51
|
Spera I, Proulx ST. A nasal hub for cerebrospinal fluid clearance. NATURE CARDIOVASCULAR RESEARCH 2024; 3:98-99. [PMID: 39196192 DOI: 10.1038/s44161-024-00423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Irene Spera
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
52
|
Chae J, Choi M, Choi J, Yoo SJ. The nasal lymphatic route of CSF outflow: implications for neurodegenerative disease diagnosis and monitoring. Anim Cells Syst (Seoul) 2024; 28:45-54. [PMID: 38292931 PMCID: PMC10826790 DOI: 10.1080/19768354.2024.2307559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in the brain's lymphatics as it traverses the central nervous system (CNS). Its primary function is to facilitate the outward transport of waste. Among the various CSF outflow pathways, the route through the cribriform plate along the olfactory nerves stands out as the most predominant. This review describes the outflow pathway of CSF into the nasal lymphatics. Additionally, we examine existing studies to describe mutual influences observed between the brain and extracranial regions due to this outflow pathway. Notably, pathological conditions in the CNS often influence CSF outflow, leading to observable changes in extracranial regions. The established connection between the brain and the nose is significant, and our review underscores its potential relevance in monitoring CNS ailments, including neurodegenerative diseases. Considering that aging - the most significant risk factor for the onset of neurodegeneration - is also a principal factor in CSF turnover alterations, we suggest a novel approach to studying neurodegenerative diseases in therapeutic terms.
Collapse
Affiliation(s)
- Jiwon Chae
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Mina Choi
- Keybasic Co., ltd, Seoul, Republic of Korea
| | | | - Seung-Jun Yoo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
53
|
Jukkola J, Kaakinen M, Singh A, Moradi S, Ferdinando H, Myllylä T, Kiviniemi V, Eklund L. Blood pressure lowering enhances cerebrospinal fluid efflux to the systemic circulation primarily via the lymphatic vasculature. Fluids Barriers CNS 2024; 21:12. [PMID: 38279178 PMCID: PMC10821255 DOI: 10.1186/s12987-024-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid flow.
Collapse
Affiliation(s)
- Jari Jukkola
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sadegh Moradi
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Hany Ferdinando
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Teemu Myllylä
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
54
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
55
|
Drain 'pipes' behind the nose clear cerebrospinal fluid from the brain. Nature 2024:10.1038/d41586-023-03839-0. [PMID: 38200338 DOI: 10.1038/d41586-023-03839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
56
|
Tong XJ, Akdemir G, Wadhwa M, Verkman AS, Smith AJ. Large molecules from the cerebrospinal fluid enter the optic nerve but not the retina of mice. Fluids Barriers CNS 2024; 21:1. [PMID: 38178155 PMCID: PMC10768282 DOI: 10.1186/s12987-023-00506-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
It has been proposed that cerebrospinal fluid (CSF) can enter and leave the retina and optic nerve along perivascular spaces surrounding the central retinal vessels as part of an aquaporin-4 (AQP4) dependent ocular 'glymphatic' system. Here, we injected fluorescent dextrans and antibodies into the CSF of mice at the cisterna magna and measured their distribution in the optic nerve and retina. We found that uptake of dextrans in the perivascular spaces and parenchyma of the optic nerve is highly sensitive to the cisternal injection rate, where high injection rates, in which dextran disperses fully in the sub-arachnoid space, led to uptake along the full length of the optic nerve. Accumulation of dextrans in the optic nerve did not differ significantly in wild-type and AQP4 knockout mice. Dextrans did not enter the retina, even when intracranial pressure was greatly increased over intraocular pressure. However, elevation of intraocular pressure reduced accumulation of fluorescent dextrans in the optic nerve head, and intravitreally injected dextrans left the retina via perivascular spaces surrounding the central retinal vessels. Human IgG distributed throughout the perivascular and parenchymal areas of the optic nerve to a similar extent as dextran following cisternal injection. However, uptake of a cisternally injected AQP4-IgG antibody, derived from a seropositive neuromyelitis optica spectrum disorder subject, was limited by AQP4 binding. We conclude that large molecules injected in the CSF can accumulate along the length of the optic nerve if they are fully dispersed in the optic nerve sub-arachnoid space but that they do not enter the retina.
Collapse
Affiliation(s)
- Xiao J Tong
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, 94131, USA
| | - Gokhan Akdemir
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, 94131, USA
| | - Meetu Wadhwa
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, 94131, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, 94131, USA
| | - Alex J Smith
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, 94131, USA.
| |
Collapse
|
57
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
58
|
Yoon JH, Jin H, Kim HJ, Hong SP, Yang MJ, Ahn JH, Kim YC, Seo J, Lee Y, McDonald DM, Davis MJ, Koh GY. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 2024; 625:768-777. [PMID: 38200313 PMCID: PMC10808075 DOI: 10.1038/s41586-023-06899-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hokyung Jin
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jincheol Seo
- National Primates Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yongjeon Lee
- National Primates Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
59
|
Fillingham P, Kurt M, Levendovszky SR, Levitt MR. Computational Fluid Dynamics of Cerebrospinal Fluid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:417-434. [PMID: 39523280 DOI: 10.1007/978-3-031-64892-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in the healthy function of the brain, yet the mechanics of CSF flow remain poorly understood. Computational fluid dynamics is a powerful tool capable of resolving the spatiotemporal evolution of CSF pressures and velocities, but technical and methodological limitations have limited the clinical use of CFD to date. With improvements in medical imaging, computational power, and machine learning, however, CFD may be on the cusp of breaking through into the medical mainstream. In this chapter, we will review the applications of CFD of CSF, present our methodological recommendations for conducting CFD of CSF, present the results of a novel CFD methodology incorporating patient-specific tissue displacements, and discuss the barriers and pathways to clinically useful CFD simulation.
Collapse
Affiliation(s)
- Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - Michael R Levitt
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
60
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
61
|
Li Y, Di C, Song S, Zhang Y, Lu Y, Liao J, Lei B, Zhong J, Guo K, Zhang N, Su S. Choroid plexus mast cells drive tumor-associated hydrocephalus. Cell 2023; 186:5719-5738.e28. [PMID: 38056463 DOI: 10.1016/j.cell.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.
