PCl = 1.2 x 10(-14) - 2.6 x 10(-14) cm3. s-1. The channel exhibited voltage-independent activity and could be activated by cAMP. This channel is a likely candidate for mediating the well known cAMP-induced transepithelial Cl- conductance of the amphibian skin epithelium. Another population of Cl- channels exhibited large, highly variable conductances (upper limit conductances, 150-550 pS) and could be activated by membrane depolarization. A group of intermediate-sized Cl(-)-channels included: (a) channels (mean conductance, 30 pS) with linear or slightly outwardly rectifying i/V-relationships and activity occurring in distinct "bursts," (b) channels (conductance-range, 10-27 pS) with marked depolarization-induced activity, and (c) channels with unresolvable kinetics. The variance of current fluctuations of such "noisy" patches exhibited a minimum close to the equilibrium-potential for Cl-. With channels occurring in only 38% of sealed patches and an even lower frequency of voltage-activated channels, the chloride conductance of the apical membrane of mitochondria-rich cells did not match quantitatively that previously estimated from macroscopic Ussing-chamber experiments. From a qualitative point of view, however, we have succeeded in demonstrating the existence of Cl-channels in the apical membrane with features comparable to macroscopic predictions, i.e., activation of channel gating by cAMP and, in a few patches, also by membrane depolarization.
Collapse
Affiliation(s)
- J B Sørensen
- August Krogh Institute, University of Copenhagen, Denmark.
| | | |
Collapse
|
70
|
Evans RL, Ashton N, Elliott AC, Green R, Argent BE. Interactions between secretin and acetylcholine in the regulation of fluid secretion by isolated rat pancreatic ducts. J Physiol 1996; 496 ( Pt 1):265-73. [PMID: 8910214 PMCID: PMC1160842 DOI: 10.1113/jphysiol.1996.sp021683] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Interlobular ducts were isolated from the rat pancreas and maintained in short-term tissue culture. Fluid secretion from these isolated ducts was measured using micropuncture techniques, intracellular calcium concentration ([Ca2+]i) by fura-2 microspectrofluorimetry, and cyclic AMP by radioimmunoassay. 2. Applying secretin and ACh simultaneously to ducts caused either a stimulation or an inhibition of fluid secretion depending on the doses employed. 3. The inhibitory effect of secretin and ACh could be relieved by atropine, and by the protein kinase C (PKC) inhibitors staurosporine and 1-(5-isoquinolinylsulphonyl)-2-methyl-piperazine (H-7). 4. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) and phorbol 12, 13-dibutyrate (PDBu) inhibited secretin-evoked fluid secretion. 5. ACh and TPA also inhibited fluid secretion stimulated by the adenylate cyclase activator, forskolin. 6. Neither secretin nor the PKC activators and inhibitors had any effect on either the increase in [Ca2+]i evoked by ACh or the increase in intracellular cyclic AMP evoked by secretin and forskolin. 7. We conclude that the inhibitory effect of combined doses of secretin and ACh on ductal fluid secretion is probably mediated by PKC at a point in the secretory mechanism distal to the generation of intracellular messengers.
Collapse
Affiliation(s)
- R L Evans
- Cell Physiology Group, School of Biological Sciences, University of Manchester, UK
| | | | | | | | | |
Collapse
|
71
|
Ishiguro H, Steward MC, Wilson RW, Case RM. Bicarbonate secretion in interlobular ducts from guinea-pig pancreas. J Physiol 1996; 495 ( Pt 1):179-91. [PMID: 8866361 PMCID: PMC1160734 DOI: 10.1113/jphysiol.1996.sp021583] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The transport of HCO3- across the luminal membrane of pancreatic duct cells was studied by monitoring the luminal pH of isolated guinea-pig interlobular ducts after microinjection of an extracellular fluoroprobe, the dextran conjugate of 2'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF-dextran). Luminal Cl- concentration was also measured by microfluorometry following microinjection of the dextran conjugates of 6-methoxy-N-(4-aminoalkyl)quinolinium bromide (ABQ-dextran) and Cl-NERF (Cl-NERF-dextran). 2. When HCO3-/CO2 was admitted to the bath, a transient acidification of the duct lumen was observed, followed by a marked alkalinization. The latter was abolished when the luminal Cl- concentration was reduced to 25-35 mM by replacement with glucuronate and may, therefore, be attributed to Cl(-)-HCO3- exchange at the luminal membrane. 3. Secretin, forskolin and acetylcholine stimulated HCO3- secretion into the lumen even when the luminal Cl- concentration was reduced to approximately 7 mM. Furthermore, agonist-evoked HCO3- secretion was not inhibited by luminal glibenclamide, dihydro-4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (H2DIDS) or 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB). These observations are not easily reconciled with HCO3- transport across the luminal membrane being mediated by Cl(-)-HCO3- exchange in parallel with a Cl- conductance. 4. Agonist-stimulated HCO3- secretion was blocked by omitting Na+ from the bath but not by addition of N-methyl-N-isobutylamiloride (MIA) or bafilomycin A1. This supports our previous conclusion that HCO3- entry into duct cells from the extracellular fluid requires Na+ but is not dependent on Na(+)-H+ exchange or vacuolar-type H(+)-ATPase activity. 5. The three actions of secretin on guinea-pig pancreatic duct cells described in this and the accompanying paper - stimulation of a relatively Cl(-)-insensitive luminal HCO3- efflux pathway, stimulation of basolateral Na(+)-HCO3- cotransport, and lack of effect on intracellular pH- require the current model of pancreatic HCO3- secretion to be modified.
Collapse
Affiliation(s)
- H Ishiguro
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
72
|
Ip WF, Bronsveld I, Kent G, Corey M, Durie PR. Exocrine pancreatic alterations in long-lived surviving cystic fibrosis mice. Pediatr Res 1996; 40:242-9. [PMID: 8827772 DOI: 10.1203/00006450-199608000-00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the development of the exocrine pancreas in Cftr-/- mice in comparison with age-matched littermates (Cftr+/+, Cftr+/-) up to 100 d postnatally. Controls were weaned either to mouse chow or a liquid diet; Cftr-/- mice were weaned solely to a liquid diet. Solid-fed control mice gained weight and showed a progressive increase in pancreatic protein, DNA, amylase, lipase, trypsin, and chymotrypsin activities. Liquid-fed control mice showed similar postnatal somatic and pancreatic growth, except that amylase and lipase activities were lower than in the solid-fed controls. Cftr-/- mice exhibited significantly lower body and pancreatic weights than did controls. Pancreatic protein content and enzyme activities (notably amylase and lipase) were consistently lower than in the age-matched litter-mates fed either diet. The reduction in lipase activity in Cftr-/- mice was noted before weaning. We concluded that the liquid diet influenced postnatal exocrine pancreatic development in mice. However, a further reduction in postnatal pancreatic growth and enzymatic activities in the Cftr-/- mice was noted. These alterations could be due to the primary cystic fibrosis defect, although secondary factors, such as malnutrition induced by decreased dietary intake or abnormal absorptive capacity, may be responsible.
