51
|
Bleys J, Miller ER, Pastor-Barriuso R, Appel LJ, Guallar E. Vitamin-mineral supplementation and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2006; 84:880-7; quiz 954-5. [PMID: 17023716 DOI: 10.1093/ajcn/84.4.880] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Laboratory and observational studies suggest that antioxidant and B vitamin supplementation may prevent atherosclerosis. Although trials have not shown a benefit of these supplements on clinical cardiovascular events, it is unknown whether they affect the progression of atherosclerosis as measured by imaging techniques. OBJECTIVE The objective was to perform a meta-analysis of randomized controlled trials of the effect of vitamin-mineral supplementation on atherosclerosis progression. DESIGN We searched the MEDLINE, EMBASE, and CENTRAL databases for relevant studies. No language restrictions were applied. We separately analyzed trials using antioxidants (vitamins E and C, beta-carotene, or selenium) and trials using B vitamins (folate, vitamin B-6, or vitamin B-12). The progression of atherosclerosis was evaluated by B-mode ultrasound, intravascular ultrasound, or angiography. Effect sizes were calculated for the difference in slope of atherosclerosis progression between participants assigned to supplements and those assigned to the control group. RESULTS In trials not involving percutaneous transluminal coronary angioplasty, the pooled effect size was -0.06 (95% CI: -0.20, 0.09; 7 trials) for antioxidants and -0.93 (95% CI: -2.11, 0.26; 4 trials) for B vitamins. In trials involving percutaneous transluminal coronary angioplasty, the pooled relative risk of restenosis was 0.82 (95% CI: 0.54, 1.26; 3 trials) for antioxidants and 0.84 (95% CI: 0.34, 2.07; 2 trials) for B vitamins. CONCLUSION Our meta-analysis showed no evidence of a protective effect of antioxidant or B vitamin supplements on the progression of atherosclerosis, thus providing a mechanistic explanation for their lack of effect on clinical cardiovascular events.
Collapse
Affiliation(s)
- Joachim Bleys
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
52
|
Fairus S, Nor RM, Cheng HM, Sundram K. Postprandial metabolic fate of tocotrienol-rich vitamin E differs significantly from that of alpha-tocopherol. Am J Clin Nutr 2006; 84:835-42. [PMID: 17023711 DOI: 10.1093/ajcn/84.4.835] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues. OBJECTIVE The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins. DESIGN Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval. RESULTS After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments. CONCLUSIONS Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.
Collapse
Affiliation(s)
- Syed Fairus
- Food Technology and Nutrition Unit, Malaysian Palm Oil Board, Selangor, Malaysia
| | | | | | | |
Collapse
|
53
|
Khosla P, Patel V, Whinter JM, Khanna S, Rakhkovskaya M, Roy S, Sen CK. Postprandial levels of the natural vitamin E tocotrienol in human circulation. Antioxid Redox Signal 2006; 8:1059-68. [PMID: 16771695 DOI: 10.1089/ars.2006.8.1059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Compared to tocopherols, tocotrienols are poorly understood. The postabsorptive fate of tocotrienol isomers and their association with lipoprotein subfractions was examined. Normocholesterolemic women were subjected to an oral fat challenge supplemented with vitamin E (capsule containing 77 mg alpha-tocotrienol, 96 mg alpha-tocotrienol, 3 mg gamma-tocotrienol, 62 mg alpha-tocopherol, and 96 mg gamma-tocopherol). Plasma samples were collected at every 2 h intervals for up to 8 h following a one-time supplementation. Lipoproteins were measured by NMR spectroscopy, and subfractions of lipoproteins were isolated by density gradient ultracentrifugation. The maximal alpha-tocotrienol concentrations in supplemented individuals averaged approximately 3 microM in blood plasma, 1.7 microM in LDL, 0.9 microM in triglyceride-rich lipoprotein, and 0.5 microM in HDL. The peak plasma level corresponded to 12- to 30-fold more than the concentration of alpha-tocotrienol required to completely prevent stroke-related neurodegeneration. Tocotrienols were detected in the blood plasma and all lipoprotein subfractions studied postprandially.
Collapse
Affiliation(s)
- Pramod Khosla
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Sen CK, Khanna S, Roy S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci 2006; 78:2088-98. [PMID: 16458936 PMCID: PMC1790869 DOI: 10.1016/j.lfs.2005.12.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 03/23/2005] [Accepted: 06/13/2005] [Indexed: 02/06/2023]
Abstract
In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Yet, of all papers on vitamin E listed in PubMed less than 1% relate to tocotrienols. The abundance of alpha-tocopherol in the human body and the comparable efficiency of all vitamin E molecules as antioxidants, led biologists to neglect the non-tocopherol vitamin E molecules as topics for basic and clinical research. Recent developments warrant a serious reconsideration of this conventional wisdom. Tocotrienols possess powerful neuroprotective, anti-cancer and cholesterol lowering properties that are often not exhibited by tocopherols. Current developments in vitamin E research clearly indicate that members of the vitamin E family are not redundant with respect to their biological functions. alpha-Tocotrienol, gamma-tocopherol, and delta-tocotrienol have emerged as vitamin E molecules with functions in health and disease that are clearly distinct from that of alpha-tocopherol. At nanomolar concentration, alpha-tocotrienol, not alpha-tocopherol, prevents neurodegeneration. On a concentration basis, this finding represents the most potent of all biological functions exhibited by any natural vitamin E molecule. An expanding body of evidence support that members of the vitamin E family are functionally unique. In recognition of this fact, title claims in manuscripts should be limited to the specific form of vitamin E studied. For example, evidence for toxicity of a specific form of tocopherol in excess may not be used to conclude that high-dosage "vitamin E" supplementation may increase all-cause mortality. Such conclusion incorrectly implies that tocotrienols are toxic as well under conditions where tocotrienols were not even considered. The current state of knowledge warrants strategic investment into the lesser known forms of vitamin E. This will enable prudent selection of the appropriate vitamin E molecule for studies addressing a specific need.
Collapse
Affiliation(s)
- Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
55
|
Rasool AHG, Yuen KH, Yusoff K, Wong AR, Rahman ARA. Dose Dependent Elevation of Plasma Tocotrienol Levels and Its Effect on Arterial Compliance, Plasma Total Antioxidant Status, and Lipid Profile in Healthy Humans Supplemented with Tocotrienol Rich Vitamin E. J Nutr Sci Vitaminol (Tokyo) 2006; 52:473-8. [PMID: 17330512 DOI: 10.3177/jnsv.52.473] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males. METHODOLOGY This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken. RESULTS Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS. CONCLUSION TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.
