51
|
Tang J, Shen H, Zhao X, Holenarsipur VK, Mariappan TT, Zhang Y, Panfen E, Zheng J, Humphreys WG, Lai Y. Endogenous Plasma Kynurenic Acid in Human: A Newly Discovered Biomarker for Drug-Drug Interactions Involving Organic Anion Transporter 1 and 3 Inhibition. Drug Metab Dispos 2021; 49:1063-1069. [PMID: 34599018 DOI: 10.1124/dmd.121.000486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As an expansion investigation of drug-drug interaction (DDI) from previous clinical trials, additional plasma endogenous metabolites were quantitated in the same subjects to further identify the potential biomarkers of organic anion transporter (OAT) 1/3 inhibition. In the single dose, open label, three-phase with fixed order of treatments study, 14 healthy human volunteers orally received 1000 mg probenecid alone, or 40 mg furosemide alone, or 40 mg furosemide at 1 hour after receiving 1000 mg probenecid on days 1, 8, and 15, respectively. Endogenous metabolites including kynurenic acid, xanthurenic acid, indo-3-acetic acid, pantothenic acid, p-cresol sulfate, and bile acids in the plasma were measured by liquid chromatography-tandem mass spectrometry. The Cmax of kynurenic acids was significantly increased about 3.3- and 3.7-fold over the baseline values at predose followed by the treatment of probenecid alone or in combination with furosemide respectively. In comparison with the furosemide-alone group, the Cmax and area under the plasma concentration-time curve (AUC) up to 12 hours of kynurenic acid were significantly increased about 2.4- and 2.5-fold by probenecid alone, and 2.7- and 2.9-fold by probenecid plus furosemide, respectively. The increases in Cmax and AUC of plasma kynurenic acid by probenecid are comparable to the increases of furosemide Cmax and AUC reported previously. Additionally, the plasma concentrations of xanthurenic acid, indo-3-acetic acid, pantothenic acid, and p-cresol sulfate, but not bile acids, were also significantly elevated by probenecid treatments. The magnitude of effect size analysis for known potential endogenous biomarkers demonstrated that kynurenic acid in the plasma offers promise as a superior addition for early DDI assessment involving OAT1/3 inhibition. SIGNIFICANCE STATEMENT: This article reports that probenecid, an organic anion transporter (OAT) 1 and OAT3 inhibitor, significantly increased the plasma concentrations of kynurenic acid and several uremic acids in human subjects. Of those, the increases of plasma kynurenic acid exposure are comparable to the increases of furosemide by OAT1/3 inhibition. Effect size analysis for known potential endogenous biomarkers revealed that plasma kynurenic acid is a superior addition for early drug-drug interaction assessment involving OAT1/3 inhibition.
Collapse
Affiliation(s)
- Jennifer Tang
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Hong Shen
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Xiaofeng Zhao
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Vinay K Holenarsipur
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - T Thanga Mariappan
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Yueping Zhang
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Erika Panfen
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Jim Zheng
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - W Griffith Humphreys
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| | - Yurong Lai
- Drug Metabolism, Gilead Science Inc., Foster City, California (J.T., X.Z., J.Z., Y.L.); Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, New Jersey (H.S., Y.Z., E.P., W.G.H.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Bangalore, India (V.K.H., T.T.M.)
| |
Collapse
|
52
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
53
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
54
|
Huang S, Wang Z, Zhao L. The Crucial Roles of Intermediate Metabolites in Cancer. Cancer Manag Res 2021; 13:6291-6307. [PMID: 34408491 PMCID: PMC8364365 DOI: 10.2147/cmar.s321433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic alteration, one of the hallmarks of cancer cells, is important for cancer initiation and development. To support their rapid growth, cancer cells alter their metabolism so as to obtain the necessary energy and building blocks for biosynthetic pathways, as well as to adjust their redox balance. Once thought to be merely byproducts of metabolic pathways, intermediate metabolites are now known to mediate epigenetic modifications and protein post-transcriptional modifications (PTM), as well as connect cellular metabolism with signal transduction. Consequently, they can affect a myriad of processes, including proliferation, apoptosis, and immunity. In this review, we summarize multiple representative metabolites involved in glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, lipid synthesis, ketogenesis, methionine metabolism, glutamine metabolism, and tryptophan metabolism, focusing on their roles in chromatin and protein modifications and as signal-transducing messengers.