Collapse
Affiliation(s)
- W F Ip
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
73
|
Abstract
1. Intracellular pH (pH1) was measured by microfluorimetry in secretory endpieces isolated from sheep parotid glands and loaded with the pH-sensitive fluoroprobe 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). 2. Stimulation with 1 microM acetylcholine (ACh) caused a large, transient decrease in pH1 of 0.37 +/- 0.02 pH units followed by a slower recovery. The transient, which was reduced by 60% in the absence of HCO3-, could be attributed mainly to HCO3- efflux. During sustained stimulation, pH1 increased to a value that exceeded the resting value by 0.083 +/- 0.023 pH units after 20 min. 3. The anion channel blocker NPPB (0.1 mM) reduced the transient acidification in response to ACh by 48% and raised pH1 during sustained stimulation. Simultaneous application of NPPB and ACh accelerated the re-alkalinization following the initial acidification, indicating that NPPB inhibits HCO3- efflux. 4. The stilbene derivative H2DIDS (0.5 mM) reduced the transient acidification in response to ACh by 76% but caused a marked decrease in pH1 during sustained stimulation. Simultaneous application of H2DIDS and ACh slowed the re-alkalinization following the initial acidification, indicating that the main effect of H2DIDS was to inhibit HCO3- accumulation. 5. In the absence of HCO3-, the recovery from an acid load was unaffected by ACh stimulation. Acid extrusion, although dependent on Na+, was not inhibited by amiloride (1 mM), clonidine (1 mM) or H2DIDS (0.5 mM) and was therefore provisionally attributed to a Na(+)-H+ exchanger isoform other than NHE1 or NHE2. 6. In the presence of HCO3-, the rate of recovery from an acid load was reduced during ACh stimulation, probably as a result of the increased efflux of HCO3-. Acid extrusion was dependent on Na+ and was significantly inhibited by H2DIDS. 7. We conclude that ACh-evoked HCO3- secretion in the sheep parotid gland differs from that in many other salivary glands by being driven predominantly by basolateral Na(+)-HCO3- cotransport rather than by Na(+)-H+ exchange.
Collapse
Affiliation(s)
- M C Steward
- Department of Physiology, University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
74
|
Hanrahan JW, Mathews CJ, Grygorczyk R, Tabcharani JA, Grzelczak Z, Chang XB, Riordan JR. Regulation of the CFTR chloride channel from humans and sharks. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1996; 275:283-91. [PMID: 8759925 DOI: 10.1002/(sici)1097-010x(19960701)275:4<283::aid-jez6>3.0.co;2-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) in an ATP-dependent channel which mediates cAMP-stimulated chloride secretion by epithelia, particularly those of the pancreas, airways, and intestine. CFTR homologues have been found in all higher vertebrates examined to date and also in some lower vertebrates, although only the human, shark, and Xenopus genes have been heterologously expressed and shown to generate protein kinase A-activated Cl channels. Once phosphorylated, CFTR channels require hydrolyzable nucleotides to be active, but they can be locked in an open burst state when exposed to mixtures of ATP and its hydrolysis-resistant analogue AMP-PNP. This locking requires low-level phosphorylation at unidentified sites that are not among the ten "strong" (dibasic) PKA consensus sequences on CFTR. Mutagenesis of the dibasic PKA sites, which reduces in vitro phosphorylation by > 98%, reduces open probability (Po) by about 50% whilst having no effect on burst duration. Thus, incremental phosphorylation of these sites under normal conditions does not increase Po by slowing down ATP hydrolysis and stabilizing the open burst state, although locking does strictly require low-level phosphorylation at one or more cryptic sites. In addition to serving as a Cl channel, there is compelling evidence that CFTR inhibits the amiloride-sensitive, epithelial sodium channel (ENaC). The mechanism of coupling is not known but most likely involves physical interactions between the channels, perhaps mediated by an intermediate protein that impinges on other transport proteins. CFTR does not function as a conductive channel for ATP; however, extracellular ATP does regulate epithelial channels through activation of P2U purinergic receptors and, after being hydrolyzed extracellularly, through activation of adenosine receptors which elevate cAMP.
Collapse
Affiliation(s)
- J W Hanrahan
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
75
|
Larsen EH, Price EM, Gabriel SE, Stutts MJ, Boucher RC. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes. Pflugers Arch 1996; 432:528-37. [PMID: 8766014 DOI: 10.1007/s004240050166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Sf9 insect Spodoptora frugiperda cell line was used for heterologous expression of the cloned human cystic fibrosis transmembrane conductance regulator (CFTR) cDNA, or the cloned beta-galactosidase gene, using the baculovirus Autographa califonica as the infection vector. Using application of the patch-clamp technique, evidence for functional expression of CFTR was obtained according to the following three criteria. Firstly, whole-cell currents recorded 2 days after infection with CFTR revealed a statistically significant increase of membrane conductance, approximately 25 times above that of mock-infected control cells, with the reversal potential of the major current component being governed by the chloride equilibrium potential (ECl). Secondly, in contrast to uninfected cells and cells infected with beta-galactosidase, the membrane conductance to chloride of CFTR-injected cells was stimulated by cytosolic adenosine 3',5'-cyclic monophosphate (cAMP), which was raised by exposing the cells to 10 microM forskolin. Thirdly, recordings of currents through single channels in excised outside-out membrane patches of CFTR-infected cells revealed channels which were clearly different from the native insect chloride channel. Excised outside-out patches of CFTR-infected and forskolin-stimulated cells exhibited wave-like gating kinetics of well-resolved current transitions. All-point Gaussian distributions revealed contributions from several (five to nine) identical channels. Such channels, in excised outside-out patches, studied with a pipette [Cl-] = 40 mM and a bath [Cl-] = 150 mM, rectified the current in agreement with simple electrodiffusion and with a single-channel Goldman-Hodgkin-Katz permeability, PCl = 1. 34 x 10(-14) +/- 0.23 x 10(-14 )cm3/s (n = 5), corresponding to a physiological single-channel conductance of 2.8 +/- 0.5 pS (VM = ECl) and a limiting conductance, gamma150/150, = 7.7 +/- 1.3 pS ([Cl-]Bath = [Cl-]Cell = 150 mM). Currents recorded from multichannel excised outside-out patches could shift from the above mode of resolvable unitary conductance transitions to one which was too fast to reveal the dwell-times of closed and open states. During periods characterized by noisy currents, the variance (sigma2) of current fluctuations about their stationary mean value depicted a U-shaped function of membrane potential, with a minimum value at a pipette potential where the chloride current was shown to be zero. Thus, it can be concluded that the current fluctuations are caused by fast gating of channels specific for chloride ions. Switching back and forth between the two gating modes of clusters of chloride channels occurred from moment to moment in excised patches when the membrane potential was held at a constant value indicating cooperative gating as a result of interaction between neighbouring chloride channels.