Collapse
Affiliation(s)
- Aida H G Rasool
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| | | | | | | | | |
Collapse
|
56
|
|
57
|
Baliarsingh S, Beg ZH, Ahmad J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyperlipidemia. Atherosclerosis 2005; 182:367-74. [PMID: 16159610 DOI: 10.1016/j.atherosclerosis.2005.02.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 01/10/2005] [Accepted: 02/08/2005] [Indexed: 11/19/2022]
Abstract
In type 2 diabetics, the progression of atherosclerosis is more rapid than the general population and 80% of these patients will die of an atherosclerotic event. Since in these patients hyperglycemia per se confers increased risk for cardiovascular disease (CVD), the presence of even borderline-high-risk LDL-C signals the need for more aggressive LDL-lowering therapy. Most of the lipid lowering agents, currently in use in the treatment of dyslipidemia in type 2 diabetics, have a host of side effects. In contrast, dietary tocotrienols are Vitamin E and have effective lipid lowering property in addition to their potent antioxidant activity. In this study, we have investigated the therapeutic impacts of tocotrienols on serum and lipoprotein lipid levels in type 2 diabetic patients. Based on known tocotrienol rich fraction (TRF)-mediated decrease on elevated blood glucose and glycated hemoglobin A(1C) (HbA(1C)) in diabetic rats, we have also investigated the effect of TRF on these parameters. A randomized, double blind, placebo-controlled design involving 19 type 2 diabetic subjects with hyperlipidemia was used. After 60 days of TRF treatment, subjects showed an average decline of 23, 30, and 42% in serum total lipids, TC, and LDL-C, respectively. The goal in type 2 diabetics is to reduce LDL-C levels < or = 100mg/dl. In the present investigation tocotrienols mediated a reduction of LDL-C from an average of 179 mg/dl to 104 mg/dl. However, hypoglycemic effect of TRF was not observed in these patients because they were glycemically stable and their glucose and HbA(1) levels were close to normal values. In conclusion, daily intake of dietary TRF by type 2 diabetics will be useful in the prevention and treatment of hyperlipidemia and atherogenesis.
Collapse
Affiliation(s)
- Simant Baliarsingh
- Department of Biochemistry, Jawaharlal Nehru Medical College, A.M.U., Aligarh 202002, India
| | | | | |
Collapse
|
58
|
Meyenberg A, Goldblum D, Zingg JM, Azzi A, Nesaretnam K, Kilchenmann M, Frueh BE. Tocotrienol inhibits proliferation of human Tenon's fibroblasts in vitro: a comparative study with vitamin E forms and mitomycin C. Graefes Arch Clin Exp Ophthalmol 2005; 243:1263-71. [PMID: 15909162 DOI: 10.1007/s00417-005-1165-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/26/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To evaluate the potential of the vitamin E compound alpha-tocotrienol as antifibrotic agent in vitro. METHODS Using human Tenon's capsule fibroblast cultures, the antiproliferative and cytotoxic effects of the different vitamin E forms alpha-tocopherol, alpha-tocopheryl acetate, alpha-tocopheryl succinate and alpha-tocotrienol were compared with those of mitomycin C. To mimic subconjunctival and regular oral application in vivo, exposure time of serum-stimulated and serum-restimulated fibroblasts (SF and RF, respectively) to vitamin E forms was set at 6 days. Cultures were only exposed for 5 min to mitomycin C due to its known acute toxicity and to mimic the short-time intraoperative administration. Proliferation (expressed as % of control) was determined by DNA content quantification on days 2, 4 and 6, whereas cytotoxicity was assessed by cell morphology and glucose 6-phosphate dehydrogenase (G6PD) release after 24 h. RESULTS alpha-Tocopherol and alpha-tocopheryl acetate stimulated growth of SF, but not RF. Reduction of fibroblast content by alpha-tocopheryl succinate was accompanied by increased G6PD release and necrosis. Contrary to alpha-tocopheryl succinate, 50 microM or repeatedly 20 microM of alpha-tocotrienol significantly inhibited proliferation without causing cellular toxicity (maximal effect: 46.8%). RF were more sensitive to this effect than SF. Mitomycin C 100-400 microg/ml showed a stronger antiproliferative effect than alpha-tocotrienol (maximal effect: 13.8%). Morphologic characteristics of apoptosis were more commonly found under treatment with mitomycin C. CONCLUSIONS Of the vitamin E forms tested, only alpha-tocotrienol significantly inhibited growth at non-toxic concentrations. In this in vitro study, antiproliferative effects of mitomycin C were stronger than those of alpha-tocotrienol.
Collapse
|
59
|
Minhajuddin M, Beg ZH, Iqbal J. Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food Chem Toxicol 2005; 43:747-53. [PMID: 15778015 DOI: 10.1016/j.fct.2005.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 01/12/2005] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
We investigated a dose-dependent hypolipidemic and antioxidant effect of tocotrienol rich fraction (TRF) isolated from rice bran oil on experimentally induced hyperlipidemic rats. Feeding of atherogenic diet (5% hydrogenated fat, 0.5% cholic acid and 1% cholesterol) for three weeks resulted in a significant increase in plasma triglyceride (3.3-fold) and total cholesterol (2.4-fold) levels. There was a 5-fold increase in the level of LDL cholesterol with only a small increase in HDL cholesterol. On the other hand, HMG-CoA reductase activity was significantly reduced in these animals. The formation of TBARS, thiobarbituric acid reactive substances, (86%) and conjugated dienes (78%) were also significantly higher in these rats compared to normals. After the induction of hyperlipidemia for three weeks, rats were supplemented with different doses of TRF for one week. TRF supplementation decreased the lipid parameters in a dose-dependent manner with an optimum effect at a dose of 8 mg TRF/kg/day. HMG-CoA reductase activity, which was increased after the withdrawal of atherogenic diet, remained significantly decreased during the TRF treatment. Feeding of TRF also decreased TBARS and conjugated dienes significantly. These results suggest that TRF supplementation has significant health benefits through the modulation of physiological functions that include various atherogenic lipid profiles and antioxidants in hypercholesterolemia.
