51
|
Lansbergen MM, Dumont GJH, van Gerven JMA, Buitelaar JK, Verkes RJ. Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol). Psychopharmacology (Berl) 2011; 213:745-56. [PMID: 20924751 PMCID: PMC3033515 DOI: 10.1007/s00213-010-2031-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
RATIONALE Typical users of 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") are polydrug users, combining MDMA with alcohol or cannabis [most active compound: delta-9-tetrahydrocannabinol (THC)]. OBJECTIVES The aim of the present study was to investigate whether co-administration of alcohol or THC with MDMA differentially affects ongoing electroencephalogram (EEG) oscillations compared to the administration of each drug alone. METHODS In two separate experiments, 16 volunteers received four different drug conditions: (1) MDMA (100 mg); (2) alcohol clamp (blood alcohol concentration = 0.6‰) or THC (inhalation of 4, 6 and 6 mg, interval of 1.5 h); (3) MDMA in combination with alcohol or THC; and (4) placebo. Before and after drug administration, electroencephalography was recorded during an eyes closed resting state. RESULTS Theta and alpha power increased after alcohol intake compared to placebo and reduced after MDMA intake. No interaction between alcohol and MDMA was found. Significant MDMA x THC effects for theta and lower-1-alpha power indicated that the power attenuation after the combined intake of MDMA and THC was less than the sum of each drug alone. For the lower-2-alpha band, the intake of MDMA or THC alone did not significantly affect power, but the intake of combined MDMA and THC significantly decreased lower-2-alpha power. CONCLUSIONS The present findings indicate that the combined intake of MDMA and THC, but not of MDMA and alcohol, affects ongoing EEG oscillations differently than the sum of either one drug alone. Changes in ongoing EEG oscillations may be related to the impaired task performance that has often been reported after drug intake.
Collapse
Affiliation(s)
- Marieke M. Lansbergen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Glenn J. H. Dumont
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Moleman Psychopharmacology, Amerongen, the Netherlands
| | | | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
52
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
53
|
Egan ST, Kambouropoulos N, Staiger PK. Rash-impulsivity, reward-drive and motivations to use ecstasy. PERSONALITY AND INDIVIDUAL DIFFERENCES 2010. [DOI: 10.1016/j.paid.2010.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Plaza-Zabala A, Viñals X, Maldonado R, Robledo P. Effects of repeated MDMA administration on the motivation for palatable food and extinction of operant responding in mice. Psychopharmacology (Berl) 2010; 208:563-73. [PMID: 20066403 DOI: 10.1007/s00213-009-1750-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/30/2009] [Indexed: 12/01/2022]
Abstract
RATIONALE Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) produces mainly dopaminergic neurotoxicity in mice. However, the consequences of this exposure on the behavioural responses related to natural reinforcing stimuli are still largely unknown. OBJECTIVES We examined whether repeated treatment with neurotoxic and non-neurotoxic doses of MDMA could exert acute and long-lasting effects on the motivation of mice to obtain a highly palatable food and on the extinction and reinstatement of food-seeking behaviour. Food-deprived mice were first trained to acquire stable responding on fixed ratio (FR) schedules of reinforcement and then treated twice daily with saline, 3 or 30 mg/kg MDMA during four consecutive days. RESULTS The high dose of MDMA impaired instrumental responding on the first and third day of treatment, whilst no residual effects were apparent on FR5 responding at any of the doses studied 24 h after treatment withdrawal. Breaking points were decreased in mice treated with both doses of MDMA. This decrease in motivation for palatable food was not due to unspecific locomotor or coordination deficits. A resistance to extinction was observed only with the highest dose of MDMA, whilst all mice showed similar reinstatement of palatable food-seeking behaviour irrespective of previous treatment. Autoradiography of [3H]-mazindol binding revealed a decrease in striatal dopamine transporter binding only in mice treated with the highest dose of MDMA. CONCLUSIONS This study demonstrates that repeated treatment with MDMA decreases the incentive motivation for a palatable food reward and that long-lasting MDMA-induced dopaminergic neurotoxicity increases the resistance to extinction of responding in the absence of reward.
Collapse
Affiliation(s)
- Ainhoa Plaza-Zabala
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Calle Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
55
|
Dumont GJH, Schoemaker RC, Touw DJ, Sweep FCGJ, Buitelaar JK, van Gerven JMA, Verkes RJ. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers. J Psychopharmacol 2010; 24:155-64. [PMID: 19164498 DOI: 10.1177/0269881108099214] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-) administration of MDMA and ethanol over time and in relation to the pharmacokinetics. We performed a four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (nine men, seven women) between the ages of 18 and 29. MDMA (100 mg) was given orally while blood alcohol concentration was maintained at pseudo-steady state levels of approximately 0.6 per thousand for 3 h by a 10% intravenous ethanol clamp. MDMA significantly increased psychomotor speed but did not affect psychomotor accuracy and induced subjective arousal. Ethanol impaired both psychomotor speed and accuracy and induced sedation. Coadministration of ethanol and MDMA improved psychomotor speed but impaired psychomotor accuracy compared with placebo and reversed ethanol-induced sedation. Pharmacokinetics and pharmacodynamics showed maximal effects at 90-150 min after MDMA administration after which drug effects declined in spite of persisting MDMA plasma concentration, with the exception of ethanol-induced sedation, which manifested itself fully only after the infusion was stopped. In conclusion, results show that subjects were more aroused when intoxicated with both substances combined compared with placebo, but psychomotor accuracy was significantly impaired. These findings may have implications for general neuropsychological functioning as this may provide a sense of adequate performance that does not agree with a significant reduction in psychomotor accuracy.