Collapse
Affiliation(s)
- E H Larsen
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | |
Collapse
|
76
|
Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR. Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem 1996; 271:15139-45. [PMID: 8662892 DOI: 10.1074/jbc.271.25.15139] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A cluster of 18 point mutations in exon 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been detected in patients with cystic fibrosis. These mutations cause single amino acid substitutions in the most C-terminal cytoplasmic loop (CL4, residues 1035-1102) of the CFTR chloride channel. Heterologous expression of the mutants showed that 12 produced only core-glycosylated CFTR, which was retained in the endoplasmic reticulum; the other six mutants matured and reached the cell surface. In some cases substitution of one member of pairs of adjacent residues resulted in misprocessing, whereas the other did not. Thus, the secondary structure of CL4 may contribute crucially to the proper folding of the entire CFTR molecule. Cyclic AMP-stimulated iodide efflux was not detected from cells expressing the misprocessed variants but was from the other six, indicating that their mutations cause relatively subtle channel defects. Consistent with this, these latter mutations generally are present in patients who are pancreatic-sufficient, while the processing mutants are mostly from patients who are pancreatic-insufficient. Single-channel patch-clamp analysis demonstrated that the processed mutants had the same ohmic conductance as wild-type CFTR, but a lower open probability, generally due to an increase in channel mean closed time and a reduction in mean open time. This suggests that mutations in CL4 do not affect pore properties of CFTR, but disrupt the mechanism of channel gating.
Collapse
Affiliation(s)
- F S Seibert
- Department of Medicine and Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
77
|
Venglarik CJ, Schultz BD, DeRoos AD, Singh AK, Bridges RJ. Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl- channels. Biophys J 1996; 70:2696-703. [PMID: 8744307 PMCID: PMC1225249 DOI: 10.1016/s0006-3495(96)79839-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel that is regulated by protein kinase A and cytosolic nucleotides. Previously, Sheppard and Welsh reported that the sulfonylureas glibenclamide and tolbutamide reduced CFTR whole cell currents. The aim of this study was to quantify the effects of tolbutamide on CFTR gating in excised membrane patches containing multiple channels. We chose tolbutamide because weak (i.e., fast-type) open channel blockers introduce brief events into multichannel recordings that can be readily quantified by current fluctuation analysis. Inspection of current records revealed that the addition of tolbutamide reduced the apparent single-channel current amplitude and increased the open-channel noise, as expected for a fast-type open channel blocker. The apparent decrease in unitary current amplitude provides a measure of open probability within a burst (P0 Burst), and the resulting concentration-response relationship was described by a simple Michaelis-Menten inhibition function. The concentration of tolbutamide causing a 50% reduction of Po Burst (540 +/- 20 microM) was similar to the concentration producing a 50% inhibition of short-circuit current across T84 colonic epithelial cell monolayers (400 +/- 20 microM). Changes in CFTR gating were then quantified by analyzing current fluctuations. Tolbutamide caused a high-frequency Lorentzian (corner frequency, fc > 300 Hz) to appear in the power density spectrum. The fc of this Lorentzian component increased as a linear function of tolbutamide concentration, as expected for a pseudo-first-order open-blocked mechanism and yielded estimates of the on rate (koff = 2.8 +/- 0.3 microM-1 s-1), the off rate (kon = 1210 +/- 225 s-1), and the dissociation constant (KD = 430 +/- 80 microM). Based on these observations, we propose that there is a bimolecular interaction between tolbutamide and CFTR, causing open channel blockade.
Collapse
Affiliation(s)
- C J Venglarik
- Department of Physiology and Biophysics, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
78
|
Affiliation(s)
- F Becq
- Department of Physiology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
79
|
Sohma Y, Harris A, Wardle CJ, Argent BE, Gray MA. Two barium binding sites on a maxi K+ channel from human vas deferens epithelial cells. Biophys J 1996; 70:1316-25. [PMID: 8785287 PMCID: PMC1225057 DOI: 10.1016/s0006-3495(96)79688-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using the patch clamp technique, we have investigated the blockade of maxi-K+ channels present on vas deferens epithelial cells by extracellular Ba2+. With symmetrical 140 mM K+ solutions, Ba2+ produced discrete blocking events consisting of both long closings of seconds duration (slow block) and fast closings of milliseconds duration (flickering block). Kinetic analysis showed that flickering block occurred according to an "open channel blocking" scheme and was eliminated by reducing external K+ to 4.5 mM. Slow block showed a complex voltage-dependence. At potentials between -20 mV and 20 mV, blockade was voltage-dependent; at potentials greater than 20 mV, blockade was voltage-independent, but markedly sensitive to the extracellular K+ concentration. These data reveal that the vas deferens maxi-K+ channel has two Ba2+ binding sites accessible from the extracellular side. Site one is located at the cytoplasmic side of the gating region and binding to this site causes flickering block. Site two is located close to the extracellular mouth of the channel and binding to this site causes slow block.
Collapse
Affiliation(s)
- Y Sohma
- Department of Physiological Sciences, University Medical School, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
80
|
Gray MA, Winpenny JP, Verdon B, McAlroy H, Argent BE. Chloride channels and cystic fibrosis of the pancreas. Biosci Rep 1995; 15:531-41. [PMID: 9156582 DOI: 10.1007/bf01204355] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) affects approximately 1 in 2000 people making it one of the commonest fatal, inherited diseases in the Caucasian population. CF is caused by mutations in a cyclic AMP-regulated chloride channel known as CFTR, which is found on the apical plasma membrane of many exocrine epithelial cells. In the CF pancreas, dysfunction of the CFTR reduces the secretory activity of the tubular duct cells, which leads to blockage of the ductal system and eventual fibrosis of the whole gland. One possible approach to treating the disease would be to activate an alternative chloride channel capable of bypassing defective CFTR. A strong candidate for this is a chloride channel regulated by intracellular calcium, which has recently been shown to protect the pancreas in transgenic CF mice. Pharmacological intervention directed at activating this calcium-activated Cl- conductance might provide a possible therapy to treat the problems of pancreatic dysfunction in CF.
Collapse
Affiliation(s)
- M A Gray
- Department of Physiological Sciences, University Medical School Framlington Place, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
81
|
Kajita H, Morishima S, Shirakata Y, Kotera T, Ueda S, Okuma M, Okada Y. A mini Cl- channel sensitive to external pH in the basolateral membrane of guinea-pig parietal cells. J Physiol 1995; 488 ( Pt 1):57-64. [PMID: 8568665 PMCID: PMC1156700 DOI: 10.1113/jphysiol.1995.sp020945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Voltage-independent whole-cell Cl- currents were recorded from both single, isolated parietal cells and parietal cells within gastric glands obtained from the fundus of guinea-pig stomach. 2. The Cl- currents were rapidly suppressed by a Cl- channel blocker, NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate), added to the (basolateral) bathing solution in a concentration-dependent manner with a half-maximal inhibition concentration of 12 microM. 3. The selectivity sequence among anions was I- > Br- > Cl- > F-, corresponding to Eisenman's sequence I. 4. The Cl- currents were independent of cytosolic Ca2+, cyclic AMP, cyclic GMP, GTP-gamma-S and cell volume, and were not affected by application of acid secretagogues, omeprazol, arachidonic acid or prostaglandin E2. 5. Reduction of pH in the (basolateral) bathing solution immediately inhibited the Cl- current with a pK (-log of KD) of 6.3, whereas changes in intracellular pH had no effect. 6. The single-channel conductance was estimated to be 0.46-0.6 pS by variance noise analysis during inhibition of whole-cell Cl- currents by NPPB or acidic pH. 7. It is concluded that pH-sensitive 'mini' Cl- channels, with a sub-picosiemens unitary conductance, exist in the basolateral membrane of guinea-pig parietal cells.