Collapse
Affiliation(s)
- Mohammad Minhajuddin
- Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
60
|
Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 2005; 47:904-15. [PMID: 15527824 DOI: 10.1016/j.neuropharm.2004.06.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Oxidative stress and apoptosis play pivotal roles in the pathogenesis of neurodegenerative diseases. We investigated the effects of vitamin E analogs on oxidative stress and apoptosis using primary neuronal cultures of rat striatum. A tocotrienol-rich fraction of edible oil derived from palm oil (Tocomin 50%), which contains alpha-tocopherol, and alpha-, gamma- and delta-tocotrienols, significantly inhibited hydrogen peroxide (H2O2)-induced neuronal death. Each of the tocotrienols, purified from Tocomin 50% by high-performance liquid chromatography, significantly attenuated H2O2-induced neurotoxicity, whereas alpha-tocopherol did not. alpha-, gamma- and delta-Tocotrienols also provided significant protection against the cytotoxicity of a superoxide donor, paraquat, and nitric oxide donors, S-nitrosocysteine and 3-morpholinosydnonimine. Moreover, tocotrienols blocked oxidative stress-mediated cell death with apoptotic DNA fragmentation caused by an inhibitor of glutathione synthesis, L-buthionine-[S,R]-sulfoximine. In addition, alpha-tocotrienol, but not gamma- or delta-tocotrienol, prevented oxidative stress-independent apoptotic cell death, DNA cleavage and nuclear morphological changes induced by a non-specific protein kinase inhibitor, staurosporine. These findings suggest that alpha-tocotrienol can exert anti-apoptotic neuroprotective action independently of its antioxidant property. Among the vitamin E analogs examined, alpha-tocotrienol exhibited the most potent neuroprotective actions in rat striatal cultures.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Vitamin E is essential for normal neurological function. It is the major lipid-soluble, chain-breaking antioxidant in the body, protecting the integrity of membranes by inhibiting lipid peroxidation. Mostly on the basis of symptoms of primary vitamin E deficiency, it has been demonstrated that vitamin E has a central role in maintaining neurological structure and function. Orally supplemented vitamin E reaches the cerebrospinal fluid and brain. Vitamin E is a generic term for all tocopherols and their derivatives having the biological activity of RRR-alpha-tocopherol, the naturally occurring stereoisomer compounds with vitamin E activity. In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Often, the term vitamin E is synonymously used with alpha-tocopherol. Tocotrienols, formerly known as zeta, , or eta-tocopherols, are similar to tocopherols except that they have an isoprenoid tail with three unsaturation points instead of a saturated phytyl tail. Although tocopherols are predominantly found in corn, soybean, and olive oils, tocotrienols are particularly rich in palm, rice bran, and barley oils. Tocotrienols possess powerful antioxidant, anticancer, and cholesterol-lowering properties. Recently, we have observed that alpha-tocotrienol is multi-fold more potent than alpha-tocopherol in protecting HT4 and primary neuronal cells against toxicity induced by glutamate as well as by a number of other toxins. At nanomolar concentration, tocotrienol, but not tocopherol, completely protected neurons by an antioxidant-independent mechanism. Our current work identifies two major targets of tocotrienol in the neuron: c-Src kinase and 12-lipoxygenase. Dietary supplementation studies have established that tocotrienol, fed orally, does reach the brain. The current findings point towards tocotrienol as a potent neuroprotective form of natural vitamin E.
Collapse
Affiliation(s)
- Chandan K Sen
- Davis Heart & Lung Research Institute, 473 West 12th Avenue, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
62
|
Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart. BMC Pharmacol 2004; 4:29. [PMID: 15535879 PMCID: PMC535348 DOI: 10.1186/1471-2210-4-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 11/09/2004] [Indexed: 12/13/2022] Open
Abstract
Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). Results There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in control rats subjected to ischemia-reperfusion (C IR). Hearts from palm olein oil fed rats subjected to ischemia-reperfusion (PO 5 IR and PO 10 IR) were protected from increase in TBARS and depletion of endogenous antioxidants as compared to C IR group. No significant myocyte injury was present in the treated groups. Conclusions The present study demonstrated for the first time that dietary palm olein oil protected rat heart from oxidative stress associated with ischemic-reperfusion injury.
Collapse
|
63
|
Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW, Ratan RR, Sen CK. Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem 2003; 278:43508-15. [PMID: 12917400 PMCID: PMC1910692 DOI: 10.1074/jbc.m307075200] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin E is a generic term for tocopherols and tocotrienols. This work is based on our striking evidence that, in neuronal cells, nanomolar concentrations of alpha-tocotrienol, but not alpha-tocopherol, block glutamate-induced death by suppressing early activation of c-Src kinase (Sen, C. K., Khanna, S., Roy, S., and Packer, L. (2000) J. Biol. Chem. 275, 13049-13055). This study on HT4 and immature primary cortical neurons suggests a central role of 12-lipoxygenase (12-LOX) in executing glutamate-induced neurodegeneration. BL15, an inhibitor of 12-LOX, prevented glutamate-induced neurotoxicity. Moreover, neurons isolated from 12-LOX-deficient mice were observed to be resistant to glutamate-induced death. In the presence of nanomolar alpha-tocotrienol, neurons were resistant to glutamate-, homocysteine-, and l-buthionine sulfoximine-induced toxicity. Long-term time-lapse imaging studies revealed that neurons and their axo-dendritic network are fairly motile under standard culture conditions. Such motility was arrested in response to glutamate challenge. Tocotrienol-treated primary neurons maintained healthy growth and motility even in the presence of excess glutamate. The study of 12-LOX activity and metabolism revealed that this key mediator of glutamate-induced neurodegeneration is subject to control by the nutrient alpha-tocotrienol. In silico docking studies indicated that alpha-tocotrienol may hinder the access of arachidonic acid to the catalytic site of 12-LOX by binding to the opening of a solvent cavity close to the active site. These findings lend further support to alpha-tocotrienol as a potent neuroprotective form of vitamin E.