Collapse
Affiliation(s)
- G J H Dumont
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
56
|
Dumont GJH, Kramers C, Sweep FCGJ, Willemsen JJ, Touw DJ, Schoemaker RC, van Gerven JMA, Buitelaar JK, Verkes RJ. Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. J Psychopharmacol 2010; 24:165-74. [PMID: 19074534 DOI: 10.1177/0269881108100020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alcohol is frequently used in combination with 3,4-methylenedioxymethamphetamine (MDMA). Both drugs affect cardiovascular function, hydration and temperature regulation, but may have partly opposing effects. The present study aims to assess the acute physiologic effects of (co-) administration of MDMA and ethanol over time. A four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (9 male and 7 female) between the ages of 18 and 29. MDMA (100 mg) was given orally and blood ethanol concentration was maintained at pseudo-steady state levels of 0.6 per thousand by a three-hour 10% intravenous ethanol clamp. Cardiovascular function, temperature and hydration measures were recorded throughout the study days. Ethanol did not significantly affect physiologic function, with the exception of a short lasting increase in heart rate. MDMA potently increased heart rate and blood pressure and induced fluid retention as well as an increase in temperature. Co-administration of ethanol with MDMA did not affect cardiovascular function compared to the MDMA alone condition, but attenuated the effects of MDMA on fluid retention and showed a trend for attenuation of MDMA-induced temperature increase. In conclusion, co-administration of ethanol and MDMA did not exacerbate physiologic effects compared to all other drug conditions, and moderated some effects of MDMA alone.
Collapse
Affiliation(s)
- G J H Dumont
- Department of Psychiatry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Rodríguez-Arias M, Manzanedo C, Roger-Sánchez C, Do Couto BR, Aguilar MA, Miñarro J. Effect of adolescent exposure to WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:166-71. [PMID: 19883712 DOI: 10.1016/j.pnpbp.2009.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/28/2022]
Abstract
The present study employs a conditioned place preference procedure (CPP) to examine the effects of exposure to the cannabinoid agonist WIN 55212-2 (WIN) (0.1 and 0.5mg/kg) during adolescence on the reinforcing properties of +/-3,4-methylenedioxymetamphetamine hydrochloride (MDMA) (1.25 and 2.5mg/kg) in mice. On postnatal day (PD) 27, animals received a daily injection of the assigned treatment on 5 consecutive days, and three days later the place conditioning procedure was initiated (PD 35). The results suggest that pre-exposure to cannabinoids strengthens the properties of MDMA and favors reinstatement of the craving for the drug, which endorses the gateway hypothesis.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Facultad de Psicología, Departamento de Psicobiología, Unidad de Investigación Psicobiología de las Drogodependencias, Universitat de Valencia, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
58
|
Peraile I, Torres E, Mayado A, Izco M, Lopez-Jimenez A, Lopez-Moreno JA, Colado MI, O'Shea E. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice. Br J Pharmacol 2009; 159:201-11. [PMID: 20015297 DOI: 10.1111/j.1476-5381.2009.00522.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. EXPERIMENTAL APPROACH Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. KEY RESULTS Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. CONCLUSIONS AND IMPLICATIONS Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.
Collapse
Affiliation(s)
- I Peraile
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Hasler F, Studerus E, Lindner K, Ludewig S, Vollenweider FX. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA. J Psychopharmacol 2009; 23:923-35. [PMID: 18635693 DOI: 10.1177/0269881108094650] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.
Collapse
Affiliation(s)
- F Hasler
- Department of Clinical Research, Heffter Research Center, University Hospital of Psychiatry, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
60
|
Scheidweiler KB, Ladenheim B, Cadet JL, Huestis MA. Mice lacking multidrug resistance protein 1a show altered dopaminergic responses to methylenedioxymethamphetamine (MDMA) in striatum. Neurotox Res 2009; 18:200-9. [PMID: 19851718 DOI: 10.1007/s12640-009-9124-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/04/2009] [Accepted: 10/07/2009] [Indexed: 01/16/2023]
Abstract
Multidrug resistance protein 1a (MDR1a) potentiated methylenedioxymethamphetamine (MDMA)-induced decreases of dopamine (DA) and dopamine transport protein in mouse brain one week after MDMA administration. In the present study, we examined if mdr1a wild-type (mdr1a +/+) and knock-out (mdr1a -/-) mice differentially handle the acute effects of MDMA on the nigrostriatal DA system 0-24 h following a single drug injection. 3-way ANOVA revealed significant 2-way interactions of strain x time (F (5,152) = 32.4, P < 0.001) and strain x dose (F (3,152) = 25.8, P < 0.001) on 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in mdr1a +/+ and -/- mice. 0.3-3 h after 10 mg/kg MDMA, DOPAC/DA ratios were increased in mdr1a +/+ mice, but decreased 0.3-1 h after MDMA in mdr1a -/- mice. Twenty-four hours after 10 mg/kg MDMA, DOPAC/DA ratios were increased 600% in mdr1a +/+ mice compared to saline-treated control mice, while in mdr1a -/- mice DOPAC/DA ratios were unchanged. Striatal MDMA and its metabolite, methylenedioxyamphetamine, concentrations by gas chromatography-mass spectrometry were similar in both strains 0.3-4 h after MDMA, discounting the role of MDR1a-facilitated MDMA transport in observed inter-strain differences. Increased DOPAC/DA turnover in mdr1a +/+ mice following MDMA is consistent with the previous report that MDMA neurotoxicity is increased in mdr1a +/+ mice. Increased DA turnover via monoamine oxidase in mdr1a +/+ vs -/- mice might increase exposure to neurotoxic reactive oxygen species.