Collapse
Affiliation(s)
- H Kajita
- Department of Internal Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Kopelman H, Ferretti E, Gauthier C, Goodyer PR. Rabbit pancreatic acini express CFTR as a cAMP-activated chloride efflux pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C626-31. [PMID: 7573392 DOI: 10.1152/ajpcell.1995.269.3.c626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for adenosine 3',5'-cyclic monophosphate (cAMP)-activated chloride transport in epithelial cells. Isolated rabbit pancreatic acini possess a cAMP-activated chloride efflux mechanism distinct from zymogen granule secretion. To determine whether CFTR is expressed in acini, we used polymerase chain reaction (PCR) to amplify a 480-base pair (bp) sequence from reverse-transcribed rabbit acinar RNA. The PCR product was consistent with a 480-bp band amplified in T84 cells, and its sequence was > 90% homologous to human CFTR. CFTR antibody M3A7 recognized a 180- and a 160-kDa protein from acinar membranes consistent with bands seen in Chinese hamster ovary (CHO) cells transfected with CFTR. To determine if CFTR was responsible for the cAMP-activated chloride efflux previously demonstrated in pancreatic acini, we incubated acinar cells for 20 h with 1.75 microM CFTR antisense or sense oligodeoxynucleotide. Chloride efflux, in response to 8-bromoadenosine 3',5'-cyclic monophosphate and phorbol ester but not to calcium ionophore, was selectively inhibited by CFTR antisense oligodeoxynucleotide. Antisense oligodeoxynucleotide did not inhibit acinar amylase secretion. These findings indicate that isolated pancreatic acini can be used for future studies of CFTR expression and function.
Collapse
Affiliation(s)
- H Kopelman
- Department of Pediatrics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada
| | | | | | | |
Collapse
|
83
|
Alvaro D, Della Guardia P, Bini A, Gigliozzi A, Furfaro S, La Rosa T, Piat C, Capocaccia L. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets. J Clin Invest 1995; 96:665-75. [PMID: 7635959 PMCID: PMC185247 DOI: 10.1172/jci118109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate mechanisms of glucagon-induced bicarbonate-rich choleresis, we investigated the effect of glucagon on ion transport processes involved in the regulation of intracellular pH (pHi) in isolated rat hepatocyte couplets. It was found that glucagon (200 nM), without influencing resting pHi, significantly stimulates the Cl-/HCO3- exchange activity. The effect of glucagon was associated with a sevenfold increase in cAMP levels in rat hepatocytes. The activity of the Cl-/HCO3- exchanger was also stimulated by DBcAMP + forskolin. The effect of glucagon on the Cl-/HCO3- exchange was individually blocked by two specific and selective inhibitors of protein kinase A, Rp-cAMPs (10 microM) and H-89 (30 microM), the latter having no influence on the glucagon-induced cAMP accumulation in isolated rat hepatocytes. The Cl- channel blocker, NPPB (10 microM), showed no effect on either the basal or the glucagon-stimulated Cl-/HCO3 exchange. In contrast, the protein kinase C agonist, PMA (10 microM), completely blocked the glucagon stimulation of the Cl-/HCO3- exchange; however, this effect was achieved through a significant inhibition of the glucagon-stimulated cAMP accumulation in rat hepatocytes. Colchicine pretreatment inhibited the basal as well as the glucagon-stimulated Cl-/HCO3- exchange activity. The Na+/H+ exchanger was unaffected by glucagon either at basal pHi or at acid pHi values. In contrast, glucagon, at basal pHi, stimulated the Na(+)-HCO3- symport. The main findings of this study indicate that glucagon, through the cAMP-dependent protein kinase A pathway, stimulates the activity of the Cl-/HCO3- exchanger in isolated rat hepatocyte couplets, a mechanism which could account for the in vivo induced bicarbonate-rich choleresis.
Collapse
Affiliation(s)
- D Alvaro
- II Department of Gastroenterology, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Winpenny JP, Verdon B, McAlroy HL, Colledge WH, Ratcliff R, Evans MJ, Gray MA, Argent BE. Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice. Pflugers Arch 1995; 430:26-33. [PMID: 7545279 DOI: 10.1007/bf00373836] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calcium-activated anion secretion is elevated in the pancreatic ductal epithelium of transgenic cf/cf mice which lack the cystic fibrosis transmembrane conductance regulator (CFTR). To elucidate whether this effect is due to increased activity of calcium-activated chloride channels, we have studied the relationship between CFTR and calcium-activated chloride currents in pancreatic duct cells isolated from Cambridge cf/cf mice. CFTR chloride currents activated by cAMP were detected in 59% (29/49) of wild-type cells and in 50% (20/40) of heterozygous cells. However, we could not detect any CFTR currents in the homozygous cf/cf cells (0/25). The maximum CFTR current density measured at a membrane potential of 60 mV was 23.5 +/- 2.8 pA/pF (n = 29) in wild-type cells, and about half that value, i.e. 12.4 +/- 1.6 pA/pF (n = 20) in heterozygotes (P = 0.004). Calcium-activated chloride currents were detected in 73% (24/33) of wild-type, 75% (21/28) of heterozygous and in 58% (7/12) of homozygous cf/cf cells. There was no significant difference between the steady-state calcium-activated current densities in the three genotypic groups; the current measured at 60 mV being 527 +/- 162 pA/pF (n = 24) from wild-type, 316 +/- 35 pA/pF (n = 21) from heterozygote and 419 +/- 83 pA/pF (n = 7) from homozygous cells. Our data suggest that lack of CFTR does not enhance the calcium-activated chloride conductance in murine pancreatic duct cells.