Collapse
Affiliation(s)
- Sisi Huang
- Hengyang School of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
55
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
56
|
Tomaszewska-Hetman L, Rywińska A, Lazar Z, Juszczyk P, Rakicka-Pustułka M, Janek T, Kuźmińska-Bajor M, Rymowicz W. Application of a New Engineered Strain of Yarrowia lipolytica for Effective Production of Calcium Ketoglutarate Dietary Supplements. Int J Mol Sci 2021; 22:7577. [PMID: 34299193 PMCID: PMC8304598 DOI: 10.3390/ijms22147577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol-oil medium. The impact of different C:N:P ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a C:N:P ratio of 87:5:1 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated: (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 μg/g of kynurenic acid, which increases the health-promoting value of the product.
Collapse
Affiliation(s)
- Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (M.R.-P.); (T.J.); (M.K.-B.); (W.R.)
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Walczak K, Kazimierczak P, Szalast K, Plech T. UVB Radiation and Selected Tryptophan-Derived AhR Ligands-Potential Biological Interactions in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22147500. [PMID: 34299117 PMCID: PMC8307169 DOI: 10.3390/ijms22147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive UV exposure is considered the major environmental factor in melanoma progression. Human skin is constantly exposed to selected tryptophan-derived aryl hydrocarbon receptor (AhR) ligands, including kynurenine (KYN) and kynurenic acid (KYNA), as they are endogenously produced and present in various tissues and body fluids. Importantly, recent studies confirmed the biological activity of KYN and KYNA toward melanoma cells in vitro. Thus, in this study, the potential biological interactions between UVB and tryptophan metabolites KYN and KYNA were studied in melanoma A375, SK-MEL-3, and RPMI-7951 cells. It was shown that UVB enhanced the antiproliferative activity of KYN and KYNA in melanoma cells. Importantly, selected tryptophan-derived AhR ligands did not affect the invasiveness of A375 and RPMI-7951 cells; however, the stimulatory effect was observed in SK-MEL-3 cells exposed to UVB. Thus, the effect of tryptophan metabolites on metabolic activity, cell cycle regulation, and cell death in SK-MEL-3 cells exposed to UVB was assessed. In conclusion, taking into account that both UVB radiation and tryptophan-derived AhR ligands may have a crucial effect on skin cancer formation and progression, these results may have a significant impact, revealing the potential biological interactions in melanoma cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
- Correspondence: ; Tel.: +48-814-486-774
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20093 Lublin, Poland;
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| |
Collapse
|
58
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
59
|
Zeleznik OA, Balasubramanian R, Zhao Y, Frueh L, Jeanfavre S, Avila-Pacheco J, Clish CB, Tworoger SS, Eliassen AH. Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women. NPJ Breast Cancer 2021; 7:54. [PMID: 34006878 PMCID: PMC8131633 DOI: 10.1038/s41523-021-00262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N = 207) and risk of breast cancer among predominantly premenopausal women of the Nurses' Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI) = 0.84 (0.77-0.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI) = 1.11 (1.01-1.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors.
Collapse
Affiliation(s)
- Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Raji Balasubramanian
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Yibai Zhao
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Lisa Frueh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Jeanfavre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
60
|
Beretta G, Moretti RM, Nasti R, Cincinelli R, Dallavalle S, Montagnani Marelli M. Apoptosis-mediated anticancer activity in prostate cancer cells of a chestnut honey (Castanea sativa L.) quinoline-pyrrolidine gamma-lactam alkaloid. Amino Acids 2021; 53:869-880. [PMID: 33945018 PMCID: PMC8172409 DOI: 10.1007/s00726-021-02987-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy in men and represents the second leading cause of cancer deaths in Western countries. PCa is initially androgen-dependent, however, this tumor inevitably progresses as castration-resistant prostate cancer (CRPC), which represents the most aggressive phase of the pathology. In this work, in two CRPC cell lines (DU145 and PC3), we studied the in vitro inhibitory properties of the tryptophan-derived endogenous metabolite kynurenic acid (KYNA) and of the lactam form of 3–2′-pyrrilonidinyl-kynurenic acid (3-PKA-L), alkaloids usually present in combination in chestnut honey. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell colony formation assay, and Western blot analysis of the major mediator proteins involved in apoptotic processes. In all experiments, KYNA was scarcely or not active while 3-PKA-L showed anticancer activity in the high concentration range (0.01 mM – 1 mM) from 24 to 72 h. The results obtained showed that cell death was induced by extrinsic apoptotic pathway, by cell morphological changes and reduction of cell colonies number. These novel results represent the first promising step to the accurate description of 3-PKA-L cytotoxic effect, not observed with KYNA, paving the way to the search of new anticancer agents, as well as to the better understanding of the physiopathological role of this interesting natural product.