Collapse
Affiliation(s)
- Karl B Scheidweiler
- Chemistry and Drug Metabolism, Intramural Research Program, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard Suite 200, Room 05A-721, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
61
|
Kay C, Harper DN, Hunt M. Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiol Learn Mem 2009; 93:151-6. [PMID: 19766200 DOI: 10.1016/j.nlm.2009.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 11/16/2022]
Abstract
Previous research has suggested that the disruption to memory-task performance seen following acute exposure to 3,4-methylenedioxymethaphemtamine (MDMA) with rats might best be characterized as reference memory impairment rather than a working memory impairment. The current study specifically compared the effects of MDMA and scopolamine on measures of working versus reference memory in an eight-arm radial maze task. It was predicted that scopolamine would produce a greater impairment with respect to the working memory component of the task, whereas MDMA would produce a greater impairment to reference memory. On each trial rats were allowed to make a total of four arm visits in order to collect the reinforcers located at the end of different arms in the maze. Working memory errors were indicated by re-visiting an already visited arm during a trial, whereas visiting an arm that was never baited on any trial indicated a reference memory error. Using a within subjects design, rats were exposed to a range of doses of scopolamine and MDMA administered acutely. An interaction between drug type and memory error type was found. Specifically, scopolamine produced more working memory errors than reference memory errors, while MDMA produced the opposite pattern of significantly more reference memory errors compared to working memory error. This finding supported the hypothesis that MDMA disrupts reference memory processes in terms of an impairment in the strategies or rules used for solving memory tasks.
Collapse
Affiliation(s)
- C Kay
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | | | | |
Collapse
|
62
|
Abstract
This article present the cases of two young men with chronic MDMA abuse who later developed movement disorders typical of the Parkinson's syndrome. It is worth noting that both men bought the presumed MDMA from the same illicit source. Potential risks of MDMA use and movement disorders are discussed. The risks inherent from contaminants and similar factors associated with illegal drug manufacture are discussed. The authors conclude that as long as nonpharmaceutical-grade MDMA is illicitly produced, health risks will be associated with its use.
Collapse
Affiliation(s)
- James Allen Wilcox
- University of Arizona, VAMC, 3601 South Sixth Avenue, Tucson, Arizona 85723, USA
| | | |
Collapse
|
63
|
Orejarena MJ, Berrendero F, Maldonado R, Robledo P. Differential changes in mesolimbic dopamine following contingent and non-contingent MDMA self-administration in mice. Psychopharmacology (Berl) 2009; 205:457-66. [PMID: 19495729 DOI: 10.1007/s00213-009-1554-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
RATIONALE There is evidence demonstrating changes in dopamine (DA) transmission in the nucleus accumbens (NAc) related to contingent versus non-contingent drug administration. OBJECTIVES The aim of this study was to evaluate basal and 3,4-methylenedioxymethamphetamine (MDMA)-stimulated DA levels in the NAc of mice that had previously received contingent and non-contingent infusions of MDMA. Contingent mice were trained to self-administer MDMA (0.125 mg/kg/infusion) in 2-h sessions for 10 days. Yoked mice received either MDMA at the same dose or saline. Forty-eight hours after the last MDMA or saline administration, DA levels were measured by in vivo microdialysis before and after an MDMA (10 mg/kg, i.p.) challenge. Binding of [(3)H]-mazindol and [(3)H]-citalopram was evaluated by autoradiography. RESULTS Animals receiving MDMA infusions showed significantly lower basal DA levels than the yoked saline group. A reduced activation of DA was observed following MDMA in contingent mice with respect to both yoked MDMA and saline mice. No significant alterations in DA transporter or serotonin transporter were observed in the three groups of mice. CONCLUSIONS These results suggest that prolonged exposure to MDMA in mice produces changes in basal DA levels after drug withdrawal and a decreased neurochemical response at the level of the mesolimbic DA reward pathway that is, in part, related to instrumental learning during self-administration.
Collapse
Affiliation(s)
- María Juliana Orejarena
- Laboratori de Neurofarmacologia, Universitat Pompeu Fabra, PRBB, Calle Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
64
|
León LA, Landeira-Fernandez J, Cardenas FP. Effects of chronic intracerebroventricular 3,4-methylenedioxy-N-methamphetamine (MDMA) or fluoxetine on the active avoidance test in rats with or without exposure to mild chronic stress. Behav Brain Res 2009; 205:259-64. [PMID: 19589359 DOI: 10.1016/j.bbr.2009.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
In despite the similarity of mechanisms of action between both selective serotonin reuptake inhibitors (SSRI) and MDMA (main compound of "Ecstasy") there are relatively few reports on the effects of the later on animal models of depression. There are many animal models designed to create or to assess depression. Mild chronic stress (MCS) is a procedure designed to create depression. MCS includes the chronic exposure of the animal to several stressors. After that, rats show behavioural changes associated to depression. In the other hand, the active avoidance task (AAT) is an experimental situation in which an animal has to accomplish a particular behaviour in order to avoid the application of a stressor. Animals exhibiting depression fail to acquire avoidance responses as rapidly as normal animals do. In order to assess the effect of MDMA on the acquisition of an active avoidance response, forty-five rats were divided in two groups exposed or not exposed to MCS. Rats also received chronic intracerebroventricular MDMA (0.2microg/microl; 1microl), fluoxetine (2.0microg/microl; 1microl) or saline solution (0.9%; 1microl). Our results showed that the effect of MDMA depends upon the level of stress. MDMA treated animals showed better acquisition (F([2,37])=7.046; P=0.003) and retention (F([2,37])=3.900; P=0.029) of the avoidance response than fluoxetine or saline treated animals when exposed to MCS. This finding suggests that MDMA (and no fluoxetine) was able to change the aversive valence of the stressors maybe enhancing coping strategies. This effect could serve as a protective factor against helplessness and maybe post-traumatic stress.