Collapse
Affiliation(s)
- Yiye Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Can Di
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shijian Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yubo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bingxi Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou 510080, China
| | - Kaihua Guo
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou 510080, China; Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
62
|
Melin E, Pripp AH, Eide PK, Ringstad G. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. JCI Insight 2023; 8:e173276. [PMID: 38063195 PMCID: PMC10795833 DOI: 10.1172/jci.insight.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDIntrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODSAfter lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTSThe study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSIONA CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDINGSouth-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo, Norway
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery and
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
63
|
MacAulay N, Toft-Bertelsen TL. Dual function of the choroid plexus: Cerebrospinal fluid production and control of brain ion homeostasis. Cell Calcium 2023; 116:102797. [PMID: 37801806 DOI: 10.1016/j.ceca.2023.102797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
The choroid plexus is a small monolayered epithelium located in the brain ventricles and serves to secrete the cerebrospinal fluid (CSF) that envelops the brain and fills the central ventricles. The CSF secretion is sustained with a concerted effort of a range of membrane transporters located in a polarized fashion in this tissue. Prominent amongst these are the Na+/K+-ATPase, the Na+,K+,2Cl- cotransporter (NKCC1), and several HCO3- transporters, which together support the net transepithelial transport of the major electrolytes, Na+ and Cl-, and thus drive the CSF secretion. The choroid plexus, in addition, serves an important role in keeping the CSF K+ concentration at a level compatible with normal brain function. The choroid plexus Na+/K+-ATPase represents a key factor in the barrier-mediated control of the CSF K+ homeostasis, as it increases its K+ uptake activity when faced with elevated extracellular K+ ([K+]o). In certain developmental or pathological conditions, the NKCC1 may revert its net transport direction to contribute to CSF K+ homeostasis. The choroid plexus ion transport machinery thus serves dual, yet interconnected, functions with its contribution to electrolyte and fluid secretion in combination with its control of brain K+ levels.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
64
|
Zhu B, Hendricks J, Morton JE, Rasmussen JC, Janssen C, Shah MN, Sevick-Muraca EM. Near-Infrared Fluorescence Tomography and Imaging of Ventricular Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human Primates. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3555-3565. [PMID: 37440390 PMCID: PMC10764096 DOI: 10.1109/tmi.2023.3295247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The role of the lymphatics in the clearance of cerebrospinal fluid (CSF) from the brain has been implicated in multiple neurodegenerative conditions. In premature infants, intraventricular hemorrhage causes increased CSF production and, if clearance is impeded, hydrocephalus and severe developmental disabilities can result. In this work, we developed and deployed near-infrared fluorescence (NIRF) tomography and imaging to assess CSF ventricular dynamics and extracranial outflow in similarly sized, intact non-human primates (NHP) following microdose of indocyanine green (ICG) administered to the right lateral ventricle. Fluorescence optical tomography measurements were made by delivering ~10 mW of 785 nm light to the scalp by sequential illumination of 8 fiber optics and imaging the 830 nm emission light collected from 22 fibers using a gallium arsenide intensified, charge coupled device. Acquisition times were 16 seconds. Image reconstruction used the diffusion approximation and hard-priors obtained from MRI to enable dynamic mapping of ICG-laden CSF ventricular dynamics and drainage into the subarachnoid space (SAS) of NHPs. Subsequent, planar NIRF imaging of the scalp confirmed extracranial efflux into SAS and abdominal imaging showed ICG clearance through the hepatobiliary system. Necropsy confirmed imaging results and showed that deep cervical lymph nodes were the routes of extracranial CSF egress. The results confirm the ability to use trace doses of ICG to monitor ventricular CSF dynamics and extracranial outflow in NHP. The techniques may also be feasible for similarly-sized infants and children who may suffer impairment of CSF outflow due to intraventricular hemorrhage.
Collapse
Affiliation(s)
- Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan Hendricks
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Janelle E. Morton
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - John C. Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030
| | - Christopher Janssen
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center, Houston, Texas 77030
| | - Manish N. Shah
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| | - Eva Marie Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, and Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
65
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Montalvo DEB, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal Fluid Flow Extends to Peripheral Nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567884. [PMID: 38045235 PMCID: PMC10690169 DOI: 10.1101/2023.11.20.567884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cerebrospinal fluid (CSF) is an aqueous solution responsible for nutrient delivery and waste removal for the central nervous system (CNS). The three-layer meningeal coverings of the CNS support CSF flow. Peripheral nerves have an analogous three-layer covering consisting of the epineurium, perineurium, and endoneurium. Peripheral axons, located in the inner endoneurium, are bathed in "endoneurial fluid" similar to CSF but of undefined origin. CSF flow in the peripheral nervous system has not been demonstrated. Here we show CSF flow extends beyond the CNS to peripheral nerves in a contiguous flowing system. Utilizing gold nanoparticles, we identified that CSF is continuous with the endoneurial fluid and reveal the endoneurial space as the likely site of CSF flow in the periphery. Nanogold distribution along entire peripheral nerves and within their axoplasm suggests CSF plays a role in nutrient delivery and waste clearance, fundamental aspects of peripheral nerve health and disease. One Sentence Summary Cerebrospinal fluid unites the nervous system by extending beyond the central nervous system into peripheral nerves.
Collapse
|
66
|
Schellhammer L, Beffinger M, Salazar U, Laman JD, Buch T, vom Berg J. Exit pathways of therapeutic antibodies from the brain and retention strategies. iScience 2023; 26:108132. [PMID: 37915602 PMCID: PMC10616392 DOI: 10.1016/j.isci.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Treating brain diseases requires therapeutics to pass the blood-brain barrier (BBB) which is nearly impermeable for large biologics such as antibodies. Several methods now facilitate crossing or circumventing the BBB for antibody therapeutics. Some of these exploit receptor-mediated transcytosis, others use direct delivery bypassing the BBB. However, successful delivery into the brain does not preclude exit back to the systemic circulation. Various mechanisms are implicated in the active and passive export of antibodies from the central nervous system. Here we review findings on active export via transcytosis of therapeutic antibodies - in particular, the role of the neonatal Fc receptor (FcRn) - and discuss a possible contribution of passive efflux pathways such as lymphatic and perivascular drainage. We point out open questions and how to address these experimentally. In addition, we suggest how emerging findings could aid the design of the next generation of therapeutic antibodies for neurologic diseases.
Collapse
Affiliation(s)
- Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Michal Beffinger
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| | - Ulisse Salazar
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| |
Collapse
|
67
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image analysis techniques for in vivo quantification of cerebrospinal fluid flow. EXPERIMENTS IN FLUIDS 2023; 64:181. [PMID: 39691852 PMCID: PMC11651631 DOI: 10.1007/s00348-023-03719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/30/2023] [Indexed: 12/19/2024]
Abstract
Over the past decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drains CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stroke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN 55455, United States
| |
Collapse
|
68
|
Ben-Shoshan SD, Lolansen SD, Mathiesen TI, MacAulay N. CSF hypersecretion versus impaired CSF absorption in posthemorrhagic hydrocephalus: a systematic review. Acta Neurochir (Wien) 2023; 165:3271-3287. [PMID: 37642688 DOI: 10.1007/s00701-023-05746-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The molecular mechanisms underlying development of posthemorrhagic hydrocephalus (PHH) remain elusive. The aim of this systematic review was to evaluate existing literature on increased CSF secretion and impaired CSF absorption as pathogenic contributors to CSF accumulation in neonatal and adult PHH. METHODS The systematic review was conducted in accordance with the PRISMA guidelines. Relevant studies published before March 11th, 2023, were identified from PubMed and reference lists. Studies were screened for eligibility using predefined inclusion and exclusion criteria. Data from eligible studies were extracted and potential sources of bias were evaluated. RESULTS Nineteen studies quantified CSF production rates and/or CSF absorption capacity in human patients with PHH or animals with experimentally induced PHH. Increased CSF production was reported as early as 24 h and as late as 28 days post ictus in six out of eight studies quantifying CSF production rates in animals with experimentally induced PHH. Impaired CSF absorption was reported in all four studies quantifying CSF absorption capacity in human patients with PHH and in seven out of nine studies quantifying CSF absorption capacity in animals with experimentally induced PHH. Impaired CSF absorption was reported as early as 30 min and as late as 10 months post ictus. CONCLUSIONS The pathological CSF accumulation in PHH likely arises from a combination of increased CSF secretion and impaired CSF absorption, which may manifest at different time scales following a hemorrhagic event. Emergent evidence on increased CSF secretion by the choroid plexus may herald a paradigm shift in our understanding of PHH.