Collapse
Affiliation(s)
- J P Winpenny
- Department of Physiological Sciences, University Medical School, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Winpenny JP, McAlroy HL, Gray MA, Argent BE. Protein kinase C regulates the magnitude and stability of CFTR currents in pancreatic duct cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C823-8. [PMID: 7537451 DOI: 10.1152/ajpcell.1995.268.4.c823] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of protein kinase C (PKC) inhibits adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated fluid secretion in rat pancreatic ducts (N. Ashton, R. L. Evans, and B. E. Argent. J. Physiol. Lond. 452: 99P, 1992). Using the patch-clamp technique, we have investigated whether this inhibition of fluid secretion results from an effect of PKC on cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. Exposure to 100 nM 4 beta-phorbol 12,13-dibutyrate (PDBu) had no effect on CFTR current density in unstimulated duct cells, but caused a 31% increase in the magnitude of CFTR currents recorded from cells stimulated with cAMP. Furthermore, prolonged (2-4 h) exposure of stimulated duct cells to 100 nM PDBu (a condition that should downregulate PKC) significantly slowed the rate at which CFTR currents run down after establishing a whole cell recording. A similar effect was observed with calphostin C (500 nM), a specific inhibitor of PKC. Thus, although inhibition of ductal fluid secretion by PDBu is unlikely to be explained by an effect on CFTR, modulation of PKC activity can affect both the magnitude and stability of CFTR currents in pancreatic duct cells.
Collapse
Affiliation(s)
- J P Winpenny
- Department of Physiological Sciences, University Medical School, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
86
|
Poronnik P, Schumann SY, Cook DI. HCO3(-)-dependent ACh-activated Na+ influx in sheep parotid secretory endpieces. Pflugers Arch 1995; 429:852-8. [PMID: 7603839 DOI: 10.1007/bf00374810] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study we used the Na)+)-sensitive fluorescent dye SBFI and optical measurement of endpiece volume to investigate the transport of Na+ in sheep parotid secretory cells. Sheep parotid endpiece cells bathed in a HCO3(-)-free Cl(-)-rich solution had a resting intracellular Na+ concentration ([Na+]i) of 17 +/- 2 mmol/l (n = 39). Exposure of the cells to a 2-min pulse of acetylcholine (ACh) (3 x 10(-7) mol/l) in a HCO3(-)-free bathing solution produced no change in [Na+]i or in cell volume. Changing from a Cl(-)-containing HCO(3-)-free bath solution to a Cl- solution containing 25 mmol/l HCO3- caused the endpieces to swell by 8 +/- 2% (n = 11) and the [Na+]i to increase by 10 +/- 2 mmol/l (n = 14). Subsequent exposure of the cells to ACh led to shrinkage of the cells by 12 +/- 2% from the volume in the HCO3(-)-containing solution prior to ACh exposure, with the maximum decrease occurring after 29 +/- 7 s (n = 9). This shrinkage was accompanied by a rapid and transient increase in [Na+]i, the [Na+]i reaching a peak at 70 +/- 5 mmol/l above the unstimulated level (n = 9). Substitution of gluconate for Cl- did not significantly alter the effects of HCO3- on unstimulated [Na+]i or endpiece volume, nor did it significantly inhibit the effects of ACh on these two parameters when HCO3- was present.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Poronnik
- Department of Physiology (F13), University of Sydney, NSW, Australia
| | | | | |
Collapse
|
87
|
Villanger O, Veel T, Raeder MG. Secretin causes H+/HCO3- secretion from pig pancreatic ductules by vacuolar-type H(+)-adenosine triphosphatase. Gastroenterology 1995; 108:850-9. [PMID: 7875488 DOI: 10.1016/0016-5085(95)90460-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Secretin stimulates pancreatic ductules to secrete HCO3- into pancreatic juice and H+ into interstitial fluid. The aim of the present study was first to examine whether ductular H+ secretion is inhibited by micromolar concentrations of bafilomycin A1, which blocks vacuolar H(+)-adenosine triphosphatase by specific action, and secondly to test for evidence of ductular Na+/HCO3- cotransport. METHODS Ductular H+ secretion was estimated from the rate of intracellular pH recovery after acid-loading (24 mmol/L NH4Cl) microdissected pancreatic ductules from pig, mounted in a flow-through perfusion chamber on the stage of a fluorescent microscope. Intracellular pH was measured using the fluorescent pH indicator 2'7'-bis (carboxyethyl)-5,6-carboxyfluorescein and dual-wave-length excitation of fluorescence. The ducts were superfused perfused with either HCO3(-)-free HEPES-containing buffers or HCO3(-)-containing buffers. RESULTS Secretin (10(-8) mol/L) induced a net H+ secretion of 1.87 +/- 0.23 mumol.mL cell vol-1.min-1 that was blocked by 10(-6) mol/L bafilomycin A1 and was unaffected by Na+ substitution with choline using HEPES superfusion buffers. Secretin-stimulated ductules superfused with bicarbonate-containing, Cl(-)-free buffers showed Na(+)-dependent and 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid-inhibitable alkalinization of intracellular pH. CONCLUSIONS Secretin causes H+/HCO3- secretion from pancreatic ductules by a mechanism involving vacuolar-type H(+)-adenosine phosphatase. Pancreatic ductules also show Na+/HCO3- cotransport, which may account for a small fraction of secreted bicarbonate.
Collapse
Affiliation(s)
- O Villanger
- Institute for Experimental Medical Research, University of Oslo, Norway
| | | | | |
Collapse
|
88
|
Hassoni AA, Gray PT. The control of chloride conductance in rat parotid isolated acinar cells investigated by photorelease of caged compounds. Pflugers Arch 1994; 428:269-74. [PMID: 7816548 DOI: 10.1007/bf00724506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The control of Cl- conductance in rat parotid isolated acinar cells was studied by combined use of whole-cell recording and flash photolysis techniques. Cells were voltage-clamped either at a membrane potential of -40 mV or stepped between -85 mV and 0 mV. Bath-applied carbachol and noradrenaline evoked Cl- current at -85 mV and K+ current at 0 mV. Similar current activations resulted from the photolytic release of either inositol trisphosphate (InsP3) or Ca2+ by a brief near-UV flash. The peak amplitudes of the Cl- conductance (at -85 mV), measured relative to the K+ conductance (at 0 mV), evoked by application of carbachol, noradrenaline or direct manipulation of cytosolic free calcium ([Ca2+]i), were very similar, being 0.56 +/- 0.09 (mean +/- SEM, n = 9), 0.52 +/- 0.01 (n = 7) and 0.46 +/- 0.06 (n = 7). In contrast, the relative amplitude of the Cl- conductance evoked by InsP3 was much larger: 1.49 +/- 0.24 (n = 9). Neither bath application of isoprenaline nor photolysis of "caged" cAMP induced any detectable membrane current. The most probable interpretation of these results is that the observed activation of Cl- conductance by agonists can be explained by the elevation of [Ca2+]i alone. In addition, the present results provide further support for the previously reported suggestion that the Cl- channels and the Ca(2+)-release sites are co-localised [10].