Collapse
Affiliation(s)
- Giangiacomo Beretta
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy.
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, University of Milan, 20133, Milan, Italy
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
61
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
62
|
Dei Cas M, Vigentini I, Vitalini S, Laganaro A, Iriti M, Paroni R, Foschino R. Tryptophan Derivatives by Saccharomyces cerevisiae EC1118: Evaluation, Optimization, and Production in a Soybean-Based Medium. Int J Mol Sci 2021; 22:E472. [PMID: 33466562 PMCID: PMC7796510 DOI: 10.3390/ijms22010472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Given the pharmacological properti es and the potential role of kynurenic acid (KYNA) in human physiology and the pleiotropic activity of the neurohormone melatonin (MEL) involved in physiological and immunological functions and as regulator of antioxidant enzymes, this study aimed at evaluating the capability of Saccharomyces cerevisiae EC1118 to release tryptophan derivatives (dTRPs) from the kynurenine (KYN) and melatonin pathways. The setting up of the spectroscopic and chromatographic conditions for the quantification of the dTRPs in LC-MS/MS system, the optimization of dTRPs' production in fermentative and whole-cell biotransformation approaches and the production of dTRPs in a soybean-based cultural medium naturally enriched in tryptophan, as a case of study, were included in the experimental plan. Variable amounts of dTRPs, with a prevalence of metabolites of the KYN pathway, were detected. The LC-MS/MS analysis showed that the compound synthesized at highest concentration is KYNA that reached 9.146 ± 0.585 mg/L in fermentation trials in a chemically defined medium at 400 mg/L TRP. Further experiments in a soybean-based medium confirm KYNA as the main dTRPs, whereas the other dTRPs reached very lower concentrations. While detectable quantities of melatonin were never observed, two MEL isomers were successfully measured in laboratory media.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.L.); (R.F.)
| | - Sara Vitalini
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), National Interuniversity Consortium of Materials Science and Technology, Università degli Studi di Milano, 20133 Milan, Italy; (S.V.); (M.I.)
| | - Antonella Laganaro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.L.); (R.F.)
| | - Marcello Iriti
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), National Interuniversity Consortium of Materials Science and Technology, Università degli Studi di Milano, 20133 Milan, Italy; (S.V.); (M.I.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.L.); (R.F.)
| |
Collapse
|
63
|
Zhou Q, Shi Y, Chen C, Wu F, Chen Z. A narrative review of the roles of indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:174. [PMID: 33569476 PMCID: PMC7867903 DOI: 10.21037/atm-20-3594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are induced by several immune factors, such as interferon-γ, and act as intracellular enzymes that catabolize essential amino acid tryptophan into kynurenine and other downstream metabolites, including kynurenic acid (KYNA), xanthurenic acid (XA) and so on. IDO and TDO work as a double-edge sword. On one hand, they exert the immunomodulatory effects, especially immunosuppressive effects on the microenvironment including infections, pregnancy, tumor cells escape and transplantation. TDO plays the major role under basal conditions, while IDO comes into play under different circumstances of immune activation, thus IDO has a wider spectrum of immune regulation. On the other hand, these enzymes also inhibit pathogens such as Chlamydia pneumoniae, Staphylococcus aureus, Toxoplasma gondii and so on. Moreover, IDO regulates metabolic health through shaping intestinal microbiota. Recently, these enzymes have attracted more and more attention in liver diseases. Several studies have indicated that IDO and TDO can modulate viral hepatitis, autoimmune liver diseases, non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, liver cancer even liver transplantation. Targeting them or their antagonists may provide novel therapeutic treatments for liver diseases. In this review, we will discuss the exact roles that IDO and TDO play in diverse hepatic diseases.