Collapse
Affiliation(s)
- Shai David Ben-Shoshan
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
69
|
Sennfält S, Thrippleton MJ, Stringer M, Reyes CA, Chappell F, Doubal F, Garcia DJ, Zhang J, Cheng Y, Wardlaw J. Visualising and semi-quantitatively measuring brain fluid pathways, including meningeal lymphatics, in humans using widely available MRI techniques. J Cereb Blood Flow Metab 2023; 43:1779-1795. [PMID: 37254892 PMCID: PMC10581238 DOI: 10.1177/0271678x231179555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Brain fluid dynamics remains poorly understood with central issues unresolved. In this study, we first review the literature regarding points of controversy, then pilot study if conventional MRI techniques can assess brain fluid outflow pathways and explore potential associations with small vessel disease (SVD). We assessed 19 subjects participating in the Mild Stroke Study 3 who had FLAIR imaging before and 20-30 minutes after intravenous Gadolinium (Gd)-based contrast. Signal intensity (SI) change was assessed semi-quantitatively by placing regions of interest, and qualitatively by a visual scoring system, along dorsal and basal fluid outflow routes. Following i.v. Gd, SI increased substantially along the anterior, middle, and posterior superior sagittal sinus (SSS) (82%, 104%, and 119%, respectively), at basal areas (cribriform plate, 67%; jugular foramina, 72%), and in narrow channels surrounding superficial cortical veins separated from surrounding cerebrospinal fluid (CSF) (96%) (all p < 0.001). The SI increase was associated with higher intraparenchymal perivascular spaces (PVS) scores (Std. Beta 0.71, p = 0.01). Our findings suggests that interstitial fluid drainage is visible on conventional MRI and drains from brain parenchyma via cortical perivenous spaces to dural meningeal lymphatics along the SSS remaining separate from the CSF. An association with parenchymal PVS requires further research, now feasible in humans.
Collapse
Affiliation(s)
- Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniela J Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Junfang Zhang
- Department of Neurology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajun Cheng
- Department of Neurology, West China Hospital and Sichuan University, Chengdu, China
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| |
Collapse
|
70
|
Spierer R. The debated neuroanatomy of the fourth ventricle. J Anat 2023; 243:555-563. [PMID: 37170923 PMCID: PMC10485575 DOI: 10.1111/joa.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
The fourth ventricle is a small, fluid-filled cavity located within the brain that plays a vital role in the body's physiological functions. Therefore, the anatomical elements forming it bear significant clinical relevance. However, the exact relations between the elements that form its roof are still debated in the neuroanatomical literature; the inferior medullary velum, and the ventricle's median aperture in particular. In some atlases, the inferior medullary velum is placed in the midline, while in others, it is placed in the transverse plane. The median aperture is also displayed in different ways in midsagittal drawings: as a round perforation of a midline velum, as a foramen in an uncharacterized part of the ventricle, and as a gap between the nodule and the brainstem. This work aims to provide a comprehensive review of the different descriptions of the fourth ventricle, in order to gain a clearer understanding of the ventricular system's structure.
Collapse
Affiliation(s)
- Ronen Spierer
- Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
71
|
Schjørring ME, Parkner T, Knudsen CS, Tybirk L, Hviid CVB. Neurofilament light chain: serum reference intervals in Danish children aged 0-17 years. Scand J Clin Lab Invest 2023; 83:403-407. [PMID: 37632388 DOI: 10.1080/00365513.2023.2251003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Elevated levels of neurofilament light chain (NfL) in the blood is an unspecific biomarker for damage to neuronal axons. The measurement of NfL levels in the blood can provide useful information for monitoring and prognostication of various neurological disorders in children, but a reference interval (RI) is needed before the clinical implementation of the biomarker. We aimed to establish a RI for children aged 0-17 years. Serum samples from 292 healthy reference subjects aged 0.4-17.9 years were analysed by a single-molecule array (Simoa®) established for routine clinical use. Non-parametric quantile regression was used to model a continuous RI, and a traditional age-partitioned non-parametric RI was established according to Clinical and Laboratory Standard Institute (CLSI) guideline C28-A3. Furthermore, we investigated the effect of hemolysis on assay performance. The traditional age-partitioned non-parametric RI for the age group <3 years was 3.5-16.6 ng/L and 2.1-13.9 ng/L in the age group ≥3 years, respectively. The continuous RI showed an age-dependent decrease in median NfL levels in the first three years of life which was also evident in the age-partitioning of the traditional RI. We found no difference between sexes and no impact of hemolysis on the NfL test results. This study establishes a pediatric RI for serum NfL and lays the groundwork for its future use in clinical practice.
Collapse
Affiliation(s)
- Mia Elbek Schjørring
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
72
|
Choi YH, Hsu M, Laaker C, Herbath M, Yang H, Cismaru P, Johnson AM, Spellman B, Wigand K, Sandor M, Fabry Z. Dual role of Vascular Endothelial Growth Factor-C (VEGF-C) in post-stroke recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555144. [PMID: 37693558 PMCID: PMC10491156 DOI: 10.1101/2023.08.30.555144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.
Collapse
|
73
|
Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023; 20:62. [PMID: 37596635 PMCID: PMC10439559 DOI: 10.1186/s12987-023-00459-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.
Collapse
Affiliation(s)
- Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
- Expert Analytics AS, Møllergata 8, 0179, Oslo, Norway
| | - Bastian Zapf
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Marie E Rognes
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
| | - Kent-Andre Mardal
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
| |
Collapse
|
74
|
Hochstetler A, Smith H, Reed M, Hulme L, Territo P, Bedwell A, Persohn S, Perrotti N, D'Antona L, Musumeci F, Schenone S, Blazer-Yost BL. Inhibition of serum- and glucocorticoid-induced kinase 1 ameliorates hydrocephalus in preclinical models. Fluids Barriers CNS 2023; 20:61. [PMID: 37596666 PMCID: PMC10439616 DOI: 10.1186/s12987-023-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. METHODS In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. RESULTS In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. CONCLUSION These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus.