Collapse
Affiliation(s)
- A A Hassoni
- Department of Pharmacology, School of Pharmacy, London, UK
| | | |
Collapse
|
89
|
Githens S, Schexnayder JA, Moses RL, Denning GM, Smith JJ, Frazier ML. Mouse pancreatic acinar/ductular tissue gives rise to epithelial cultures that are morphologically, biochemically, and functionally indistinguishable from interlobular duct cell cultures. In Vitro Cell Dev Biol Anim 1994; 30A:622-35. [PMID: 7529626 DOI: 10.1007/bf02631262] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most of the pancreatic exocrine epithelium consists of acinar and intralobular duct (ductular) cells, with the balance consisting of interlobular and main duct cells. Fragments of mouse acinar/ductular epithelium can be isolated by partial digestion with collagenase and purified by Ficoll density gradient centrifugation. We investigated whether previously developed culture conditions used for duct epithelium would result in the selective survival and proliferation of ductular cells from the acinar/ductular fragments. The fragments were cultured on nitrocellulose filters coated with extracellular matrix. After 2 to 4 wk the filters were covered with proliferating cells resembling parallel cultures of duct epithelium by the following criteria: protein/DNA ratio, light and electron microscopic appearance, the presence of duct markers (carbonic anhydrase [CA] activity, CA II mRNA, the cystic fibrosis transmembrane conductance regulator), the near absence of acinar cell markers (amylase and chymotrypsin), a similar polypeptide profile after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the presence of spontaneous and secretin-stimulated electrogenic ion transport. Both duct and ductular epithelia formed fluid-filled cysts in collagen gels and both could be subcultured. We conclude that acinar/ductular tissue gives rise to ductular cells in culture by some combination of acinar cell death and/or transdifferentiation to a ductular phenotype, accompanied by proliferation of these cells and preexisting ductular cells. These cultures may be used to investigate the properties of this part of the pancreatic duct system, from which most of the pancreatic juice water and electrolytes probably originates.
Collapse
Affiliation(s)
- S Githens
- Department of Biological Sciences, University of New Orleans, LA 70148
| | | | | | | | | | | |
Collapse
|
90
|
Hug M, Pahl C, Novak I. Effect of ATP, carbachol and other agonists on intracellular calcium activity and membrane voltage of pancreatic ducts. Pflugers Arch 1994; 426:412-8. [PMID: 7517031 DOI: 10.1007/bf00388304] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pancreatic duct has been regarded as a typical cAMP-regulated epithelium, and our knowledge about its Ca2+ homeostasis is limited. Hence, we studied the regulation of intracellular calcium, [Ca2+]i, in perfused rat pancreatic ducts using the Ca(2+)-sensitive probe fura-2. In some experiments we also measured the basolateral membrane voltage, Vbl, of individual cells. The resting basal [Ca2+]i was relatively high, corresponding to 263 +/- 28 nmol/l, and it decreased rapidly to 106 +/- 28 nmol/l after removal of Ca2+ from the bathing medium (n = 31). Carbachol increased [Ca2+]i in a concentration-dependent manner. At 10 mumol/l the fura-2 fluorescence ratio increased by 0.49 +/- 0.06 (n = 24), corresponding to an increase in [Ca2+]i by 111 +/- 15 nmol/l (n = 17). ATP, added to the basolateral side at 0.1 mmol/l and 1 mmol/l, increased the fluorescence ratio by 0.67 +/- 0.06 and 1.01 +/- 14 (n = 46; 12), corresponding to a [Ca2+]i increase of 136 +/- 22 nmol/l and 294 +/- 73 nmol/l respectively (n = 15; 10). Microelectrode measurements showed that ATP (0.1 mmol/l) hyperpolarized Vbl from -62 +/- 3 mV to -70 +/- 3 mV, an effect which was in some cases only transient (n = 7). This effect of ATP was different from that of carbachol, which depolarized Vbl. Applied together with secretin, ATP delayed the secretin-induced depolarization and prolonged the initial hyperpolarization of Vbl (n = 4). Several other putative agonists of pancreatic HCO3- secretion were also tested for their effects on [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Hug
- Physiologisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
91
|
Gray MA, Winpenny JP, Porteous DJ, Dorin JR, Argent BE. CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C213-21. [PMID: 7508188 DOI: 10.1152/ajpcell.1994.266.1.c213] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride currents in pancreatic duct cells isolated from a transgenic cf/cf mouse created by targeted insertional mutagenesis. Adenosine 3',5'-cyclic monophosphate (cAMP)-activated CFTR chloride currents were detected in 78% (29/37) of wild-type cells, in 81% (35/43) of heterozygote cells, and in 61% (29/47) of homozygous cf/cf duct cells (P > 0.05, cf/cf vs. wild-type and heterozygote). The CFTR current density measured at membrane potentials of +/- 60 mV averaged 22-26 pA/pF in wild-type and heterozygote groups but only 13 pA/pF in cells derived from cf/cf animals (P < 0.05, cf/cf vs. wild-type and cf/cf vs. heterozygotes). In contrast, duct cells from animals of all three genotypic groups exhibited calcium-activated chloride currents that were of similar magnitude and up to 11-fold larger than the CFTR currents. We speculate that these transgenic insertional null mice do not develop the pancreatic pathology that occurs in cystic fibrosis patients because their duct cells contain 1) some wild-type CFTR generated by exon skipping and aberrant splicing and 2) a separate anion secretory pathway mediated by calcium-activated chloride channels.