Collapse
Affiliation(s)
- Savita Khanna
- Laboratory of Molecular Medicine, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210
| | - Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210
| | - Hoon Ryu
- Department of Neurology, Harvard Medical School and The Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Praveen Bahadduri
- Bioinformatics and Computational Biology Core Laboratory, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210
| | - Peter W. Swaan
- Bioinformatics and Computational Biology Core Laboratory, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210
| | - Rajiv R. Ratan
- Department of Neurology, Harvard Medical School and The Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Chandan K. Sen
- Correspondence: Dr. Chandan K. Sen 512 Heart & Lung Research Institute 473 W. 12 Avenue The Ohio State University Medical Center, Columbus, OH 43210 Tel 1 614 247 7786; Fax 1 614 247 7818.
| |
Collapse
|
64
|
Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002; 113 Suppl 9B:71S-88S. [PMID: 12566142 DOI: 10.1016/s0002-9343(01)00995-0] [Citation(s) in RCA: 1177] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in foods. They are being intensively studied to evaluate their effects on health. The impetus sparking this scientific inquiry was the result of many epidemiologic studies that have shown protective effects of plant-based diets on cardiovascular disease (CVD) and cancer. Many bioactive compounds have been discovered. These compounds vary widely in chemical structure and function and are grouped accordingly. Phenolic compounds, including their subcategory, flavonoids, are present in all plants and have been studied extensively in cereals, legumes, nuts, olive oil, vegetables, fruits, tea, and red wine. Many phenolic compounds have antioxidant properties, and some studies have demonstrated favorable effects on thrombosis and tumorogenesis and promotion. Although some epidemiologic studies have reported protective associations between flavonoids or other phenolics and CVD and cancer, other studies have not found these associations. Various phytoestrogens are present in soy, but also in flaxseed oil, whole grains, fruits, and vegetables. They have antioxidant properties, and some studies demonstrated favorable effects on other CVD risk factors, and in animal and cell culture models of cancer. However, because phytoestrogens act both as partial estrogen agonists and antagonists, their effects on cancer are likely complex. Hydroxytyrosol, one of many phenolics in olives and olive oil, is a potent antioxidant. Resveratrol, found in nuts and red wine, has antioxidant, antithrombotic, and anti-inflammatory properties, and inhibits carcinogenesis. Lycopene, a potent antioxidant carotenoid in tomatoes and other fruits, is thought to protect against prostate and other cancers, and inhibits tumor cell growth in animals. Organosulfur compounds in garlic and onions, isothiocyanates in cruciferous vegetables, and monoterpenes in citrus fruits, cherries, and herbs have anticarcinogenic actions in experimental models, as well as cardioprotective effects. In summary, numerous bioactive compounds appear to have beneficial health effects. Much scientific research needs to be conducted before we can begin to make science-based dietary recommendations. Despite this, there is sufficient evidence to recommend consuming food sources rich in bioactive compounds. From a practical perspective, this translates to recommending a diet rich in a variety of fruits, vegetables, whole grains, legumes, oils, and nuts.
Collapse
Affiliation(s)
- Penny M Kris-Etherton
- Graduate Program in Nutrition, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Mustad VA, Smith CA, Ruey PP, Edens NK, DeMichele SJ. Supplementation with 3 compositionally different tocotrienol supplements does not improve cardiovascular disease risk factors in men and women with hypercholesterolemia. Am J Clin Nutr 2002; 76:1237-43. [PMID: 12450888 DOI: 10.1093/ajcn/76.6.1237] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tocotrienols have been reported to lower LDL-cholesterol and fasting glucose concentrations and to have potent antioxidant effects, but the results are contradictory. OBJECTIVE The objective was to study the relative effect of tocotrienol supplements of different compositions (mixed alpha- plus gamma-, high gamma-, or P25-complex tocotrienol) on blood lipids, fasting blood glucose, and the excretion of 8-iso-prostaglandin F(2alpha), a measure of oxidative stress, in healthy hypercholesterolemic men and women. DESIGN This was a double-blind, randomized, parallel-design study in which subjects (n = 67 men and women) consumed 1 of 3 commercially available tocotrienol supplements or a safflower oil placebo for 28 d. Blood and urine samples were obtained before and after the 28-d supplementation phase for analysis of fasting blood lipids, glucose, tocotrienols and tocopherols, and 8-iso-prostaglandin F(2alpha). RESULTS Overall, serum tocotrienols were increased in subjects who consumed tocotrienols, which showed that the putatively active components were absorbed. No significant differences in mean lipid or glucose concentrations were observed among the 4 treatment groups at the end of the 28-d supplementation phase. However, when the values were expressed as a percentage change from the concentrations during the presupplementation run-in phase, LDL cholesterol increased slightly (7 +/- 2%) but significantly (P < 0.05) in the group consuming the mixed alpha- plus gamma-tocotrienol supplement when compared with LDL cholesterol in the group consuming the P25-complex tocotrienol. Neither mean concentrations nor the percentage change in 8-iso-prostaglandin F(2alpha) differed significantly among treatments. CONCLUSION Supplementation with 200 mg tocotrienols/d from 3 commercially available sources has no beneficial effect on key cardiovascular disease risk factors in highly compliant adults with elevated blood lipid concentrations.
Collapse
Affiliation(s)
- Vikkie A Mustad
- Strategic Discovery Research & Development, Ross Products Division, Abbott Laboratories, Columbus, OH 43215-1724, USA.
| | | | | | | | | |
Collapse
|
66
|
McCarty MF. Policosanol safely down-regulates HMG-CoA reductase - potential as a component of the Esselstyn regimen. Med Hypotheses 2002; 59:268-79. [PMID: 12208152 DOI: 10.1016/s0306-9877(02)00226-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many of the wide-ranging health benefits conferred by statin therapy are mediated, not by reductions in LDL cholesterol, but rather by inhibition of isoprenylation reactions essential to the activation of Rho family GTPases; this may be the mechanism primarily responsible for the favorable impact of statins on risk for ischemic stroke, senile dementia, and fractures, as well as the anti-hypertensive and platelet-stabilizing actions of these drugs. Indeed, the extent of these benefits is such as to suggest that most adults would be wise to take statins; however, owing to the significant expense of statin therapy, as well as to the potential for dangerous side effects that mandates regular physician follow-up, this strategy appears impractical. However, policosanol, a mixture of long-chain aliphatic alcohols extractable from sugar cane wax, has shown cholesterol-lowering potency comparable to that of statins, and yet appears to be devoid of toxic risk. Recent evidence indicates that policosanol down-regulates cellular expression of HMG-CoA reductase, and thus has the potential to suppress isoprenylation reactions much like statins do. Consistent with this possibility, the results of certain clinical and animal studies demonstrate that policosanol has many effects analogous to those of statins that are not likely explained by reductions of LDL cholesterol. However, unlike statins, policosanol does not directly inhibit HMG-CoA reductase, and even in high concentrations it fails to down-regulate this enzyme by more than 50% - thus likely accounting for the safety of this nutraceutical. In light of the fact that policosanol is quite inexpensive and is becoming available as a non-prescription dietary supplement, it may represent a practical resource that could enable the general public to enjoy health benefits comparable to those conferred by statins. In a long-term clinical study enrolling patients with significant symptomatic coronary disease, Esselstyn has demonstrated that a low-fat, whole-food vegan diet, coupled with sufficient statin therapy to maintain serum cholesterol below 150 mg/dL, can stop the progression of coronary disease and virtually eliminate further risk for heart attack. A comparable regimen, in which policosanol is used in place of statins, may represent a practical strategy whereby nearly everyone willing to commit to health-protective eating can either prevent coronary disease, or prevent pre-existing coronary disease from progressing to a life-threatening event.