Collapse
Affiliation(s)
- Laura A León
- Laboratory of Neuroscience and Behaviour, Department of Psychology, Universidad de los Andes, Cra 1 #18A-12, Bogotá, Colombia
| | | | | |
Collapse
|
65
|
Uys JDK, Niesink RJM. Pharmacological aspects of the combined use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and gamma-hydroxybutyric acid (GHB): a review of the literature. Drug Alcohol Rev 2009; 24:359-68. [PMID: 16234132 DOI: 10.1080/09595230500295725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidemiological studies show that the use of club drugs is on the rise. Furthermore, the last few decades have seen a rise in patterns of polydrug use. One of the combinations frequently used is ecstasy (MDMA) with gammahydroxybutyrate (GHB). For effective prevention it is important to be aware of this phenomenon and of the pharmacology of these drugs. The effects of the combination extend to different neurotransmitter systems, including serotonin, dopamine and noradrenaline. Studies investigating the effects of combinations of psychoactive substances are limited. In this review we describe the subjective effects of the MDMA/GHB combination. Furthermore, we review the individual actions of MDMA on serotonin, dopamine and noradrenaline systems. In addition, actions of GHB on these systems are discussed as a possible pharmacological basis for the interaction of both drugs. It is postulated that GHB attenuates the unpleasant or dysphoric effects of MDMA by its effect on the central dopaminergic system.
Collapse
Affiliation(s)
- Joachim D K Uys
- Drugs Information and Monitoring System, Trimbos-Institute, Netherlands Institute of Mental Health and Addiction, The Netherlands
| | | |
Collapse
|
66
|
Cannabis coadministration potentiates the effects of "ecstasy" on heart rate and temperature in humans. Clin Pharmacol Ther 2009; 86:160-6. [PMID: 19440186 DOI: 10.1038/clpt.2009.62] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study assessed the acute physiologic effects over time of (co)administration of Delta9-tetrahydrocannabinol (Delta9-THC) (the main psychoactive compound of cannabis) and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in 16 healthy volunteers. Pharmacokinetics and cardiovascular, temperature, and catecholamine responses were assessed over time. Both single-drug conditions robustly increased heart rate, and coadministration showed additive effects. MDMA increased epinephrine and norepinephrine concentrations, whereas THC did not affect the catecholamine response. Coadministration of MDMA and THC attenuated the increase of norepinephrine concentrations relative to administration of MDMA alone. These results show that THC mediates heart rate increase independent of sympathetic (catecholaminergic) activity, probably through direct cannabinoid receptor type 1 (CB(1)) agonism in cardiac tissue. Furthermore, THC coadministration did not prevent MDMA-induced temperature increase, but it delayed the onset and prolonged the duration of temperature elevation. These effects may be of particular relevance for the cardiovascular safety of ecstasy users who participate in energetic dancing in nightclubs with high ambient temperature.
Collapse
|
67
|
Schilt T, Koeter MWJ, de Win MML, Zinkstok JR, van Amelsvoort TA, Schmand B, den Brink WV. The effect of Ecstasy on memory is moderated by a functional polymorphism in the cathechol-O-methyltransferase (COMT) gene. Eur Neuropsychopharmacol 2009; 19:116-24. [PMID: 19042106 DOI: 10.1016/j.euroneuro.2008.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
There is ample evidence for decreased verbal memory in heavy Ecstasy users. However, findings on the presence of a dose-response relation are inconsistent, possibly due to individual differences in genetic vulnerability. Catechol-O-methyltransferase (COMT) is involved in the catabolism of Ecstasy. Therefore, COMT gene polymorphisms may moderate this vulnerability. We prospectively assessed verbal memory in subjects with a high risk for future Ecstasy use, and compared 59 subjects after first Ecstasy use with 60 subjects that remained Ecstasy-naive. In addition, we tested the interaction effect of Ecstasy and the functional val (158)met polymorphism on verbal memory. Met-allele carriers were somewhat more sensitive to the effects of Ecstasy on verbal learning than homozygous val-subjects. After correction for the use of other substances this effect was no longer statistically significant. The findings suggest that the COMT gene moderates the negative effect of Ecstasy on memory, but also other drug use seems to play a role.