Collapse
Affiliation(s)
- Alexandra Hochstetler
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Hillary Smith
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Makenna Reed
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Louise Hulme
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Paul Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Amanda Bedwell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Scott Persohn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Università" Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Lucia D'Antona
- Dipartimento di Scienze della Salute, Università" Magna Graecia" di Catanzaro, Catanzaro, Italy
| | | | | | - Bonnie L Blazer-Yost
- Department of Biology, SL358, Indiana University Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
75
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
76
|
Sarker A, Suh M, Choi Y, Park JY, Lee YS, Lee DS. Intrathecal [ 64Cu]Cu-albumin PET reveals age-related decline of lymphatic drainage of cerebrospinal fluid. Sci Rep 2023; 13:12930. [PMID: 37558700 PMCID: PMC10412645 DOI: 10.1038/s41598-023-39903-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Age-related cognitive decline is associated with dysfunctional lymphatic drainage of cerebrospinal fluid (CSF) through meningeal lymphatic vessels. In this study, intrathecal [64Cu]Cu-albumin positron emission tomography (PET) was applied in mice to evaluate lymphatic drainage of CSF and its variation with age. [64Cu]Cu-albumin PET was performed at multiple time points after intrathecal injection of [64Cu]Cu-albumin at an infusion rate of 700 nl/min in adult and aged mice (15-25 months old). CSF clearance and paravertebral lymph nodes were quantified after injection and during the stationary phase. Stationary phase of the next day followed the initial perturbed state by injection of 6 ul (1/7 of total CSF volume) and CSF clearance half-time from the subarachnoid space was 93.4 ± 19.7 and 123.3 ± 15.6 min in adult and aged mice (p = 0.01), respectively. While the % injected dose of CSF space were higher, the activity of the paravertebral lymph nodes were lower in the aged mice on the next day. [64Cu]Cu-albumin PET enabled us to quantify CSF-lymphatic drainage across all levels of brain spinal cords and to visualize and quantify lymph node activity due to CSF drainage. [64Cu]Cu-albumin PET revealed the age-related decrease of the lymphatic drainage of CSF due to this decreased drainage from the subarachnoid space, especially during the stationary phase, in aged mice.
Collapse
Affiliation(s)
- Azmal Sarker
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Minseok Suh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
- Biomedical Research Center, Seoul National University Hospital, Seoul, Korea.
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
- Biomedical Research Center, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Ji Yong Park
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
77
|
Ajeeb R, Clegg JR. Intrathecal delivery of Macromolecules: Clinical status and emerging technologies. Adv Drug Deliv Rev 2023; 199:114949. [PMID: 37286086 DOI: 10.1016/j.addr.2023.114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The proximity and association of cerebrospinal fluid (CSF) and the intrathecal (IT) space with deep targets in the central nervous system (CNS) parenchyma makes IT injection an attractive route of administration for brain drug delivery. However, the extent to which intrathecally administered macromolecules are effective in treating neurological diseases is a question of both clinical debate and technological interest. We present the biological, chemical, and physical properties of the intrathecal space that are relevant to drug absorption, distribution, metabolism, and elimination from CSF. We then analyze the evolution of IT drug delivery in clinical trials over the last 20 years. Our analysis revealed that the percentage of clinical trials assessing IT delivery for the delivery of biologics (i.e., macromolecules, cells) for treatment of chronic conditions (e.g., neurodegeneration, cancer, and metabolic diseases) has steadily increased. Clinical trials exploring cell or macromolecular delivery within the IT space have not evaluated engineering technologies, such as depots, particles, or other delivery systems. Recent pre-clinical studies have evaluated IT macromolecule delivery in small animals, postulating that delivery efficacy can be assisted by external medical devices, micro- or nanoparticles, bulk biomaterials, and viral vectors. Further studies are necessary to evaluate the extent to which engineering technologies and IT administration improve CNS targeting and therapeutic outcome.
Collapse
Affiliation(s)
- Rana Ajeeb
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States
| | - John R Clegg
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
78
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image Analysis Techniques for In Vivo Quantification of Cerebrospinal Fluid Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549937. [PMID: 37546970 PMCID: PMC10401935 DOI: 10.1101/2023.07.20.549937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Over the last decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drain CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stoke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| |
Collapse
|
79
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
80
|
Xiang J, Hua Y, Xi G, Keep RF. Mechanisms of cerebrospinal fluid and brain interstitial fluid production. Neurobiol Dis 2023; 183:106159. [PMID: 37209923 PMCID: PMC11071066 DOI: 10.1016/j.nbd.2023.106159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Fluid homeostasis is fundamental for brain function with cerebral edema and hydrocephalus both being major neurological conditions. Fluid movement from blood into brain is one crucial element in cerebral fluid homeostasis. Traditionally it has been thought to occur primarily at the choroid plexus (CP) as cerebrospinal fluid (CSF) secretion due to polarized distribution of ion transporters at the CP epithelium. However, there are currently controversies as to the importance of the CP in fluid secretion, just how fluid transport occurs at that epithelium versus other sites, as well as the direction of fluid flow in the cerebral ventricles. The purpose of this review is to evaluate evidence on the movement of fluid from blood to CSF at the CP and the cerebral vasculature and how this differs from other tissues, e.g., how ion transport at the blood-brain barrier as well as the CP may drive fluid flow. It also addresses recent promising data on two potential targets for modulating CP fluid secretion, the Na+/K+/Cl- cotransporter, NKCC1, and the non-selective cation channel, transient receptor potential vanilloid 4 (TRPV4). Finally, it raises the issue that fluid secretion from blood is not constant, changing with disease and during the day. The apparent importance of NKCC1 phosphorylation and TRPV4 activity at the CP in determining fluid movement suggests that such secretion may also vary over short time frames. Such dynamic changes in CP (and potentially blood-brain barrier) function may contribute to some of the controversies over its role in brain fluid secretion.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
81
|
Wardman JH, Jensen MN, Andreassen SN, Styrishave B, Wilhjelm JE, Sinclair AJ, MacAulay N. Modelling idiopathic intracranial hypertension in rats: contributions of high fat diet and testosterone to intracranial pressure and cerebrospinal fluid production. Fluids Barriers CNS 2023; 20:44. [PMID: 37328884 DOI: 10.1186/s12987-023-00436-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/29/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Idiopathic intracranial hypertension (IIH) is a condition characterized by increased intracranial pressure (ICP), impaired vision, and headache. Most cases of IIH occur in obese women of childbearing age, though age, BMI, and female sex do not encompass all aspects of IIH pathophysiology. Systemic metabolic dysregulation has been identified in IIH with a profile of androgen excess. However, the mechanistic coupling between obesity/hormonal perturbations and cerebrospinal fluid dynamics remains unresolved. METHODS Female Wistar rats were either fed a high fat diet (HFD) for 21 weeks or exposed to adjuvant testosterone treatment for 28 days to recapitulate IIH causal drivers. Cerebrospinal fluid (CSF) and blood testosterone levels were determined with mass spectrometry, ICP and CSF dynamics with in vivo experimentation, and the choroid plexus function revealed with transcriptomics and ex vivo isotope-based flux assays. RESULTS HFD-fed rats presented with increased ICP (65%), which was accompanied by increased CSF outflow resistance (50%) without altered CSF secretion rate or choroid plexus gene expression. Chronic adjuvant testosterone treatment of lean rats caused elevated ICP (55%) and CSF secretion rate (85%), in association with increased activity of the choroid plexus Na+,K+,2Cl- cotransporter, NKCC1. CONCLUSIONS HFD-induced ICP elevation in experimental rats occurred with decreased CSF drainage capacity. Adjuvant testosterone, mimicking the androgen excess observed in female IIH patients, elevated the CSF secretion rate and thus ICP. Obesity-induced androgen dysregulation may thus contribute to the disease mechanism of IIH.