Collapse
|
67
|
Kerckhoffs DAJM, Brouns F, Hornstra G, Mensink RP. Effects on the human serum lipoprotein profile of beta-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. J Nutr 2002; 132:2494-505. [PMID: 12221200 DOI: 10.1093/jn/132.9.2494] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effects of beta-glucan, soy protein, isoflavones, plant sterols and stanols, garlic and tocotrienols on serum lipoproteins have been of great interest the last decade. From a critical review of the literature, it appeared that recent studies found positive as well as no effects of beta-glucan from oats on serum LDL cholesterol concentrations. These conflicting results may suggest that the cholesterol-lowering activity of products rich in oat beta-glucan depends on factors, such as its viscosity in the gastrointestinal tract, the food matrix and/or food processing. The effects of beta-glucan from barley or yeast on the lipoprotein profile are promising, but more human trials are needed to further substantiate these effects. It is still not clear whether the claimed hypocholesterolemic effects of soy can be attributed solely to the isoflavones. Several studies found no changes in serum LDL cholesterol concentrations after consumption of isolated soy isoflavones (without soy protein), indicating that a combination of soy protein and isoflavones may be needed for eliciting a cholesterol-lowering effect of soy. Therefore, the exact (combination of) active ingredients in soy products need to be identified. The daily consumption of 2-3 g of plant sterols or stanols reduces LDL cholesterol concentrations by 9-14%. It has been demonstrated that functional foods enriched with plant sterols and stanols are effective in various population groups, and in combination with cholesterol-lowering diets or drugs. Whether garlic or garlic preparations can be used as a lipid-lowering agent is still uncertain. It is important to characterize the active components in garlic and their bioavailability after ingestion. It is not very likely that tocotrienols from palm oil or rice bran oil have favorable effects on the human serum lipoprotein profile.
Collapse
Affiliation(s)
- Daniëlle A J M Kerckhoffs
- Department of Human Biology and. Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
68
|
Okabe M, Oji M, Ikeda I, Tachibana H, Yamada K. Tocotrienol levels in various tissues of Sprague-Dawley rats after intragastric administration of tocotrienols. Biosci Biotechnol Biochem 2002; 66:1768-71. [PMID: 12353645 DOI: 10.1271/bbb.66.1768] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A tocotrienol (T3) mixture was intragastricaly administered to Sprague-Dawley rats, and the T3 levels in various tissues were measured 0, 4, 8 and 24 hr after the administration. In blood clots, brain, thymus, testes, vice-testes and muscles, T3 homologues were not detected at all. In epididymal adipose, renal adipose, subcutaneous adipose and brown adipose tissues and in the heart, the T3 levels were maintained or increased for 24 hr after the administration. In the serum, liver, mesenteric lymph node, spleen and lungs, the T3 levels were highest 8 hr after the T3 administration. These results suggest that the distribution and metabolism of T3 in the rat vary considerably among different tissues.
Collapse
Affiliation(s)
- Masaaki Okabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
69
|
McCarty MF. Insulin's stimulation of endothelial superoxide generation may reflect up-regulation of isoprenyl transferase activity that promotes rac translocation. Med Hypotheses 2002; 58:472-5. [PMID: 12323112 DOI: 10.1054/mehy.2001.1455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent research demonstrates that statin drugs exert a number of favorable effects on endothelial function, independent of lipid modulation, that appear to be mediated by a partial inhibition of prenylation reactions. Statin-induced suppression of PKC-evoked superoxide production may be attributable to an inhibition of rac prenylation and thus translocation that impedes activation of the membrane-bound NAD(P)H oxidase. Conversely, it is now known that hyperinsulinemia up-regulates prenylation reactions by boosting the activities of isoprenyl transferases. In light of new evidence that hyperinsulinemia stimulates endothelial superoxide production via NAD(P)H oxidase, it is tempting to conclude that up-regulation of rac prenylation is at least partially responsible for this phenomenon. In patients afflicted with insulin resistance syndrome, this adverse impact of hyperinsulinemia may be exacerbated by an excessive free fatty acid flux that activates endothelial PKC - another stimulant of the NAD(P)H oxidase - while impeding insulin-mediated activation of nitric oxide synthase. The resulting imbalance of endothelial nitric oxide and superoxide production may be responsible for much of the excess vascular risk associated with this syndrome.
Collapse
|
70
|
Abstract
Palm oil is an excellent choice for food manufacturers because of its nutritional benefits and versatility. The oil is highly structured to contain predominantly oleic acid at the sn2-position in the major triacylglycerols to account for the beneficial effects described in numerous nutritional studies. Oil quality and nutritional benefits have been assured for the variety of foods that can be manufactured from the oil directly or from blends with other oils while remaining trans-free. The oxidative stability coupled with the cost-effectiveness is unparalleled among cholesterol-free oils, and these values can be extended to blends of polyunsaturated oils to provide long shelf-life. Presently the supply of genetic-modification-free palm oil is assured at economic prices, since the oil palm is a perennial crop with unparalleled productivity. Numerous studies have confirmed the nutritional value of palm oil as a result of the high monounsaturation at the crucial 2-position of the oil's triacylglycerols, making the oil as healthful as olive oil. It is now recognized that the contribution of dietary fats to blood lipids and cholesterol modulation is a consequence of the digestion, absorption, and metabolism of the fats. Lipolytic hydrolysis of palm oil glycerides containing predominantly oleic acid at the 2 position and palmitic and stearic acids at the 1 and 3 positions allows for the ready absorption of the 2-monoacrylglycerols while the saturated free fatty acids remain poorly absorbed. Dietary palm oil in balanced diets generally reduced blood cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides while raising the high-density lipoprotein (HDL) cholesterol. Improved lipoprotein(a) and apo-A1 levels were also demonstrated from palm oil diets; an important benefits also comes from the lowering of blood triglycerides (or reduced fat storage) as compared with those from polyunsaturated fat diets. Virgin palm oil also provides carotenes apart from tocotrienols and tocopherols that have been shown to be powerful antioxidants and potential mediators of cellular functions. These compounds can be antithrombotic, cause an increase of the prostacyclin/thromboxane ratio, reduce restenosis, and inhibit HMG-CoA-reductase (thus reducing) cholesterol biosynthesis). Red palm oil is a rich source of beta-carotene as well as of alpha-tocopherol and tocotrienols.