Collapse
Affiliation(s)
- Thelma Schilt
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center of the University of Amsterdam, 1070 AW Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
68
|
Baumann MH, Rothman RB. Neural and cardiac toxicities associated with 3,4-methylenedioxymethamphetamine (MDMA). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:257-96. [PMID: 19897081 DOI: 10.1016/s0074-7742(09)88010-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
(+/-)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicity in rats is evaluated in terms of the effects of MDMA on monoamine neurons, the use of scaling methods to extrapolate MDMA doses across species, and functional consequences of MDMA exposure. A potential treatment regimen (l-5-hydroxytryptophan plus carbidopa) for MDMA-associated neural deficits is discussed. The pathogenesis of MDMA-associated VHD is reviewed with specific reference to the role of valvular 5-HT(2B) receptors. We conclude that pharmacological effects of MDMA occur at the same doses in rats and humans. High doses of MDMA that produce 5-HT depletions in rats are associated with tolerance and impaired 5-HT release. Doses of MDMA that fail to deplete 5-HT in rats can cause persistent behavioral dysfunction, suggesting even moderate doses may pose risks. Finally, the MDMA metabolite, 3,4-methylenedioxyamphetamine (MDA), is a potent 5-HT(2B) agonist which could contribute to the increased risk of VHD observed in heavy MDMA users.
Collapse
Affiliation(s)
- Michael H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, Maryland 21224, USA
| | | |
Collapse
|
69
|
Acute behavioural and neurotoxic effects of MDMA plus cocaine in adolescent mice. Neurotoxicol Teratol 2009; 31:49-59. [DOI: 10.1016/j.ntt.2008.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 12/14/2022]
|
70
|
Van Dam NT, Earleywine M, DiGiacomo G. Polydrug use, cannabis, and psychosis-like symptoms. Hum Psychopharmacol 2008; 23:475-85. [PMID: 18449850 DOI: 10.1002/hup.950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine psychosis-like symptoms in users of legal and illicit drugs. METHODS Schizotypal Personality Questionnaire (SPQ) scores were compared in groups of people with different exposure to cannabis, with the use of other drugs serving as a covariate. Supplemental analyses compared users of legal and illicit drugs with cannabis use as a covariate. RESULTS Weekly (n = 111) and monthly (n = 136) cannabis users had higher scores on the SPQ than former (n = 143) and non-users (n = 81). The use of other drugs accounted for the links between cannabis and schizotypy. Lifetime use of psychomotor stimulant drugs plus ecstasy accounted for associations between cannabis and scores on the SPQ and its different subscales. Dividing groups by type of drug use revealed that those who used only cannabis and legal drugs (CLDs) (n = 126) were no different from those who used only legal drugs (LDs) (n = 74) but both groups scored significantly lower on the SPQ than polydrug users (n = 247). When controlling for marijuana use in the last month, the significant difference across drug use groups remained. CONCLUSIONS The results suggest that research on marijuana and schizotypy requires careful assessment of the use of other drugs, especially psychomotor stimulants and ecstasy.
Collapse
Affiliation(s)
- Nicholas T Van Dam
- Department of Psychology, University at Albany, SUNY, Albany, New York 12222, USA.
| | | | | |
Collapse
|
71
|
A validated gas chromatographic-electron impact ionization mass spectrometric method for methamphetamine, methylenedioxymethamphetamine (MDMA), and metabolites in mouse plasma and brain. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 876:266-76. [PMID: 19026602 DOI: 10.1016/j.jchromb.2008.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/27/2008] [Accepted: 11/02/2008] [Indexed: 11/23/2022]
Abstract
A method was developed and fully validated for simultaneous quantification of methamphetamine (MAMP), amphetamine, hydroxy-methamphetamine, methylenedioxymethamphetamine (MDMA, ecstasy), methylenedioxyamphetamine, 3-hydroxy-4-methoxy-methamphetamine, and 3-hydroxy-4-methoxy-amphetamine in 100 microL mouse plasma and 7.5mg brain. Solid phase extraction and gas chromatography-electron impact ionization mass spectrometry in selected-ion monitoring mode achieved plasma linear ranges of 10-20 to 20,000 ng/mL and 0.1-0.2 to 200 ng/mg in brain. Recoveries were greater than 91%, bias 92.3-110.4%, and imprecision less than 5.3% coefficient of variation. This method was used for measuring MAMP and MDMA and metabolites in plasma and brain during mouse neurotoxicity studies.
Collapse
|
72
|
Green AR, Marsden CA, Fone KCF. MDMA as a clinical tool: a note of caution. A response to Sessa and Nutt. J Psychopharmacol 2008; 22:929-31. [PMID: 18562430 DOI: 10.1177/0269881108091073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- AR Green
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham, Nottingham UK
| | - CA Marsden
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham, Nottingham UK
| | - KCF Fone
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham, Nottingham UK
| |
Collapse
|
73
|
Characteristics of dual specificity phosphatases mRNA regulation by 3,4-methylenedioxymethamphetamine acute treatment in mice striatum. Brain Res 2008; 1239:42-8. [PMID: 18786515 DOI: 10.1016/j.brainres.2008.08.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug that has rewarding properties in rodents but little is known about its effects at the cellular and molecular levels. We have previously shown that the ERK pathway is important for the regulation in gene expression observed in mice striatum after acute treatment with MDMA. Interestingly, three dual specificity phosphatases were found among the genes modulated by MDMA acute treatment. In this study we investigated the signalling pathways leading to the up-regulation of these three mRNAs and the kinetics of their regulation. We found that the increase in Dusp14 mRNA depends on the activation of ERK and lasts longer than those of Dusp1 and Dusp5. The modulation of the three studied Dusps depends partially on the activation of D1 receptors but is independent of the activation of D2 receptors. These results suggest that at least two separate signalling cascades lead to the up-regulation of MAPK phosphatase mRNAs. The increase of Dusp1 and Dusp5 mRNAs is not controlled by ERK activation while that of Dusp14 is a direct negative-feedback mechanism of MDMA-induced ERK signalling. Both mechanisms converge to increase the expression levels of phosphatases able to inactivate ERK.