Collapse
Affiliation(s)
- M A Gray
- Department of Physiological Sciences, University Medical School, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
92
|
A Secretory Cl Channel from Epithelial Cells Studied in Heterologous Expression Systems. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-78261-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
93
|
Novak I, Pahl C. Effect of secretin and inhibitors of HCO3-/H+ transport on the membrane voltage of rat pancreatic duct cells. Pflugers Arch 1993; 425:272-9. [PMID: 8309789 DOI: 10.1007/bf00374178] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to study the effect of secretin on the electrophysiological response of pancreatic ducts. Furthermore, we investigated the effects of lipid-soluble buffers and inhibitors of HCO3-/H+ transport. Ducts obtained from fresh rat pancreas were perfused in vitro. Secretin depolarized the basolateral membrane voltage, Vbl, by up to 35 mV (n = 37); a half-maximal response was obtained at 3 x 10(-11) mol/l. In unstimulated ducts a decrease in the luminal Cl- concentration (120 to 37 mmol/l) had a marginal effect on Vbl, but after maximal secretin stimulation it evoked a 14 +/- 2 mV depolarization (n = 6), showing that a luminal Cl- conductance (GCl-) was activated. The depolarizing effect of secretin on Vbl was often preceded by about a 6 mV hyperpolarization, most likely due to an increase in the basolateral GK+. Perfusion of ducts with DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid, 0.01 mmol/l) or addition of ethoxzolamide (0.1 mmol/l) to the bath medium diminished the effect of secretin. Acetate or pre-treatment of ducts with NH4+/NH3 (10 mmol/l in the bath) depolarized the resting Vbl of -65 +/- 2 mV by 16 +/- 4 mV (n = 7) and 19 +/- 3 mV (n = 10), respectively. The fractional resistance of the basolateral membrane (FRbl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22 +/- 1 to 11 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Novak
- Physiologisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany
| | | |
Collapse
|
94
|
Bajnath RB, Groot JA, De Jonge HR, Kansen M, Bijman J. Synergistic activation of non-rectifying small-conductance chloride channels by forskolin and phorbol esters in cell-attached patches of the human colon carcinoma cell line HT-29cl.19A. Pflugers Arch 1993; 425:100-8. [PMID: 8272366 DOI: 10.1007/bf00374509] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell-attached patch-clamp studies with the human colon carcinoma HT-29cl.19A cells revealed a small chloride channel with a unitary conductance of 6.5 pS at 70 mV and 4.6 pS at -70 mV clamp potential after cAMP was increased by activation of adenylyl cyclase by forskolin. Usually channels inactivated upon patch excision, but in a few excised patches the channels stayed active and displayed a linear I/V relation in symmetrical (150 mmol/l) chloride solutions with a conductance of 7.5 pS. A 16-fold increase in channel incidence was observed when forskolin and phorbol 12,13-dibutyrate (PDB) were present together. The open probability was voltage-independent and was not different in the presence of forskolin plus PDB or with forskolin alone. The conductance sequence of the channel as deduced from outward currents carried by five different anions including chloride was: Cl- > BR- > NO3- > gluconate > I-. The permeability sequence deduced from the reversal potentials was NO3- > or = Br- > Cl- > I- > gluconate. With iodide in the pipette the conductance decreased strongly. Moreover, the inward current was reduced by 61%, indicating a strong inhibition of the chloride efflux by iodide. Similarly, the forskolin-induced increase of the short-circuit current (Isc) in confluent filter-grown monolayers was strongly reduced by iodide in the apical perfusate. Iodide also increased the fractional resistance of the apical membrane and repolarized the membrane potential, indicating an inhibitory action on the forskolin-induced increase of the apical chloride conductance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R B Bajnath
- Department of Experimental Zoology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
95
|
Roberts SK, Kuntz SM, Gores GJ, LaRusso NF. Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent intrahepatic bile ducts. Proc Natl Acad Sci U S A 1993; 90:9080-4. [PMID: 8415657 PMCID: PMC47505 DOI: 10.1073/pnas.90.19.9080] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While intrahepatic bile duct epithelial cells secrete bile through transport of ions and water, the physiological mechanisms regulating ductular bile secretion are obscure, in part because of the lack of suitable experimental models. We report here the successful micropuncture of the lumen of isolated intrahepatic bile ducts and direct measurements of ductular ion secretion. Intact, polarized bile duct units (BDUs) were isolated from livers of normal rats by enzymatic digestion and microdissection. BDUs were cultured and mounted on a microscope in bicarbonate-containing buffer, and the lumens were microinjected with 2',7'-bis(2-carboxyethyl)-5-(and -6)carboxyfluorescein (BCECF)-dextran. Lumenal pH was measured by ratio imaging of BCECF fluorescence using digitized video fluorescent microscopy. After 36 hr in culture, the ends of BDUs sealed, forming closed compartments. After lumenal microinjection of BCECF-dextran, fluorescence was stable at the pH-insensitive wavelength, indicating no dye leakage. Serial changes in pH of extralumenal buffers containing pH-gradient collapsing ionophores allowed us to establish reliable standard curves relating fluorescence ratio to lumenal pH (r = 0.99; P < 0.001). By this approach, the basal pH inside the lumen of BDUs was 7.87 +/- 0.08 units (n = 9), 0.47 unit higher (P < 0.001) than the bathing buffer pH. Addition of 100 microM forskolin increased (P = 0.02) the lumenal pH from 7.78 +/- 0.06 to 7.97 +/- 0.06 units (n = 5); the forskolin effect was completely abolished by incubation of BDUs in HCO3-/CO2-free buffer. Moreover, forskolin caused a 50-fold increase in cAMP levels in BDUs. The observations are consistent with cAMP-dependent, active lumenal HCO3- secretion by BDUs. Furthermore, they demonstrate the suitability of the BDU model for studying regulatory and mechanistic aspects of ductular bile secretion.
Collapse
Affiliation(s)
- S K Roberts
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
96
|
Shenker A, Weinstein LS, Moran A, Pescovitz OH, Charest NJ, Boney CM, Van Wyk JJ, Merino MJ, Feuillan PP, Spiegel AM. Severe endocrine and nonendocrine manifestations of the McCune-Albright syndrome associated with activating mutations of stimulatory G protein GS. J Pediatr 1993; 123:509-18. [PMID: 8410501 DOI: 10.1016/s0022-3476(05)80943-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
McCune-Albright syndrome (MCAS) is a sporadic disease classically including polyostotic fibrous dysplasia, café au lait spots, sexual precocity, and other hyperfunctional endocrinopathies. An activating missense mutation in the gene for the alpha subunit of GS, the G protein that stimulates cyclic adenosine monophosphate formation, has been reported to be present in these patients. The mutation is found in variable abundance in different affected endocrine and nonendocrine tissues, consistent with the mosaic distribution of abnormal cells generated by a somatic cell mutation early in embryogenesis. We describe three patients with MCAS who had profound endocrine and nonendocrine disease and who died in childhood. Two of the patients were severely ill neonates whose complex symptoms did not immediately suggest MCAS. A mutation of residue Arg201 of GS alpha was found in affected tissues from all three children. A review of the literature and unpublished case histories emphasizes the existence of other patients with severe and unusual clinical manifestations. We conclude that the manifestations of MCAS are more extensive than is generally appreciated, and may include hepatobiliary disease, cardiac disease, other nonendocrine abnormalities, and sudden or premature death.