Collapse
Affiliation(s)
- Qihui Zhou
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Shi
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengtian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
64
|
Juhász L, Rutai A, Fejes R, Tallósy SP, Poles MZ, Szabó A, Szatmári I, Fülöp F, Vécsei L, Boros M, Kaszaki J. Divergent Effects of the N-Methyl-D-Aspartate Receptor Antagonist Kynurenic Acid and the Synthetic Analog SZR-72 on Microcirculatory and Mitochondrial Dysfunction in Experimental Sepsis. Front Med (Lausanne) 2020; 7:566582. [PMID: 33330526 PMCID: PMC7729001 DOI: 10.3389/fmed.2020.566582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction: Sepsis is a dysregulated host response to infection with macro- and microhemodynamic deterioration. Kynurenic acid (KYNA) is a metabolite of the kynurenine pathway of tryptophan catabolism with pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenously administered KYNA or the synthetic analog SZR-72 affects the microcirculation and mitochondrial function in a clinically relevant rodent model of intraabdominal sepsis. Methods: Male Sprague–Dawley rats (n = 8/group) were subjected to fecal peritonitis (0.6 g kg−1 feces ip) or a sham operation. Septic animals were treated with sterile saline or received ip KYNA or SZR-72 (160 μmol kg−1 each) 16 and 22 h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic dysfunctions (PaO2/FiO2 ratio, mean arterial pressure, urea, AST/ALT ratio and lactate levels, respectively) based on the Rat Organ Failure Assessment (ROFA) score. The ratio of perfused vessels (PPV) of the ileal serosa was quantified with the intravital imaging technique. Complex I- and II-linked (CI; CII) oxidative phosphorylation capacities (OXPHOS) and mitochondrial membrane potential (ΔΨmt) were evaluated by High-Resolution FluoRespirometry (O2k, Oroboros, Austria) in liver biopsies. Plasma endothelin-1 (ET-1), IL-6, intestinal nitrotyrosine (NT) and xanthine oxidoreductase (XOR) activities were measured as inflammatory markers. Results: Sepsis was characterized by an increased ROFA score (5.3 ± 1.3 vs. 1.3 ± 0.7), increased ET-1, IL-6, NT and XOR levels, and decreased serosal PPV (65 ± 12% vs. 87 ± 7%), ΔΨmt and CI–CII-linked OXPHOS (73 ± 16 vs. 158 ± 14, and 189 ± 67 vs. 328 ± 81, respectively) as compared to controls. Both KYNA and SZR-72 reduced systemic inflammatory activation; KYNA treatment decreased serosal perfusion heterogeneity, restored PPV (85 ± 11%) and complex II-linked OXPHOS (307 ± 38), whereas SZR-72 improved both CI- and CII-linked OXPHOS (CI: 117 ± 18; CII: 445 ± 107) without effects on PPV 24 h after sepsis induction. Conclusion: Treatment with SZR-72 directly modulates mitochondrial respiration, leading to improved conversion of ADP to ATP, while administration of KYNA restores microcirculatory dysfunction. The results suggest that microcirculatory and mitochondrial resuscitation with KYNA or the synthetic analog SZR-72 might be an appropriate supportive tool in sepsis therapy.
Collapse
Affiliation(s)
- László Juhász
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Attila Rutai
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Roland Fejes
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Szabolcs P Tallósy
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marietta Z Poles
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Andrea Szabó
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Research Group for Stereochemistry, Institute of Pharmaceutical Chemistry, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Research Group for Stereochemistry, Institute of Pharmaceutical Chemistry, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Hungarian Academy of Sciences (MTA)-University of Szeged (SZTE), Neuroscience Research Group, Szeged, Hungary
| | - Mihály Boros
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
65
|
Improved Production of Kynurenic Acid by Yarrowia lipolytica in Media Containing Different Honeys. SUSTAINABILITY 2020. [DOI: 10.3390/su12229424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Y. lipolytica remains a nonpathogenic, unconventional yeast, which can be applied for the production of bioactive compounds. Our previous study confirmed the ability of yeast Yarrowia lipolytica to produce kynurenic acid (KYNA). Here, we investigated the effectiveness of KYNA production in cultures cultivated in medium containing honey of various origin, used as a source of carbon and energy. It was evidenced that the highest content of KYNA in culture broth (68 mg/L) and yeast biomass (542 mg/kg) was obtained when chestnut honey was used. The content of lipids and amino acids composition in yeast biomass producing KYNA was also determined. It was found that the composition of both amino acids and lipids in yeast biomass depended on the honey type used as a component of the medium. This finding revealed that supplementation of medium broth with honey may significantly affect the nutritional value of yeast biomass. The practical applicability of this finding requires further study.