Collapse
|
74
|
Effects of the selective neurotensin antagonist SR 142948A on 3,4-methylenedioxymethamphetamine-induced behaviours in mice. Neuropharmacology 2008; 54:1107-11. [DOI: 10.1016/j.neuropharm.2008.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/11/2008] [Accepted: 03/02/2008] [Indexed: 11/23/2022]
|
75
|
Dumont GJH, Wezenberg E, Valkenberg MMGJ, de Jong CAJ, Buitelaar JK, van Gerven JMA, Verkes RJ. Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers. Psychopharmacology (Berl) 2008; 197:465-74. [PMID: 18305926 PMCID: PMC2270918 DOI: 10.1007/s00213-007-1056-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 12/19/2007] [Indexed: 10/27/2022]
Abstract
RATIONALE In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. OBJECTIVE The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. MATERIALS AND METHODS We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18-29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6 per thousand by an ethanol infusion regime. RESULTS Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. CONCLUSIONS Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function.
Collapse
Affiliation(s)
- G. J. H. Dumont
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands ,University Medical Centre Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - E. Wezenberg
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | - M. M. G. J. Valkenberg
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | - C. A. J. de Jong
- Nijmegen Institute for Science Practitioners in Addiction, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J. K. Buitelaar
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| | | | - R. J. Verkes
- Unit for Clinical Psychopharmacology and Neuropsychiatry (UCPN), Department of Psychiatry, University Medical Centre St Radboud, Nijmegen, The Netherlands
| |
Collapse
|
76
|
Daza-Losada M, Rodríguez-Arias M, Aguilar MA, Miñarro J. Effect of adolescent exposure to MDMA and cocaine on acquisition and reinstatement of morphine-induce CPP. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:701-9. [PMID: 18164530 DOI: 10.1016/j.pnpbp.2007.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
It is well known that an elevated percentage of ecstasy users also consume cocaine. Recently, it has been reported that a high frequency of heroin smokers first consumed heroin under the effects of ecstasy with the hope of reducing the stimulant effects of the latter drug. The aim of the present study was to evaluate the effect of exposure to MDMA and cocaine during adolescence on morphine-induced conditioned place preference (CPP) and reinstatement in adulthood. In the first experiment, adolescent mice were exposed to six injections of MDMA and three weeks later their response to the reinforcing properties of 40 mg/kg of morphine was evaluated using the CPP paradigm. All the treatment groups developed the same magnitude of morphine-induced preference and, after CPP was extinguished, it was restored in all the groups with a priming dose of 10 mg/kg of morphine. Only mice that had been treated with 10 or 20 mg/kg of MDMA had their morphine-induced preference reinstated after receiving only 5 mg/kg of morphine. In the second experiment, adolescent mice were similarly treated with six administrations of cocaine (25 mg/kg) or cocaine plus MDMA (5, 10 or 20 mg/kg), and their response to morphine-induce CPP was evaluated three weeks later. Similarly to the first experiment, all the groups developed a preference for the morphine-paired compartment, but this preference was not reinstated with a priming dose of 10 mg/kg of morphine following extinction, as was the case among the control animals. These results lead us to hypothesize that periadolescent MDMA exposure alters responsiveness to the rewarding properties of morphine, highlighting MDMA as a gateway drug whose use may increase the likelihood of dependence on other drugs.
Collapse
Affiliation(s)
- M Daza-Losada
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
77
|
MDMA modifies active avoidance learning and recall in mice. Psychopharmacology (Berl) 2008; 197:391-400. [PMID: 18185919 DOI: 10.1007/s00213-007-1045-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Several studies have suggested the existence of cognitive deficits after repeated or high doses of 3,4-methylenedioxymethamphetamine (MDMA) in humans and experimental animals. However, the extent of the impairments observed in learning or memory tasks remains unclear. OBJECTIVE The objective of this study was to evaluate the effects of different dosing regimens of MDMA on the ability of mice to learn and recall an active avoidance task. MATERIALS AND METHODS Animals were treated with MDMA (0, 1, 3, 10 and 30 mg/kg) under four different experimental conditions, and active avoidance acquisition and recall were evaluated. In experiments 1 and 2, MDMA was administered 1 h before different active avoidance training sessions. In experiments 3 and 4, mice received a repeated treatment with MDMA before or after active avoidance training, respectively. Changes in presynaptic striatal dopamine transporter (DAT) binding sites were evaluated at two different time points in animals receiving a high dose of MDMA (30 mg/kg) or saline twice a day over 4 days. RESULTS MDMA administered before the active avoidance sessions interfered with the acquisition and the execution of a previously learned task. A repeated treatment with high doses of MDMA administered before training reduced acquisition of active avoidance in mice, while pre-treatment with both high and low doses of MDMA impaired recall of this task. A reduction in DAT binding was observed 4 days but not 23 days after the last MDMA administration. CONCLUSIONS Acute MDMA modifies the acquisition and execution of active avoidance in mice, while repeated pre-treatment with MDMA impairs acquisition and recall of this task.
