51
|
Bulk-surface coupling identifies the mechanistic connection between Min-protein patterns in vivo and in vitro. Nat Commun 2021; 12:3312. [PMID: 34083526 PMCID: PMC8175580 DOI: 10.1038/s41467-021-23412-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/21/2021] [Indexed: 11/08/2022] Open
Abstract
Self-organisation of Min proteins is responsible for the spatial control of cell division in Escherichia coli, and has been studied both in vivo and in vitro. Intriguingly, the protein patterns observed in these settings differ qualitatively and quantitatively. This puzzling dichotomy has not been resolved to date. Using reconstituted proteins in laterally wide microchambers with a well-controlled height, we experimentally show that the Min protein dynamics on the membrane crucially depend on the micro chamber height due to bulk concentration gradients orthogonal to the membrane. A theoretical analysis shows that in vitro patterns at low microchamber height are driven by the same lateral oscillation mode as pole-to-pole oscillations in vivo. At larger microchamber height, additional vertical oscillation modes set in, marking the transition to a qualitatively different in vitro regime. Our work reveals the qualitatively different mechanisms of mass transport that govern Min protein-patterns for different bulk heights and thus shows that Min patterns in cells are governed by a different mechanism than those in vitro.
Collapse
|
52
|
Kretschmer S, Heermann T, Tassinari A, Glock P, Schwille P. Increasing MinD's Membrane Affinity Yields Standing Wave Oscillations and Functional Gradients on Flat Membranes. ACS Synth Biol 2021; 10:939-949. [PMID: 33881306 PMCID: PMC8155659 DOI: 10.1021/acssynbio.0c00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/28/2022]
Abstract
The formation of large-scale patterns through molecular self-organization is a basic principle of life. Accordingly, the engineering of protein patterns and gradients is of prime relevance for synthetic biology. As a paradigm for such pattern formation, the bacterial MinDE protein system is based on self-organization of the ATPase MinD and ATPase-activating protein MinE on lipid membranes. Min patterns can be tightly regulated by tuning physical or biochemical parameters. Among the biochemically engineerable modules, MinD's membrane targeting sequence, despite being a key regulating element, has received little attention. Here we attempt to engineer patterns by modulating the membrane affinity of MinD. Unlike the traveling waves or stationary patterns commonly observed in vitro on flat supported membranes, standing-wave oscillations emerge upon elongating MinD's membrane targeting sequence via rationally guided mutagenesis. These patterns are capable of forming gradients and thereby spatially target co-reconstituted downstream proteins, highlighting their functional potential in designing new life-like systems.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Current
affiliation: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Tamara Heermann
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrea Tassinari
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Philipp Glock
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Schwille
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
53
|
Grant NA, Abdel Magid A, Franklin J, Dufour Y, Lenski RE. Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli. J Bacteriol 2021; 203:e00469-20. [PMID: 33649147 PMCID: PMC8088598 DOI: 10.1128/jb.00469-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. In this study, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last time point. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest that larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells.IMPORTANCE Bacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. In this study, we revived and analyzed samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this "frozen fossil record," we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.
Collapse
Affiliation(s)
- Nkrumah A Grant
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Ali Abdel Magid
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Joshua Franklin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Yann Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
54
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non‐Equilibrium Large‐Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Simon Kretschmer
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Bioengineering and Therapeutic Science University of California San Francisco San Francisco CA USA
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
55
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021; 60:6496-6502. [PMID: 33285025 PMCID: PMC7986748 DOI: 10.1002/anie.202015184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
Collapse
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Simon Kretschmer
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Bioengineering and Therapeutic ScienceUniversity of California San FranciscoSan FranciscoCAUSA
| | - Petra Schwille
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
56
|
De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nat Commun 2021; 12:1472. [PMID: 33674566 PMCID: PMC7935970 DOI: 10.1038/s41467-021-21622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Modules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a ‘cargo’ molecule reversibly to a permanent membrane ‘anchor’; and (ii) creating a ‘membrane-avidity switch’ that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells. The ability to dynamically control protein-protein interactions and localization of proteins is critical in synthetic biological systems. Here the authors develop a peptide-based molecular switch that regulates dimer formation and lipid membrane targeting via reversible phosphorylation.
Collapse
|
57
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
58
|
Zhang G, Zhong F, Chen L, Qin P, Li J, Zhi F, Tian L, Zhou D, Lin P, Chen H, Tang K, Liu W, Jin Y, Wang A. Integrated Proteomic and Transcriptomic Analyses Reveal the Roles of Brucella Homolog of BAX Inhibitor 1 in Cell Division and Membrane Homeostasis of Brucella suis S2. Front Microbiol 2021; 12:632095. [PMID: 33584633 PMCID: PMC7876416 DOI: 10.3389/fmicb.2021.632095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
BAX inhibitor 1 (BI-1) is an evolutionarily conserved transmembrane protein first identified in a screening process for human proteins that suppress BAX-induced apoptosis in yeast cells. Eukaryotic BI-1 is a cytoprotective protein that suppresses cell death induced by multiple stimuli in eukaryotes. Brucella, the causative agent of brucellosis that threatens public health and animal husbandry, contains a conserved gene that encodes BI-1-like protein. To explore the role of the Brucella homolog of BI-1, BrBI, in Brucella suis S2, we constructed the brbI deletion mutant strain and its complemented strain. brbI deletion altered the membrane properties of Brucella suis S2 and decreased its resistance to acidic pH, H2O2, polymyxin B, and lincomycin. Additionally, deleting brbI led to defective growth, cell division, and viability in Brucella suis S2. We then revealed the effect of brbI deletion on the physiological characteristics of Brucella suis S2 via integrated transcriptomic and proteomic analyses. The integrated analysis showed that brbI deletion significantly affected the expression of multiple genes at the mRNA and/or protein levels. Specifically, the affected divisome proteins, FtsB, FtsI, FtsL, and FtsQ, may be the molecular basis of the impaired cell division of the brbI mutant strain, and the extensively affected membrane proteins and transporter-associated proteins were consistent with the phenotype of the membrane properties’ alterations of the brbI mutant strain. In conclusion, our results revealed that BrBI is a bacterial cytoprotective protein involved in membrane homeostasis, cell division, and stress resistance in Brucella suis S2.