Collapse
Affiliation(s)
- Jonathan H Wardman
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Mette N Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jens E Wilhjelm
- Department of Health Technology, The Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
82
|
Kou D, Gao Y, Li C, Zhou D, Lu K, Wang N, Zhang R, Yang Z, Zhou Y, Chen L, Ge J, Zeng J, Gao M. Intranasal Pathway for Nanoparticles to Enter the Central Nervous System. NANO LETTERS 2023; 23:5381-5390. [PMID: 36996288 DOI: 10.1021/acs.nanolett.2c05056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intranasal administration was previously proposed for delivering drugs for central nervous system (CNS) diseases. However, the delivery and elimination pathways, which are very imperative to know for exploring the therapeutic applications of any given CNS drugs, remain far from clear. Because lipophilicity has a high priority in the design of CNS drugs, the as-prepared CNS drugs tend to form aggregates. Therefore, a PEGylated Fe3O4 nanoparticle labeled with a fluorescent dye was prepared as a model drug and studied to elucidate the delivery pathways of intranasally administered nanodrugs. Through magnetic resonance imaging, the distribution of the nanoparticles was investigated in vivo. Through ex vivo fluorescence imaging and microscopy studies, more precise distribution of the nanoparticles across the entire brain was disclosed. Moreover, the elimination of the nanoparticles from cerebrospinal fluid was carefully studied. The temporal dose levels of intranasally delivered nanodrugs in different parts of the brain were also investigated.
Collapse
Affiliation(s)
- Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
83
|
Yue W, Shen J. Local Delivery Strategies for Peptides and Proteins into the CNS: Status Quo, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:810. [PMID: 37375758 DOI: 10.3390/ph16060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decades, peptides and proteins have been increasingly important in the treatment of various human diseases and conditions owing to their specificity, potency, and minimized off-target toxicity. However, the existence of the practically impermeable blood brain barrier (BBB) limits the entry of macromolecular therapeutics into the central nervous systems (CNS). Consequently, clinical translation of peptide/protein therapeutics for the treatment of CNS diseases has been limited. Over the past decades, developing effective delivery strategies for peptides and proteins has gained extensive attention, in particular with localized delivery strategies, due to the fact that they are capable of circumventing the physiological barrier to directly introduce macromolecular therapeutics into the CNS to improve therapeutic effects and reduce systemic side effects. Here, we discuss various local administration and formulation strategies that have shown successes in the treatment of CNS diseases using peptide/protein therapeutics. Lastly, we discuss challenges and future perspectives of these approaches.
Collapse
Affiliation(s)
- Weizhou Yue
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
84
|
Simoes Braga Boisserand L, Bouchart J, Geraldo LH, Lee S, Sanganahalli BG, Parent M, Zhang S, Xue Y, Skarica M, Guegan J, Li M, Liu X, Poulet M, Askanase M, Osherov A, Spajer M, Kamouh MRE, Eichmann A, Alitalo K, Zhou J, Sestan N, Sansing LH, Benveniste H, Hyder F, Thomas JL. VEGF-C promotes brain-derived fluid drainage, confers neuroprotection, and improves stroke outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542708. [PMID: 37398128 PMCID: PMC10312491 DOI: 10.1101/2023.05.30.542708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.
Collapse
|
85
|
Kim JH, Yoo RE, Choi SH, Park SH. Non-invasive flow mapping of parasagittal meningeal lymphatics using 2D interslice flow saturation MRI. Fluids Barriers CNS 2023; 20:37. [PMID: 37237402 DOI: 10.1186/s12987-023-00446-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
The clearance pathways of brain waste products in humans are still under debate in part due to the lack of noninvasive imaging techniques for meningeal lymphatic vessels (mLVs). In this study, we propose a new noninvasive mLVs imaging technique based on an inter-slice blood perfusion MRI called alternate ascending/descending directional navigation (ALADDIN). ALADDIN with inversion recovery (IR) at single inversion time of 2300 ms (single-TI IR-ALADDIN) clearly demonstrated parasagittal mLVs around the human superior sagittal sinus (SSS) with better detectability and specificity than the previously suggested noninvasive imaging techniques. While in many studies it has been difficult to detect mLVs and confirm their signal source noninvasively, the detection of mLVs in this study was confirmed by their posterior to anterior flow direction and their velocities and morphological features, which were consistent with those from the literature. In addition, IR-ALADDIN was compared with contrast-enhanced black blood imaging to confirm the detection of mLVs and its similarity. For the quantification of flow velocity of mLVs, IR-ALADDIN was performed at three inversion times of 2000, 2300, and 2600 ms (three-TI IR-ALADDIN) for both a flow phantom and humans. For this preliminary result, the flow velocity of the dorsal mLVs in humans ranged between 2.2 and 2.7 mm/s. Overall, (i) the single-TI IR-ALADDIN can be used as a novel non-invasive method to visualize mLVs in the whole brain with scan time of ~ 17 min and (ii) the multi-TI IR-ALADDIN can be used as a way to quantify the flow velocity of mLVs with a scan time of ~ 10 min (or shorter) in a limited coverage. Accordingly, the suggested approach can be applied to noninvasively studying meningeal lymphatic flows in general and also understanding the clearance pathways of waste production through mLVs in humans, which warrants further investigation.
Collapse
Affiliation(s)
- Jun-Hee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
86
|
Shi Y, Keep RF. Fluid movement in the healthy and diseased brain. Neurobiol Dis 2023:106168. [PMID: 37230181 DOI: 10.1016/j.nbd.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
87
|
Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, Pragana A, Taylor M, Kalugin PN, Zawadzki ME, Alturkistani O, Shipley FB, Dani N, Fame RM, Wurie Z, Talati P, Schleicher RL, Klein EM, Zhang Y, Holtzman MJ, Moore CI, Lin PY, Patel AB, Warf BC, Kimberly WT, Steen H, Andermann ML, Lehtinen MK. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron 2023; 111:1591-1608.e4. [PMID: 36893755 PMCID: PMC10198810 DOI: 10.1016/j.neuron.2023.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Post-hemorrhagic hydrocephalus (PHH) refers to a life-threatening accumulation of cerebrospinal fluid (CSF) that occurs following intraventricular hemorrhage (IVH). An incomplete understanding of this variably progressive condition has hampered the development of new therapies beyond serial neurosurgical interventions. Here, we show a key role for the bidirectional Na-K-Cl cotransporter, NKCC1, in the choroid plexus (ChP) to mitigate PHH. Mimicking IVH with intraventricular blood led to increased CSF [K+] and triggered cytosolic calcium activity in ChP epithelial cells, which was followed by NKCC1 activation. ChP-targeted adeno-associated viral (AAV)-NKCC1 prevented blood-induced ventriculomegaly and led to persistently increased CSF clearance capacity. These data demonstrate that intraventricular blood triggered a trans-choroidal, NKCC1-dependent CSF clearance mechanism. Inactive, phosphodeficient AAV-NKCC1-NT51 failed to mitigate ventriculomegaly. Excessive CSF [K+] fluctuations correlated with permanent shunting outcome in humans following hemorrhagic stroke, suggesting targeted gene therapy as a potential treatment to mitigate intracranial fluid accumulation following hemorrhage.