Collapse
|
78
|
Interactions between ethanol and cocaine, amphetamine, or MDMA in the rat: thermoregulatory and locomotor effects. Psychopharmacology (Berl) 2008; 197:67-82. [PMID: 18040665 DOI: 10.1007/s00213-007-1007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/29/2007] [Indexed: 01/23/2023]
Abstract
RATIONALE (+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is often taken recreationally with ethanol (EtOH). In rats, EtOH may potentiate MDMA-induced hyperactivity, but attenuate hyperthermia. OBJECTIVE Experiment 1 compared the interactions between EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) with EtOH + cocaine (COCA; 10 mg/kg) and EtOH + amphetamine (AMPH; 1 mg/kg) on locomotor activity and thermoregulation. Experiment 2 used a weaker dose of MDMA (3.3 mg/kg) and larger doses of COCA (20 mg/kg) and AMPH (2 mg/kg). MATERIALS AND METHODS Drug treatments were administered on four occasions (2, 5, and 2 days apart, respectively; experiment 1) or two (2 days apart; experiment 2). RESULTS All psychostimulants increased activity, and EtOH markedly increased the effect of MDMA. AMPH alone-related hyperactivity showed modest sensitization across treatment days, while MDMA + EtOH activity showed marked sensitization. AMPH, COCA, and MDMA induced hyperthermia of comparable amplitude (+1 to +1.5 degrees C). Co-treatment with EtOH and AMPH (1 mg/kg) or COCA (10 mg/kg) produced hypothermia greater than that produced by EtOH alone. Conversely, EtOH attenuated MDMA-related hyperthermia, an effect increasing across treatment days. These results demonstrate that the interaction between MDMA and EtOH may be different from the interaction between EtOH and AMPH or COCA. CONCLUSION Because of potential health-related consequences of such polydrug misuse, it is worth identifying the mechanisms underlying these interactions, especially between EtOH and MDMA. Given the different affinity profiles of the three drugs for serotonin, dopamine, and norepinephrine transporters, our results appear compatible with the possibility of an important role of serotonin in at least the EtOH-induced potentiation of MDMA-induced hyperlocomotion.
Collapse
|
79
|
Jager G, de Win MML, van der Tweel I, Schilt T, Kahn RS, van den Brink W, van Ree JM, Ramsey NF. Assessment of cognitive brain function in ecstasy users and contributions of other drugs of abuse: results from an FMRI study. Neuropsychopharmacology 2008; 33:247-58. [PMID: 17460617 DOI: 10.1038/sj.npp.1301415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy ecstasy use has been associated with neurocognitive deficits in various behavioral and brain imaging studies. However, this association is not conclusive owing to the unavoidable confounding factor of polysubstance use. The present study, as part of the Netherlands XTC Toxicity study, investigated specific effects of ecstasy on working memory, attention, and associative memory, using functional magnetic resonance imaging (fMRI). A large sample (n=71) was carefully composed based on variation in the amount and type of drugs that were used. The sample included 33 heavy ecstasy users (mean 322 pills lifetime). Neurocognitive brain function in three domains: working memory, attention, and associative memory, was assessed with performance measures and fMRI. Independent effects of the use of ecstasy, amphetamine, cocaine, cannabis, alcohol, tobacco, and of gender and IQ were assessed and separated by means of multiple regression analyses. Use of ecstasy had no effect on working memory and attention, but drug use was associated with reduced associative memory performance. Multiple regression analysis showed that associative memory performance was affected by amphetamine much more than by ecstasy. Both drugs affected associative memory-related brain activity, but the effects were consistently in opposite directions, suggesting that different mechanisms are at play. This could be related to the different neurotransmitter systems these drugs predominantly act upon, that is, serotonin (ecstasy) vs dopamine (amphetamine) systems.
Collapse
Affiliation(s)
- Gerry Jager
- Department of Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Fantegrossi WE, Ciullo JR, Wakabayashi KT, De La Garza R, Traynor JR, Woods JH. A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience 2007; 151:533-43. [PMID: 18082974 DOI: 10.1016/j.neuroscience.2007.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) are amphetamine analogues with similar persistent neurochemical effects in the mouse which some have described as neurotoxicity. We attempted to identify dose regimens of MDMA and METH with similar effects on behavioral and physiological variables in the mouse, then quantified the effects of these dose regimens on neurochemistry and microglial markers. Four discrete injections of saline, MDMA (10, 20, or 30 mg/kg), or METH (5 or 10 mg/kg) were administered to mice at 2 h intervals. Body weight was quantified immediately before each injection, and 2 h after the last injection, while core temperature and locomotor activity were continuously monitored via radiotelemetry. Mice were killed 72 h after the final injection and brains were rapidly dissected on ice. Dopamine content in various brain regions was quantified via high pressure liquid chromatography (HPLC), and microglial activation was assessed by saturation binding of the peripheral benzodiazepine receptor (PBR) ligand 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide ([(3)H]PK11195). Specific dose regimens of MDMA and METH induced similar reductions in body weight, depletions of dopamine and its metabolites, and similar hyperthermic and locomotor stimulant effects, but only METH activated microglia in striatum. These results suggest that repeated high doses of MDMA and METH that produce hyperthermia, locomotor stereotypy, weight loss and neurochemical depletion are not consistently accompanied by microglial activation. The finding that METH, but not MDMA, induces microglial effects in the striatum consistent with neurotoxicity might imply different mechanisms of toxic action for these two psychostimulants.