Collapse
Affiliation(s)
- A S H Ong
- Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
71
|
Effects of feeding various tocotrienol sources on plasma lipids and aortic atherosclerotic lesions in cholesterol-fed rabbits. Food Res Int 2002. [DOI: 10.1016/s0963-9969(01)00192-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
Schwenke DC. Does lack of tocopherols and tocotrienols put women at increased risk of breast cancer? J Nutr Biochem 2002; 13:2-20. [PMID: 11834215 DOI: 10.1016/s0955-2863(01)00207-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer is the leading site of new cancers in women and the second leading cause (after lung cancer) of cancer mortality in women. Observational studies that have collected data for dietary exposure to alpha-tocopherol with or without the other related tocopherols and tocotrienols have suggested that vitamin E from dietary sources may provide women with modest protection from breast cancer. However, there is no evidence that vitamin E supplements confer any protection whatever against breast cancer. Observational studies that have assessed exposure to vitamin E by plasma or adipose tissue concentrations of alpha-tocopherol have failed to provide consistent support for the idea that alpha-tocopherol provides any protection against breast cancer. In addition, evidence from studies in experimental animals suggest that alpha-tocopherol supplementation alone has little effect on mammary tumors. In contrast, studies in breast cancer cells indicate that alpha- gamma-, and delta-tocotrienol, and to a lesser extent delta-tocopherol, have potent antiproliferative and proapoptotic effects that would be expected to reduce risk of breast cancer. Many vegetable sources of alpha-tocopherol also contain other tocopherols or tocotrienols. Thus, it seems plausible that the modest protection from breast cancer associated with dietary vitamin E may be due to the effects of the other tocopherols and the tocotrienols in the diet. Additional studies will be required to determine whether this may be the case, and to identify the most active tocopherol/tocotrienol.
Collapse
Affiliation(s)
- Dawn C. Schwenke
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
73
|
Affiliation(s)
- M Meydani
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|
74
|
McCarty MF. Up-regulation of endothelial nitric oxide activity as a central strategy for prevention of ischemic stroke - just say NO to stroke! Med Hypotheses 2000; 55:386-403. [PMID: 11058418 DOI: 10.1054/mehy.2000.1075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) produced by the endothelium of cerebral arterioles is an important mediator of endothelium-dependent vasodilation (EDV), and also helps to prevent thrombosis and vascular remodeling. A number of risk factors for ischemic stroke are associated with impaired EDV, and this defect is usually at least partially attributable to a decrease in the production and/or stability of NO. These risk factors include hypertension, high-sodium diets, homocysteine, diabetes, visceral obesity, and aging. Conversely, many measures which may provide protection from ischemic stroke - such as ample dietary intakes of potassium, arginine, fish oil, and selenium - can have a favorable impact on EDV. Protection afforded by exercise training, estrogen replacement, statin drugs, green tea polyphenols, and cruciferous vegetables may reflect increased expression of the endothelial NO synthase. IGF-I activity stimulates endothelial NO production, and conceivably is a mediator of the protection associated with higher-protein diets in Japanese epidemiology and in hypertensive rats. These considerations prompt the conclusion that modulation of NO availability is a crucial determinant of risk for ischemic stroke. Multifactorial strategies for promoting effective cerebrovascular NO activity, complemented by measures that stabilize platelets and moderate blood viscosity, should minimize risk for ischemic stroke and help maintain vigorous cerebral perfusion into ripe old age. The possibility that such measures will also diminish risk for Alzheimer's disease, and slow the normal age-related decline in mental acuity, merits consideration. A limited amount of ecologic epidemiology suggests that both stroke and senile dementia may be extremely rare in cultures still consuming traditional unsalted whole-food diets. Other lines of evidence suggest that promotion of endothelial NO activity may decrease risk for age-related macular degeneration.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, San Diego, California 92109, USA
| |
Collapse
|
75
|
O'Byrne D, Grundy S, Packer L, Devaraj S, Baldenius K, Hoppe PP, Kraemer K, Jialal I, Traber MG. Studies of LDL oxidation following alpha-, gamma-, or delta-tocotrienyl acetate supplementation of hypercholesterolemic humans. Free Radic Biol Med 2000; 29:834-45. [PMID: 11063909 DOI: 10.1016/s0891-5849(00)00371-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro tocotrienols (T3s) have potent vitamin E antioxidant activity, but unlike tocopherols can inhibit cholesterol synthesis by suppressing 3-hydroxy-3-methyl-glutarylCoA (HMG-CoA) reductase. Because hypercholesterolemia is a major risk factor for coronary artery disease and oxidative modification of low-density lipoprotein (LDL) may be involved in atherogenesis, we investigated whether daily supplements of placebo, or alpha-, gamma-, or delta- (alpha-, gamma-, or delta-) tocotrienyl acetates would alter serum cholesterol or LDL oxidative resistance in hypercholesterolemics in a double-blind placebo controlled study. Subjects were randomly assigned to receive placebo (n = 13), alpha- (n = 13), gamma- (n = 12), or delta- (n = 13) tocotrienyl acetate supplements (250 mg/d). All subjects followed a low-fat diet for 4 weeks, then took supplements with dinner for the following 8 weeks while still continuing diet restrictions. Plasma alpha- and gamma-tocopherols were unchanged by supplementation. Plasma T3s were undetectable initially and always in the placebo group. Following supplementation in the respective groups plasma concentrations were: alpha-T3 0.98 +/- 0.80 micromol/l, gamma-T3 0.54 +/- 0.45 micromol/l, and delta-T3 0.09 +/- 0.07 micromol/l. Alpha-T3 increased in vitro LDL oxidative resistance (+22%, p <.001) and decreased its rate of oxidation (p <. 01). Neither serum or LDL cholesterol nor apolipoprotein B were significantly decreased by tocotrienyl acetate supplements. This study demonstrates that: (i) tocotrienyl acetate supplements are hydrolyzed, absorbed, and detectable in human plasma; (ii) tocotrienyl acetate supplements do not lower cholesterol in hypercholesterolemic subjects on low-fat diets; and (iii) alpha-T3 may be potent in decreasing LDL oxidizability.