Collapse
Affiliation(s)
- Cameron Sadegh
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Osama Alturkistani
- Cellular Imaging Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zainab Wurie
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pratik Talati
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Riana L Schleicher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Eric M Klein
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Christopher I Moore
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
88
|
Li Z, Antila S, Nurmi H, Chilov D, Korhonen EA, Fang S, Karaman S, Engelhardt B, Alitalo K. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci Immunol 2023; 8:eabq0375. [PMID: 37058549 DOI: 10.1126/sciimmunol.abq0375] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The recent discovery of lymphatic vessels (LVs) in the dura mater, the outermost layer of meninges around the central nervous system (CNS), has opened a possibility for the development of alternative therapeutics for CNS disorders. The vascular endothelial growth factor C (VEGF-C)/VEGF receptor 3 (VEGFR3) signaling pathway is essential for the development and maintenance of dural LVs. However, its significance in mediating dural lymphatic function in CNS autoimmunity is unclear. We show that inhibition of the VEGF-C/VEGFR3 signaling pathway using a monoclonal VEGFR3-blocking antibody, a soluble VEGF-C/D trap, or deletion of the Vegfr3 gene in adult lymphatic endothelium causes notable regression and functional impairment of dural LVs but has no effect on the development of CNS autoimmunity in mice. During autoimmune neuroinflammation, the dura mater was only minimally affected, and neuroinflammation-induced helper T (TH) cell recruitment, activation, and polarization were significantly less pronounced in the dura mater than in the CNS. In support of this notion, during autoimmune neuroinflammation, blood vascular endothelial cells in the cranial and spinal dura expressed lower levels of cell adhesion molecules and chemokines, and antigen-presenting cells (i.e., macrophages and dendritic cells) had lower expression of chemokines, MHC class II-associated molecules, and costimulatory molecules than their counterparts in the brain and spinal cord, respectively. The significantly weaker TH cell responses in the dura mater may explain why dural LVs do not contribute directly to CNS autoimmunity.
Collapse
Affiliation(s)
- Zhilin Li
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salli Antila
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Harri Nurmi
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Dmitri Chilov
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia A Korhonen
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Shentong Fang
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Sinem Karaman
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | | | - Kari Alitalo
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
89
|
Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 2023; 91:104558. [PMID: 37043871 PMCID: PMC10119713 DOI: 10.1016/j.ebiom.2023.104558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.
Collapse
Affiliation(s)
- Irene Spera
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nikola Cousin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Anna Kedracka
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Alina Castillo
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
90
|
Xu J, Su Y, Fu J, Shen Y, Dong Q, Cheng X. Glymphatic pathway in sporadic cerebral small vessel diseases: From bench to bedside. Ageing Res Rev 2023; 86:101885. [PMID: 36801378 DOI: 10.1016/j.arr.2023.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Cerebral small vessel diseases (CSVD) consist of a group of diseases with high heterogeneity induced by pathologies of intracranial small blood vessels. Endothelium dysfunction, bloodbrain barrier leakage and the inflammatory response are traditionally considered to participate in the pathogenesis of CSVD. However, these features cannot fully explain the complex syndrome and related neuroimaging characteristics. In recent years, the glymphatic pathway has been discovered to play a pivotal role in clearing perivascular fluid and metabolic solutes, which has provided novel insights into neurological disorders. Researchers have also explored the potential role of perivascular clearance dysfunction in CSVD. In this review, we presented a brief overview of CSVD and the glymphatic pathway. In addition, we elucidated CSVD pathogenesis from the perspective of glymphatic failure, including basic animal models and clinical neuroimaging markers. Finally, we proposed forthcoming clinical applications targeting the glymphatic pathway, hoping to provide novel ideas on promising therapies and preventions of CSVD.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
91
|
Almohaimede K, Zaccagna F, Kumar A, da Costa L, Wong E, Heyn C, Kapadia A. Arachnoid granulations may be protective against the development of shunt dependent chronic hydrocephalus after aneurysm subarachnoid hemorrhage*. Neuroradiol J 2023; 36:189-193. [PMID: 35993411 PMCID: PMC10034694 DOI: 10.1177/19714009221122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic hydrocephalus may develop as a sequela of aneurysmal subarachnoid hemorrhage, requiring long-term cerebrospinal fluid shunting. Several clinical predictors of chronic hydrocephalus and shunt dependence have been proposed. However, no anatomical predictors have been identified. MATERIALS AND METHODS A retrospective cohort study was performed including 61 patients with aneurysmal subarachnoid hemorrhage. Clinical characteristics were noted for each patient including presentation World Federation of Neurosurgical Societies grade, modified Fischer grade, aneurysm characteristics, requirement for acute and chronic cerebrospinal fluid diversion, and 3-month modified Rankin scale. CT images were evaluated to determine the Evans' index and to enumerate the number of arachnoid granulations. Association between the clinical characteristics with ventriculoperitoneal shunt insertion and the 3-month modified Rankin scale were assessed. RESULTS The initial Evans' index was positively associated with mFisher grade and age, but not the number of arachnoid granulations. 16.4% patients required insertion of a ventriculoperitoneal shunt. The number of arachnoid granulations were a significant negative predictor of ventriculoperitoneal shunt insertion [OR: 0.251 (95% CI:0.073-0.862; p = 0.028)]. There was significant difference in the number of arachnoid granulations between those with and without ventriculoperitoneal shunt (p = 0.002). No patient with greater than 4 arachnoid granulations required a ventriculoperitoneal shunt, irrespective of severity of initial grade. CONCLUSION Arachnoid granulations may be protective against the development of shunt dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. This is irrespective of presenting hemorrhage severity. This is a potentially novel radiologic biomarker and anatomic predictor of shunt dependence.
Collapse
Affiliation(s)
- Khaled Almohaimede
- Department of Medical Imaging, 7938University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, 9296Alma Mater Studiorum - University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Functional and Molecular Neuroimaging Unit, Bellaria Hospital, Bologna, Italy
| | - Ashish Kumar
- Department of Neurosurgery, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Leodante da Costa
- Department of Neurosurgery, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Erin Wong
- Department of Medical Imaging, 7938University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Chris Heyn
- Department of Medical Imaging, 7938University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anish Kapadia
- Department of Medical Imaging, 7938University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, 71545Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
92
|
Raissaki M, Adamsbaum C, Argyropoulou MI, Choudhary AK, Jeanes A, Mankad K, Mannes I, Van Rijn RR, Offiah AC. Benign enlargement of the subarachnoid spaces and subdural collections-when to evaluate for abuse. Pediatr Radiol 2023; 53:752-767. [PMID: 36856756 PMCID: PMC10027800 DOI: 10.1007/s00247-023-05611-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 03/02/2023]
Abstract
In infants without a history of trauma, subdural haemorrhages should raise the concern for an abusive head injury, particularly when they are associated with bridging vein clotting/rupture or with septations. However, non-haemorrhagic, fluid-appearing subdural collections (also called hygromas) may also be the result of abuse. Subdural collections have also been uncommonly observed in patients with benign enlargement of the subarachnoid spaces (BESS) and a few large-scale studies accurately investigate the incidence and the significance. Currently, there is a wide variation of practices in children with BESS and subdural collections. Due to the social risks associated with abuse evaluation and the perceived risk of radiation exposure, there might be a reluctance to fully evaluate these children in some centres. The diagnosis of physical abuse cannot be substantiated nor safely excluded in infants with BESS and subdural collection(s), without investigation for concomitant traumatic findings. The exact prevalence of occult injuries and abuse in these infants is unknown. In macrocephalic infants with subdural collections and imaging features of BESS, thorough investigations for abuse are warranted and paediatricians should consider performing full skeletal surveys even when fundoscopy, social work consult, and detailed clinical evaluation are unremarkable.