Collapse
Affiliation(s)
- Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fangli Zhong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Peipei Qin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lulu Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
59
|
Heermann T, Franquelim HG, Glock P, Harrington L, Schwille P. Probing Biomolecular Interactions by a Pattern-Forming Peptide-Conjugate Sensor. Bioconjug Chem 2020; 32:172-181. [PMID: 33314917 PMCID: PMC7872319 DOI: 10.1021/acs.bioconjchem.0c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
As a key mechanism
underpinning many biological processes, protein
self-organization has been extensively studied. However, the potential
to apply the distinctive, nonlinear biochemical properties of such
self-organizing systems to biotechnological problems such as the facile
detection and characterization of biomolecular interactions has not
yet been explored. Here, we describe an in vitro assay
in a 96-well plate format that harnesses the emergent behavior of
the Escherichia coli Min system to
provide a readout of biomolecular interactions. Crucial for the development
of our approach is a minimal MinE-derived peptide that stimulates
MinD ATPase activity only when dimerized. We found that this behavior
could be induced via any pair of foreign, mutually binding molecular
entities fused to the minimal MinE peptide. The resulting MinD ATPase
activity and the spatiotemporal nature of the produced protein patterns
quantitatively correlate with the affinity of the fused binding partners,
thereby enabling a highly sensitive assay for biomolecular interactions.
Our assay thus provides a unique means of quantitatively visualizing
biomolecular interactions and may prove useful for the assessment
of domain interactions within protein libraries and for the facile
investigation of potential inhibitors of protein–protein interactions.
Collapse
Affiliation(s)
- Tamara Heermann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Philipp Glock
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Leon Harrington
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| |
Collapse
|
60
|
Monterroso B, Robles-Ramos MÁ, Zorrilla S, Rivas G. Reconstituting bacterial cell division assemblies in crowded, phase-separated media. Methods Enzymol 2020; 646:19-49. [PMID: 33453926 DOI: 10.1016/bs.mie.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we have summarized several strategies to reconstruct complexes containing the FtsZ protein, a central element of the cell division machinery in most bacteria, and to test their functional organization in minimal membrane systems and cell-like containers, as vesicles and droplets produced by microfluidics. These synthetic systems have been devised to mimic elements of the intracellular complexity, as excluded volume effects due to natural crowding, and macromolecular condensation resulting from biologically regulated liquid-liquid phase separation, in media of known and controllable composition. This integrative approach has allowed to demonstrate that macromolecular phase separation and crowding may also help to dynamically organize FtsZ in the intracellular space thus modulating its functional reactivity in cell division.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
61
|
Jia H, Litschel T, Heymann M, Eto H, Franquelim HG, Schwille P. Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906259. [PMID: 32105403 DOI: 10.1002/smll.201906259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|
62
|
Celiksoy S, Ye W, Wandner K, Schlapp F, Kaefer K, Ahijado-Guzmán R, Sönnichsen C. Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns. J Phys Chem Lett 2020; 11:4554-4558. [PMID: 32436712 DOI: 10.1021/acs.jpclett.0c01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a new approach to monitor the dynamics and spatial patterns of biological molecular assemblies. Our molecular imaging method relies on plasmonic gold nanoparticles as point-like detectors and requires no labeling of the molecules. We show spatial resolution of up to 5 μm and 30 ms temporal resolution, which is comparable to wide-field fluorescence microscopy, while requiring only readily available gold nanoparticles and a dark-field optical microscope. We demonstrate the method on MinDE proteins attaching to and detaching from lipid membranes of different composition for 24 h. We foresee our new imaging method as an indispensable tool in advanced molecular biology and biophysics laboratories around the world.
Collapse
Affiliation(s)
- Sirin Celiksoy
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Weixiang Ye
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Karl Wandner
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Schlapp
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katharina Kaefer
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rubén Ahijado-Guzmán
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
63
|
Heermann T, Ramm B, Glaser S, Schwille P. Local Self-Enhancement of MinD Membrane Binding in Min Protein Pattern Formation. J Mol Biol 2020; 432:3191-3204. [PMID: 32199984 DOI: 10.1016/j.jmb.2020.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
The proteins MinD, MinE and MinC are constitutive for the spatiotemporal organization of cell division in Escherichia coli, in particular, for positioning the division machinery at mid-cell. To achieve this function, the ATPase MinD and the ATPase-activating protein MinE undergo coordinated pole-to-pole oscillations and have thus become a paradigm for protein pattern formation in biology. The exact molecular mechanisms enabling MinDE self-organization, and particularly the role of cooperativity in the membrane binding of MinD, thought to be a key requirement, have remained poorly understood. However, for bottom-up synthetic biology aiming at a de novo design of key cellular features, elucidating these mechanisms is of great relevance. By combining in vitro reconstitution with rationally guided mutagenesis of MinD, we found that when bound to membranes, MinD displays new interfaces for multimerization, which are distinct from the canonical MinD dimerization site. We propose that these additional transient interactions contribute to the local self-enhancement of MinD at the membrane, while their relative lability maintains the structural plasticity required for MinDE wave propagation. This could represent a powerful structural regulation feature not reported so far for self-organizing proteins.
Collapse
Affiliation(s)
- Tamara Heermann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Beatrice Ramm
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Samson Glaser
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|