Collapse
Affiliation(s)
- A Shenker
- Molecular Pathophysiology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Becq F, Hollande E, Gola M. Phosphorylation-regulated low-conductance Cl- channels in a human pancreatic duct cell line. Pflugers Arch 1993; 425:1-8. [PMID: 7505913 DOI: 10.1007/bf00374496] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A low-conductance Cl- channel has been identified in the apical membrane of the human pancreatic duct cell Capan-1 using patch-clamp techniques. Cell-attached channels were activated by the vasoactive intestinal polypeptide (VIP, 0.1 mumol/l), dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP, 1 mmol/l), 8-bromo adenosine 3',5'-cyclic monophosphate (8-Br-cAMP, 1 mmol/l), 3-isobutyl-1-methyl-xanthine (IBMX, 100 mumol/l) and forskolin (10 mumol/l). No channel activity was observed in non-stimulated control cells. In both cell-attached and excised inside-out patches, the channel had a linear current/voltage relationship and a unitary conductance of 9 pS at 23 degrees C and 12 pS at 37 degrees C. Its opening probability was not voltage dependent although pronounced flickering was induced at negative potentials. Anionic substitution led to the selectivity sequence Cl- > I- >> > HCO3- > gluconate. In inside-out excised patches, the channel activity declined spontaneously within a few minutes. Reactivation of silent excised channels was achieved by adding protein kinase A (PKA, in the presence of ATP, cAMP and Mg2+). Conversely, active channels were silenced in the presence of alkaline phosphatase. The PKA-activated Cl- channel was 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS, 100 mumol/l) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS, 100 mumol/l) insensitive, but was blocked by diphenylamine-2-carboxylic acid (DPC, 100 mumol/l). These results demonstrate that the apical low-conductance Cl- channel in Capan-1 is regulated on-cell by VIP receptors via cAMP and off-cell by PKA and phosphatases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Becq
- Laboratoire de Neurobiologie Cellulaire, CNRS, Marseille, France
| | | | | |
Collapse
|
98
|
Alvaro D, Cho WK, Mennone A, Boyer JL. Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 1993; 92:1314-25. [PMID: 8397224 PMCID: PMC288273 DOI: 10.1172/jci116705] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effects of secretin on ion transport mechanisms involved in regulation of intracellular pH (pHi) and HCO3- excretion were characterized in bile duct epithelial (BDE) cells isolated from normal rat liver. pHi was measured with 2,7-bis(carboxy-ethyl)-5(6)-carboxy-fluorescein-acetomethylester (BCECF-AM) using a microfluorimetric method. Basal pHi of BDE was 7.04 +/- 0.06 in Hepes and 7.16 +/- 0.10 in KRB and was unaffected by secretin (50-200 nM). Recovery rates from an acid load in Hepes or in KRB media (with and without amiloride) were also not altered by secretin, indicating that Na+/H+ exchange and Na+/HCO3- cotransport were not affected by this hormone. After acute Cl- removal, pHi rose 0.24 +/- 0.08 pHU at a maximal rate of 0.125 +/- 0.06 pHU/min (H+ flux rates = 6.02 +/- 3.27 mM/min) and recovered after Cl- readmission (0.188 +/- 0.08 pHU/min; H+ flux rates = 11.82 +/- 5.34 mM/min). Pretreatment with 1 mM DIDS inhibited the effects of Cl- removal, while valinomycin, which induces cell depolarization, enhanced these effects, probably by stimulating electrogenic HCO3- influx. Secretin significantly increased both the maximal rate of alkalinization after Cl- removal (P < 0.012) and of pHi recovery after Cl- readmission (P < 0.025), indicating stimulation of Cl-/HCO3- exchange activity. These findings were reproduced with N6,2'-O-Dibutyryladenosine-3',5'-cyclic monophosphate (DBcAMP). The Cl- channel blocker 5-nitro-2'-(3-phenylpropylamino)-benzoate (NPPB, 10 microM) significantly decreased the effects of secretin and DBcAMP on the pHi changes promoted by acute Cl- removal/readmission. These findings establish that secretin stimulates the activity of the Cl-/HCO3- exchanger in BDE cells, probably by activating Cl- channels via the intracellular messenger cAMP. This in turn depolarizes the cell, stimulating electrogenic Na+/HCO3- symport. The cell depolarization induced by Cl- channel activation should enhance HCO3- entrance through electrogenic Na+/HCO3- symport, which in turn stimulates the Cl-/HCO3- exchange. These mechanisms could account for secretin stimulated bicarbonate secretion in bile.
Collapse
Affiliation(s)
- D Alvaro
- Department of Internal Medicine, Yale University, School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
99
|
Pahl C, Novak I. Effect of vasoactive intestinal peptide, carbachol and other agonists on the membrane voltage of pancreatic duct cells. Pflugers Arch 1993; 424:315-20. [PMID: 8414920 DOI: 10.1007/bf00384358] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation of pancreatic exocrine secretion involves hormonal, neural and neurohormonal components. Many agonists are known to be effective in pancreatic acinar cells, but less is known about the ducts. Therefore, we wanted to investigate the influence of various agonists on isolated perfused pancreatic ducts and, as a physiological response, we measured the basolateral membrane voltage of the duct cells (Vbl) with microelectrodes. Pancreatic ducts were dissected from pancreas of normal rats and bathed in a HCO(3-)(-containing solution. Under control conditions, the average Vbl was between -50 and -70 mV. Vasoactive intestinal peptide (VIP) and carbachol (CCH) reversibly depolarized Vbl when applied to the bath. VIP (9 x 10(-9) mol/l) depolarized Vbl from -72 +/- 3 mV to -53 +/- 3 mV (n = 20) and CCH (10(-5) mol/l) from -62 +/- 3 to -35 +/- 4 mV (n = 10). Furthermore, a decrease of the Cl- concentration in the lumen led to an increase of VIP-induced depolarization of Vbl, suggesting that a luminal Cl- conductance was increased. Cholecystokinin (CCK, 10(-10)-10(-7) mol/l) and bombesin (10(-8), 10(-5) mol/l), which stimulate pancreatic exocrine secretion in acini or whole glands, showed no significant effect on Vbl of the duct cells tested in our preparation (n = 7, 6). Neurotensin (10(-8) mol/l) had a marked depolarizing effect in two out of ten cases; Vbl depolarized from about -65 mV to -29 mV and the effect was reversible. Substance P (2 x 10(-7) mol/l), alone or in combination with secretin, had no effect on Vbl of the tested duct cells (n = 11).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Pahl
- Physiologisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany
| | | |
Collapse
|
100
|
Brown CD, King N, Simmons NL. Co-expression of an anion conductance pathway with Na(+)-glucose cotransport in rat renal brush-border membrane vesicles. Pflugers Arch 1993; 423:406-10. [PMID: 7688890 DOI: 10.1007/bf00374934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brush-border membrane vesicles were prepared from superficial rat renal cortex by a Mg(2+)-precipitation technique. The initial (20 s) [14C]glucose uptake rate from solutions containing 100 mmol/l Na (salt) was found to be dependent upon the anion composition of the medium; in comparison to gluconate-containing medium (0.46 +/- 0.05 nmol/mg protein), Cl- accelerated the initial rate to 1.47 +/- 0.21 nmol/mg protein (n = 4 preparations, +/- SEM). This enhancement was reduced by 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 0.5 mmol/l), but was unaffected by 4,4'-diisothiocyanatostilbene 2,2'-disulphonate (DIDS, 0.5 mmol/l). When membrane vesicles were pre-equilibrated with 100 mmol/l K (salt) and 100 mmol/l mannitol and glucose uptake was measured from a solution containing 100 mmol/l Na gluconate and 100 mmol/l mannitol in the presence of 80 mumol/l valinomycin (to generate an outward K+ diffusion electrical p. d.), it was found that intravesicular KCl depressed the initial glucose uptake compared to K gluconate. NPPB (0.5 mmol/l) increased the initial glucose uptake with intravesicular KCl towards values seen in K gluconate vesicles. In conditions where the only driving force for glucose uptake was established by an inward anion gradient (Nao = Nai) it was found that inward Cl- gradients could drive uphill glucose transport and that this was sensitive to NPPB (0.5 mmol/l), but insensitive to DIDS. We conclude that a Cl- conductance co-exists with Na-cotransport in rat renal brush-border membrane vesicles prepared from superficial renal cortex and this may function to regulate the activity of electrogenic transport systems at this membrane.
Collapse
Affiliation(s)
- C D Brown
- Department of Physiological Sciences, Medical School, The University, Newcastle upon Tyne
| | | | | |
Collapse
|