Collapse
Affiliation(s)
- Maria Raissaki
- Department of Radiology, University Hospital of Heraklion, Medical School, University of Crete, Crete, Greece.
| | - Catherine Adamsbaum
- Emeritus Pediatric Radiologist, Faculty of Medicine, Paris-Saclay University, 63 Rue Gabriel Péri, 94270, Le Kremlin Bicêtre, France
| | - Maria I Argyropoulou
- Department of Clinical Radiology and Imaging, Medical School, University Hospital of Ioannina, Ioannina, Greece
| | - Arabinda K Choudhary
- Department of Diagnostic Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annmarie Jeanes
- Department of Paediatric Radiology, Leeds Children's Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Inès Mannes
- Pediatric Radiology Department, AP-HP, Bicêtre Hospital, Le Kremlin‑Bicêtre, France
| | - Rick R Van Rijn
- Department of Radiology and Nuclear Medicine, Emma Children's Hospital, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Amaka C Offiah
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
93
|
Vera Quesada CL, Rao SB, Torp R, Eide PK. Immunohistochemical visualization of lymphatic vessels in human dura mater: methodological perspectives. Fluids Barriers CNS 2023; 20:23. [PMID: 36978127 PMCID: PMC10044429 DOI: 10.1186/s12987-023-00426-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Despite greatly renewed interest concerning meningeal lymphatic function over recent years, the lymphatic structures of human dura mater have been less characterized. The available information derives exclusively from autopsy specimens. This study addressed methodological aspects of immunohistochemistry for visualization and characterization of lymphatic vessels in the dura of patients. METHODS Dura biopsies were obtained from the right frontal region of the patients with idiopathic normal pressure hydrocephalus (iNPH) who underwent shunt surgery as part of treatment. The dura specimens were prepared using three different methods: Paraformaldehyde (PFA) 4% (Method #1), paraformaldehyde (PFA) 0.5% (Method #2), and freeze-fixation (Method #3). They were further examined with immunohistochemistry using the lymphatic cell marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and as validation marker we used podoplanin (PDPN). RESULTS The study included 30 iNPH patients who underwent shunt surgery. The dura specimens were obtained average 16.1 ± 4.5 mm lateral to the superior sagittal sinus in the right frontal region (about 12 cm posterior to glabella). While lymphatic structures were seen in 0/7 patients using Method #1, it was found in 4/6 subjects (67%) with Method #2, while in 16/17 subjects (94%) using Method #3. To this end, we characterized three types of meningeal lymphatic vessels: (1) Lymphatic vessels in intimate contact with blood vessels. (2) Lymphatic vessels without nearby blood vessels. (3) Clusters of LYVE-1-expressing cells interspersed with blood vessels. In general, highest density of lymphatic vessels were observed towards the arachnoid membrane rather than towards the skull. CONCLUSIONS The visualization of meningeal lymphatic vessels in humans seems to be highly sensitive to the tissue processing method. Our observations disclosed most abundant lymphatic vessels towards the arachnoid membrane, and were seen either in close association with blood vessels or remote from blood vessels.
Collapse
Affiliation(s)
- César Luis Vera Quesada
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shreyas Balachandra Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
94
|
Rossinelli D, Killer HE, Meyer P, Knott G, Fourestey G, Kurtcuoglu V, Kohler C, Gruber P, Remonda L, Neutzner A, Berberat J. Large-scale morphometry of the subarachnoid space of the optic nerve. Fluids Barriers CNS 2023; 20:21. [PMID: 36944985 PMCID: PMC10029327 DOI: 10.1186/s12987-023-00423-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The meninges, formed by dura, arachnoid and pia mater, cover the central nervous system and provide important barrier functions. Located between arachnoid and pia mater, the cerebrospinal fluid (CSF)-filled subarachnoid space (SAS) features a variety of trabeculae, septae and pillars. Like the arachnoid and the pia mater, these structures are covered with leptomeningeal or meningothelial cells (MECs) that form a barrier between CSF and the parenchyma of the optic nerve (ON). MECs contribute to the CSF proteome through extensive protein secretion. In vitro, they were shown to phagocytose potentially toxic proteins, such as α-synuclein and amyloid beta, as well as apoptotic cell bodies. They therefore may contribute to CSF homeostasis in the SAS as a functional exchange surface. Determining the total area of the SAS covered by these cells that are in direct contact with CSF is thus important for estimating their potential contribution to CSF homeostasis. METHODS Using synchrotron radiation-based micro-computed tomography (SRµCT), two 0.75 mm-thick sections of a human optic nerve were acquired at a resolution of 0.325 µm/pixel, producing images of multiple terabytes capturing the geometrical details of the CSF space. Special-purpose supercomputing techniques were employed to obtain a pixel-accurate morphometric description of the trabeculae and estimate internal volume and surface area of the ON SAS. RESULTS In the bulbar segment, the ON SAS microstructure is shown to amplify the MECs surface area up to 4.85-fold compared to an "empty" ON SAS, while just occupying 35% of the volume. In the intraorbital segment, the microstructure occupies 35% of the volume and amplifies the ON SAS area 3.24-fold. CONCLUSIONS We provided for the first time an estimation of the interface area between CSF and MECs. This area is of importance for estimating a potential contribution of MECs on CSF homeostasis.
Collapse
Affiliation(s)
- Diego Rossinelli
- Institute of Neuroradiology, Kantonsspital Aarau, Tellstrasse 25, CH-5001, Aarau, Switzerland.