Collapse
Affiliation(s)
- D O'Byrne
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Sen CK, Khanna S, Roy S, Packer L. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells. J Biol Chem 2000; 275:13049-55. [PMID: 10777609 DOI: 10.1074/jbc.275.17.13049] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HT4 hippocampal neuronal cells were studied to compare the efficacy of tocopherols and tocotrienol to protect against glutamate-induced death. Tocotrienols were more effective than alpha-tocopherol in preventing glutamate-induced death. Uptake of tocotrienols from the culture medium was more efficient compared with that of alpha-tocopherol. Vitamin E molecules have potent antioxidant properties. Results show that at low concentrations, tocotrienols may have protected cells by an antioxidant-independent mechanism. Examination of signal transduction pathways revealed that protein tyrosine phosphorylation processes played a central role in the execution of death. Activation of pp60(c-Src) kinase and phosphorylation of ERK were observed in response to glutamate treatment. Nanomolar amounts of alpha-tocotrienol, but not alpha-tocopherol, blocked glutamate-induced death by suppressing glutamate-induced early activation of c-Src kinase. Overexpression of kinase-active c-Src sensitized cells to glutamate-induced death. Tocotrienol treatment prevented death of Src-overexpressing cells treated with glutamate. alpha-Tocotrienol did not influence activity of recombinant c-Src kinase suggesting that its mechanism of action may include regulation of SH domains. This study provides first evidence describing the molecular basis of tocotrienol action. At a concentration 4-10-fold lower than levels detected in plasma of supplemented humans, tocotrienol regulated unique signal transduction processes that were not sensitive to comparable concentrations of tocopherol.
Collapse
Affiliation(s)
- C K Sen
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
77
|
Evans JR, Henshaw K. Antioxidant vitamin and mineral supplementation for preventing age-related macular degeneration. Cochrane Database Syst Rev 2000:CD000253. [PMID: 10796707 DOI: 10.1002/14651858.cd000253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Some observational studies have suggested that people who eat a diet rich in antioxidant vitamins (carotenoids, vitamins C and E) or minerals (selenium and zinc) may be less likely to develop age-related macular degeneration. OBJECTIVES The aim of this review is to examine the evidence as to whether or not taking vitamin or mineral supplements prevents the development of age-related macular degeneration. SEARCH STRATEGY We searched the Cochrane Eyes and Vision Group specialised register, the Cochrane Controlled Trials Register - Central, MEDLINE, reference lists of identified reports and the Science Citation Index. We contacted investigators and experts in the field for details of unpublished studies. The most recent searches were conducted in June 1999. SELECTION CRITERIA All randomised trials comparing an antioxidant vitamin and/or mineral supplement (alone or in combination) to control were included. We included only studies where supplementation had been given for at least one year. DATA COLLECTION AND ANALYSIS Both reviewers independently extracted data and assessed trial quality. Currently there is only one published trial included in the review so no data synthesis was conducted. MAIN RESULTS One trial is included in the review. This was a primary prevention trial in Finnish male smokers with four treatment groups: alpha-tocopherol alone, beta-carotene alone, alpha-tocopherol and beta-carotene, placebo. The add-on maculopathy study was conducted in a subset of the main trial cohort. 269 cases of maculopathy (14 late stage age-related macular degeneration) were identified. There was no association of age-related macular degeneration with treatment. REVIEWER'S CONCLUSIONS There is no evidence to date that people without age-related macular degeneration should take antioxidant vitamin and mineral supplements to prevent or delay the onset of the disease. The results of five large ongoing trials are awaited.
Collapse
Affiliation(s)
- J R Evans
- 'Glaxo' Department of Ophthalmology Epidemiology, Institute of Ophthalmology (UCL) and Moorfields Eye Hospital, City Road, London, UK, EC1V 2PD.
| | | |
Collapse
|
78
|
Fuhrman B, Volkova N, Rosenblat M, Aviram M. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid Redox Signal 2000; 2:491-506. [PMID: 11229363 DOI: 10.1089/15230860050192279] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several lines of evidence suggest that oxidatively modified low-density lipoprotein (LDL) is atherogenic, and that atherosclerosis can be attenuated by natural antioxidants, which inhibit LDL oxidation. This study was conducted to determine the effect of tomato lycopene alone, or in combination with other natural antioxidants, on LDL oxidation. LDL (100 microg of protein/ml) was incubated with increasing concentrations of lycopene or of tomato oleoresin (lipid extract of tomatoes containing 6% lycopene, 0.1% beta-carotene, 1% vitamin E, and polyphenols), after which it was oxidized by the addition of 5 micromol/liter of CuSO4. Tomato oleoresin exhibited superior capacity to inhibit LDL oxidation in comparison to pure lycopene, by up to five-fold [97% vs. 22% inhibition of thiobarbituric acid reactive substances (TBARS) formation, and 93% vs. 27% inhibition of lipid peroxides formation, respectively]. Because tomato oleoresin also contains, in addition to lycopene, vitamin E, flavonoids, and phenolics, a possible cooperative interaction between lycopene and such natural antioxidants was studied. A combination of lycopene (5 micromol/liter) with vitamin E (alpha-tocopherol) in the concentration range of 1-10 micromol/liter resulted in an inhibition of copper ion-induced LDL oxidation that was significantly greater than the expected additive individual inhibitions. The synergistic antioxidative effect of lycopene with vitamin E was not shared by gamma-to-cotrienol. The polyphenols glabridin (derived from licorice), rosmarinic acid or carnosic acid (derived from rosemary), as well as garlic (which contains a mixture of natural antioxidants) inhibited LDL oxidation in a dose-dependent manner. When lycopene (5 micromol/liter) was added to LDL in combination with glabridin, rosmarinic acid, carnosic acid, or garlic, synergistic antioxidative effects were obtained against LDL oxidation induced either by copper ions or by the radical generator AAPH. Similar interactive effects seen with lycopene were also observed with beta-carotene, but, however, to a lesser extent of synergism. Because natural antioxidants exist in nature in combination, the in vivo relevance of lycopene in combination with other natural antioxidants was studied. Four healthy subjects were administered a fatty meal containing 30 mg of lycopene in the form of tomato oleoresin. The lycopene concentration in postprandial plasma was elevated by 70% in comparison to plasma obtained before meal consumption. Postprandial LDL isolated 5 hr after meal consumption exhibited a significant (p < 0.01) reduced susceptibility to oxidation by 21%. We conclude that lycopene acts synergistically, as an effective antioxidant against LDL oxidation, with several natural antioxidants such as vitamin E, the flavonoid glabridin, the phenolics rosmarinic acid and carnosic acid, and garlic. These observations suggest a superior antiatherogenic characteristic to a combination of different natural antioxidants over that of an individual one.