Collapse
|
66
|
Effect of Tryptophan-Derived AhR Ligands, Kynurenine, Kynurenic Acid and FICZ, on Proliferation, Cell Cycle Regulation and Cell Death of Melanoma Cells-In Vitro Studies. Int J Mol Sci 2020; 21:ijms21217946. [PMID: 33114713 PMCID: PMC7663343 DOI: 10.3390/ijms21217946] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tryptophan metabolites: kynurenine (KYN), kynurenic acid (KYNA) and 6-formylindolo[3,2-b]carbazole (FICZ) are considered aryl hydrocarbon receptor (AhR) ligands. AhR is mainly expressed in barrier tissues, including skin, and is involved in various physiological and pathological processes in skin. We studied the effect of KYN, KYNA and FICZ on melanocyte and melanoma A375 and RPMI7951 cell toxicity, proliferation and cell death. KYN and FICZ inhibited DNA synthesis in both melanoma cell lines, but RPMI7951 cells were more resistant to pharmacological treatment. Tested compounds were toxic to melanoma cells but not to normal human adult melanocytes. Changes in the protein level of cyclin D1, CDK4 and retinoblastoma tumor suppressor protein (Rb) phosphorylation revealed different mechanisms of action of individual AhR ligands. Importantly, all tryptophan metabolites induced necrosis, but only KYNA and FICZ promoted apoptosis in melanoma A375 cells. This effect was not observed in RPMI7951 cells. KYN, KYNA and FICZ in higher concentrations inhibited the protein level of AhR but did not affect the gene expression. To conclude, despite belonging to the group of AhR ligands, KYN, KYNA and FICZ exerted different effects on proliferation, toxicity and induction of cell death in melanoma cells in vitro.
Collapse
|
67
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
68
|
Nallanchakravarthula S, Amruta N, Ramamurthy C. Cancer Microbiome; Opportunities and Challenges. Endocr Metab Immune Disord Drug Targets 2020; 21:215-229. [PMID: 32819239 DOI: 10.2174/1871530320999200818134942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbe-host association has emerged as a modulator in modern medicine. Cancer and its associated host microbes are collectively referred to as the cancer microbiome. The cancer microbiome is complex, and many aspects remain unclear including metabolic plasticity, microenvironment remodeling, cellular communications, and unique signatures within the host, all of which have a vital role in homeostasis and pathogenesis of host physiology. However, the role of the microbiome in cancer initiation, progression, and therapy is still poorly understood and remains to be explored. OBJECTIVE The objective of this review is to elucidate the role of the microbiome in cancer metabolism and the tumor microenvironment. It also focuses on the importance of therapeutic opportunities and challenges in the manipulation of the cancer microbiome. METHODS A literature search was conducted on the role of the microbiome in cancer initiation, progression, and therapy. CONCLUSION The tumor microenvironment and cancer metabolism are significant in host-microbiome interactions. The microbiome can modulate standard cancer therapies like chemotherapy and immunotherapy. Microbiome transplantation has also been demonstrated as an effective therapy against cancer. Furthermore, the modulation of the microbiome also has potential clinical outcomes in modern medicine.
Collapse
Affiliation(s)
| | - Narayanappa Amruta
- Department of Neurosurgery, Tulane University, New Orleans, Louisiana, United States
| | - Chitteti Ramamurthy
- C.G. Bhakta Institute of Biotechnology, UkaTarsadia University, Maliba campus, Bardoli Surat (Dist), Gujarat, India
| |
Collapse
|
69
|
Wang D, Fu Z, Xing Y, Tan Y, Han L, Yu H, Wang T. Rapid identification of chemical composition and metabolites of Pingxiao Capsule
in vivo
using molecular networking and untargeted data‐dependent tandem mass spectrometry. Biomed Chromatogr 2020; 34:e4882. [DOI: 10.1002/bmc.4882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Dong Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
- National Clinical Research Center of CancerTianjin Medical University Cancer Institute and Hospital Tianjin People's Republic of China
| | - Zhifei Fu
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanchao Xing
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yao Tan
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
70
|
Prasanthkumar KP, Sajith PK, Singh BG. A combined experimental and DFT approach on free radical induced oxidations of kynurenic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj04472e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using in vitro methods, the one electron oxidations of kynurenic acid and its efficacy in scavenging lipid peroxidation have been demonstrated.
Collapse
Affiliation(s)
| | - P. K. Sajith
- Department of Chemistry
- Farook College
- Kozhikode
- India
| | - Beena G. Singh
- Radiation and Photochemistry Division
- Chemistry Group
- Bhabha Atomic Research Centre
- Trombay
- Mumbai 400 085
| |
Collapse
|