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | | | - Peter Meyer
- Ocular Pharmacology and Physiology, University Hospital of Basel, Basel, Switzerland
| | - Graham Knott
- Biological Electron Microscopy Facility (BioEM), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Gilles Fourestey
- Scientific IT & Application Support (SCITAS), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Corina Kohler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Philipp Gruber
- Institute of Neuroradiology, Kantonsspital Aarau, Tellstrasse 25, CH-5001, Aarau, Switzerland
| | - Luca Remonda
- Institute of Neuroradiology, Kantonsspital Aarau, Tellstrasse 25, CH-5001, Aarau, Switzerland
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jatta Berberat
- Institute of Neuroradiology, Kantonsspital Aarau, Tellstrasse 25, CH-5001, Aarau, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
95
|
Melin E, Ringstad G, Valnes LM, Eide PK. Human parasagittal dura is a potential neuroimmune interface. Commun Biol 2023; 6:260. [PMID: 36906686 PMCID: PMC10008553 DOI: 10.1038/s42003-023-04634-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Parasagittal dura (PSD) is located on both sides of the superior sagittal sinus and harbours arachnoid granulations and lymphatic vessels. Efflux of cerebrospinal fluid (CSF) to human PSD has recently been shown in vivo. Here we obtain PSD volumes from magnetic resonance images in 76 patients under evaluation for CSF disorders and correlate them to age, sex, intracranial volumes, disease category, sleep quality, and intracranial pressure. In two subgroups, we also analyze tracer dynamics and time to peak tracer level in PSD and blood. PSD volume is not explained by any single assessed variable, but tracer level in PSD is strongly associated with tracer in CSF and brain. Furthermore, peak tracer in PSD occurs far later than peak tracer in blood, implying that PSD is no major efflux route for CSF. These observations may indicate that PSD is more relevant as a neuroimmune interface than as a CSF efflux route.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
96
|
Poulain A, Riseth J, Vinje V. Multi-compartmental model of glymphatic clearance of solutes in brain tissue. PLoS One 2023; 18:e0280501. [PMID: 36881576 PMCID: PMC9990927 DOI: 10.1371/journal.pone.0280501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 03/08/2023] Open
Abstract
The glymphatic system is the subject of numerous pieces of research in biology. Mathematical modelling plays a considerable role in this field since it can indicate the possible physical effects of this system and validate the biologists' hypotheses. The available mathematical models that describe the system at the scale of the brain (i.e. the macroscopic scale) are often solely based on the diffusion equation and do not consider the fine structures formed by the perivascular spaces. We therefore propose a mathematical model representing the time and space evolution of a mixture flowing through multiple compartments of the brain. We adopt a macroscopic point of view in which the compartments are all present at any point in space. The equations system is composed of two coupled equations for each compartment: One equation for the pressure of a fluid and one for the mass concentration of a solute. The fluid and solute can move from one compartment to another according to certain membrane conditions modelled by transfer functions. We propose to apply this new modelling framework to the clearance of 14C-inulin from the rat brain.
Collapse
Affiliation(s)
- Alexandre Poulain
- Laboratoire Paul Painlevé, UMR 8524 CNRS, Université de Lille, Lille, France
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Jørgen Riseth
- Department of Mathematics, University of Oslo, Oslo, Norway
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Vegard Vinje
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
97
|
Paldor I, Madrer N, Vaknine Treidel S, Shulman D, Greenberg DS, Soreq H. Cerebrospinal fluid and blood profiles of transfer RNA fragments show age, sex, and Parkinson's disease-related changes. J Neurochem 2023; 164:671-683. [PMID: 36354307 DOI: 10.1111/jnc.15723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Indexed: 11/12/2022]
Abstract
Transfer RNA fragments (tRFs) have recently been shown to be an important family of small regulatory RNAs with diverse functions. Recent reports have revealed modified tRF blood levels in a number of nervous system conditions including epilepsy, ischemic stroke, and neurodegenerative diseases, but little is known about tRF levels in the cerebrospinal fluid (CSF). To address this issue, we studied age, sex, and Parkinson's disease (PD) effects on the distributions of tRFs in the CSF and blood data of healthy controls and PD patients from the NIH and the Parkinson's Progression Markers Initiative (PPMI) small RNA-seq datasets. We discovered that long tRFs are expressed in higher levels in the CSF than in the blood. Furthermore, the CSF showed a pronounced age-associated decline in the level of tRFs cleaved from the 3'-end and anti-codon loop of the parental tRNA (3'-tRFs, i-tRFs), and more pronounced profile differences than the blood profiles between the sexes. In comparison, we observed moderate age-related elevation of blood 3'-tRF levels. In addition, distinct sets of tRFs in the CSF and in the blood segregated PD patients from controls. Finally, we found enrichment of tRFs predicted to target cholinergic mRNAs (Cholino-tRFs) among mitochondrial-originated tRFs, raising the possibility that the neurodegeneration-related mitochondrial impairment in PD patients may lead to deregulation of their cholinergic tone. Our findings demonstrate that the CSF and blood tRF profiles are distinct and that the CSF tRF profiles are modified in a sex-, age-, and disease-related manner, suggesting that they reflect the inter-individual cerebral differences and calling for incorporating this important subset of small RNA regulators into future studies.
Collapse
Affiliation(s)
- Iddo Paldor
- The Neurosurgery Department, Rambam Health Care Campus, Haifa, Israel
| | - Nimrod Madrer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Vaknine Treidel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Shulman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David S Greenberg
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
98
|
Proulx ST, Engelhardt B. Macrophages clear the way for CNS fluid flow. Lancet Neurol 2023; 22:194-195. [PMID: 36804079 DOI: 10.1016/s1474-4422(23)00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern 3012, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
99
|
Lilius TO, Mortensen KN, Deville C, Lohela TJ, Stæger FF, Sigurdsson B, Fiordaliso EM, Rosenholm M, Kamphuis C, Beekman FJ, Jensen AI, Nedergaard M. Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. J Control Release 2023; 355:135-148. [PMID: 36731802 DOI: 10.1016/j.jconrel.2023.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/05/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Nanoparticles are ultrafine particulate matter having considerable potential for treatment of central nervous system (CNS) disorders. Despite their tiny size, the blood-brain barrier (BBB) restricts their access to the CNS. Their direct cerebrospinal fluid (CSF) administration bypasses the BBB endothelium, but still fails to give adequate brain uptake. We present a novel approach for efficient CNS delivery of 111In-radiolabelled gold nanoparticles (AuNPs; 10-15 nm) via intra-cisterna magna administration, with tracking by SPECT imaging. To accelerate CSF brain influx, we administered AuNPs intracisternally in conjunction with systemic hypertonic saline, which dramatically increased the parenchymal AuNP uptake, especially in deep brain regions. AuNPs entered the CNS along periarterial spaces as visualized by MRI of gadolinium-labelled AuNPs and were cleared from brain within 24 h and excreted through the kidneys. Thus, the glymphatic-assisted perivascular network augment by systemic hypertonic saline is a pathway for highly efficient brain-wide distribution of small AuNPs.
Collapse
Affiliation(s)
- Tuomas O Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claire Deville
- The Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Terhi J Lohela
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care Medicine, and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Frederik Filip Stæger
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabetta M Fiordaliso
- DTU Nanolab - National Center for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chris Kamphuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; MILabs B.V., Utrecht, the Netherlands
| | - Freek J Beekman
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; MILabs B.V., Utrecht, the Netherlands; Department of Radiation Science and Technology, Delft University of Technology, Delft, the Netherlands
| | - Andreas I Jensen
- The Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde, Denmark.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
100
|
Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nat Commun 2023; 14:953. [PMID: 36806170 PMCID: PMC9941497 DOI: 10.1038/s41467-023-36643-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Perivascular spaces are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. However, the underlying mechanisms augmenting perivascular flow in sleep are unknown. Using two-photon imaging of naturally sleeping male mice we demonstrate sleep cycle-dependent vascular dynamics of pial arteries and penetrating arterioles: slow, large-amplitude oscillations in NREM sleep, a vasodilation in REM sleep, and a vasoconstriction upon awakening at the end of a sleep cycle and microarousals in NREM and intermediate sleep. These vascular dynamics are mirrored by changes in the size of the perivascular spaces of the penetrating arterioles: slow fluctuations in NREM sleep, reduction in REM sleep and an enlargement upon awakening after REM sleep and during microarousals in NREM and intermediate sleep. By biomechanical modeling we demonstrate that these sleep cycle-dependent perivascular dynamics likely enhance fluid flow and solute transport in perivascular spaces to levels comparable to cardiac pulsation-driven oscillations.
Collapse
|