Collapse
Affiliation(s)
- B Fuhrman
- Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
79
|
Abstract
OBJECTIVES To summarize new knowledge surrounding the physiological activity of tocotrienol, a natural analogue of tocopherol. RESULTS The biological activity of vitamin E has generally been associated with its well-defined antioxidant property, specifically against lipid peroxidation in biological membranes. In the vitamin E group, alpha-tocopherol is considered to be the most active form. However, recent research has suggested tocotrienol to be a better antioxidant. Moreover, tocotrienol has been shown to possess novel hypocholesterolemic effects together with an ability to reduce the atherogenic apolipoprotein B and lipoprotein(a) plasma levels. In addition, tocotrienol has been suggested to have an anti-thrombotic and anti-tumor effect indicating that tocotrienol may serve as an effective agent in the prevention and/or treatment of cardiovascular disease and cancer. CONCLUSION The physiological activities of tocotrienol suggest it to be superior than alpha-tocopherol in many situations. Hence, the role of tocotrienol in the prevention of cardiovascular disease and cancer may have significant clinical implications. Additional studies on its mechanism of action, as well as, long-term intervention studies, are needed to clarify its function. From the pharmacological point-of-view, the current formulation of vitamin E supplements, which is comprised mainly of alpha-tocopherol, may be questionable.
Collapse
Affiliation(s)
- A Theriault
- Division of Medical Technology, University of Hawaii at Manoa, Honolulu 96822, USA.
| | | | | | | | | |
Collapse
|
80
|
Mensink RP, van Houwelingen AC, Kromhout D, Hornstra G. A vitamin E concentrate rich in tocotrienols had no effect on serum lipids, lipoproteins, or platelet function in men with mildly elevated serum lipid concentrations. Am J Clin Nutr 1999; 69:213-9. [PMID: 9989682 DOI: 10.1093/ajcn/69.2.213] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tocotrienols, lipid-soluble antioxidants with vitamin E activity, have been reported to lower LDL-cholesterol concentrations and platelet aggregation in men, but results are contradictory. OBJECTIVE To examine in detail the effects of a vitamin E concentrate rich in tocotrienols on serum lipoproteins and on platelet function in men at risk for cardiovascular disease. DESIGN In this randomized, double-blind, placebo-controlled parallel trial, 20 men received daily for 6 wk 4 capsules, each containing 35 mg tocotrienols and 20 mg alpha-tocopherol; 20 other men received 4 capsules daily, each providing 20 mg alpha-tocopherol. All men had concentrations of serum total cholesterol between 6.5 and 8.0 mmol/L or lipoprotein(a) concentrations > 150 mg/L. RESULTS Compliance was confirmed by changes in serum tocopherol and tocotrienol concentrations. Serum LDL cholesterol in the tocotrienol group was 4.80 mmol/L before and 4.79 mmol/L after intervention, and increased from 4.70 to 4.86 mmol/L in the placebo group (95% CI for the difference: -0.54, 0.19 mmol/L; P = 0.333). Also, changes in HDL cholesterol, triacylglycerol, lipoprotein(a), and lipid peroxide concentrations did not differ between the groups. After adjustment for differences in initial values, no effects were found on collagen-induced platelet aggregation velocity, maximum aggregation, or thromboxane B2 formation in citrated whole blood. ATP release, however, was lower in the tocotrienol group. Urinary thromboxane B2 and 11-keto-thromboxane B2 concentrations and coagulation and fibrinolytic measures did not change. CONCLUSION The tocotrienol supplements used had no marked favorable effects on the serum lipoprotein profile or on platelet function in men with slightly elevated lipid concentrations.
Collapse
Affiliation(s)
- R P Mensink
- Department of Human Biology, Maastricht University, Netherlands.
| | | | | | | |
Collapse
|
81
|
Kamat JP, Sarma HD, Devasagayam TP, Nesaretnam K, Basiron Y. Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes. Mol Cell Biochem 1997; 170:131-7. [PMID: 9144327 DOI: 10.1023/a:1006853419214] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tocotrienols from palm oil showed significant ability to inhibit oxidative damage induced by ascorbate-Fe2+ and photosensitization, involving different mechanisms, in rat liver microsomes. The tocotrienol-rich fraction from palm oil (TRF), being tried as a more economical and efficient substitute for alpha-tocopherol, showed time- and concentration-dependent inhibition of protein oxidation as well as lipid peroxidation. It was more effective against protein oxidation. The extent of inhibition by TRF varied with different peroxidation products such as conjugated dienes, lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Among the constituents of TRF, gamma-tocotrienol was the most effective followed by its alpha- and delta-isomers. In general, at a low concentration of 5 microM, TRF was able to prevent oxidative damage to significant extent (37% inhibition of protein oxidation and 27-30% of lipid peroxidation at 1 h of incubation). The protective ability of TRF (30.1% at 5 microM with TBARS formation) was significantly higher than that of the dominant form of vitamin E, alpha-tocopherol (16.5% under same conditions). Hence our studies indicate that this fraction from palm oil can be considered as an effective natural antioxidant supplement capable of protecting cellular membranes against oxidative damage.
Collapse
Affiliation(s)
- J P Kamat
- Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay, India
| | | | | | | | | |
Collapse
|