Collapse
Affiliation(s)
- W E Fantegrossi
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Montgomery T, Buon C, Eibauer S, Guiry PJ, Keenan AK, McBean GJ. Comparative potencies of 3,4-methylenedioxymethamphetamine (MDMA) analogues as inhibitors of [3H]noradrenaline and [3H]5-HT transport in mammalian cell lines. Br J Pharmacol 2007; 152:1121-30. [PMID: 17891159 PMCID: PMC2095113 DOI: 10.1038/sj.bjp.0707473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Illegal 'ecstasy' tablets frequently contain 3,4-methylenedioxymethamphetamine (MDMA)-like compounds of unknown pharmacological activity. Since monoamine transporters are one of the primary targets of MDMA action in the brain, a number of MDMA analogues have been tested for their ability to inhibit [3H]noradrenaline uptake into rat PC12 cells expressing the noradrenaline transporter (NET) and [3H]5-HT uptake into HEK293 cells stably transfected with the 5-HT transporter (SERT). EXPERIMENTAL APPROACH Concentration-response curves for the following compounds at both NET and SERT were determined under saturating substrate conditions: 4-hydroxy-3-methoxyamphetamine (HMA), 4-hydroxy-3-methoxymethamphetamine (HMMA), 3,4-methylenedioxy-N-hydroxyamphetamine (MDOH), 2,5-dimethoxy-4-bromophenylethylamine (2CB), 3,4-dimethoxymethamphetamine (DMMA), 3,4-methylenedioxyphenyl-2-butanamine (BDB), 3,4-methylenedioxyphenyl-N-methyl-2-butanamine (MBDB) and 2,3-methylenedioxymethamphetamine (2,3-MDMA). KEY RESULTS 2,3-MDMA was significantly less potent than MDMA at SERT, but equipotent with MDMA at NET. 2CB and BDB were both significantly less potent than MDMA at NET, but equipotent with MDMA at SERT. MBDB, DMMA, MDOH and the MDMA metabolites HMA and HMMA, were all significantly less potent than MDMA at both NET and SERT. CONCLUSIONS AND IMPLICATIONS This study provides an important insight into the structural requirements of MDMA analogue affinity at both NET and SERT. It is anticipated that these results will facilitate understanding of the likely pharmacological actions of structural analogues of MDMA.
Collapse
Affiliation(s)
- T Montgomery
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - C Buon
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - S Eibauer
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - P J Guiry
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - A K Keenan
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - G J McBean
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
- Author for correspondence:
| |
Collapse
|
82
|
Diller AJ, Rocha A, Cardon AL, Valles R, Wellman PJ, Nation JR. The effects of concurrent administration of +/-3,4-methylenedioxymethamphetamine and cocaine on conditioned place preference in the adult male rat. Pharmacol Biochem Behav 2007; 88:165-70. [PMID: 17854876 PMCID: PMC2878136 DOI: 10.1016/j.pbb.2007.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/11/2007] [Accepted: 07/27/2007] [Indexed: 11/22/2022]
Abstract
Conditioned place preference (CPP), a commonly used model for studying the role of contextual cues in drug reward and drug seeking, was employed to explore possible behavioral interactions between (+/-)3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") and cocaine. On each of four occasions, adult male rats received one of three doses of MDMA (0 mg/kg, 5 mg/kg, 10 mg/kg; administered subcutaneously [s.c.]) combined with one of three doses of cocaine (0 mg/kg, 2.5 mg/kg, 5 mg/kg; administered intraperitoneally [i.p.]), and were then tested in a CPP paradigm. The results showed MDMA-induced CPP at a unit dose of 5 mg/kg, but at the 10 mg/kg dose there was a return to baseline (control) performance levels. For cocaine alone, CPP increased in a linear fashion as the drug dose was increased. Concurrent administration resulted in antagonism of each drug, but there was evidence that this pattern was reversible at higher doses of the respective drugs. These data are instructive insofar as they suggest that the behavioral and neurochemical effects of MDMA and cocaine presented in isolation are dramatically altered when the two drugs are presented in combination.
Collapse
Affiliation(s)
- Anna J Diller
- Department of Psychology, Texas A&M University, College Station, TX 77843, United States
| | | | | | | | | | | |
Collapse
|
83
|
Daza-Losada M, Ribeiro Do Couto B, Manzanedo C, Aguilar MA, Rodríguez-Arias M, Miñarro J. Rewarding effects and reinstatement of MDMA-induced CPP in adolescent mice. Neuropsychopharmacology 2007; 32:1750-9. [PMID: 17299518 DOI: 10.1038/sj.npp.1301309] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in self-administration and conditioned place preference (CPP) procedures, its addictive potential (ie, the vulnerability to relapse, measured by its ability to induce reinstatement of an extinguished response), remains poorly understood. In this study, the effects of MDMA (5, 10, and 20 mg/kg) on the acquisition, extinction and reinstatement of CPP were evaluated in mice, using two different protocols during acquisition of CPP. In the first experiment, animals were trained using a two-session/day schedule (MDMA and saline for 4 consecutive days), whereas in the second experiment, they were trained using an alternating day schedule (MDMA and saline each 48 h). After extinction, the ability of drug priming to reinstate CPP was evaluated. In Experiment 1, MDMA did not significantly increase the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, although the preference was evident a week afterwards, lasting between 2 and 21 weeks. No reinstatement was observed after MDMA priming. In Experiment 2, all doses produced CPP in Post-C, which lasted between 1 and 4 weeks. MDMA induces reinstatement at doses up to 4 times lower than those used in conditioning. The analyses of brain monoamines revealed that the daily schedule of treatment induces a non-dose-dependent decrease in dopamine and serotonin (5-HT) in the striatum, whereas the alternating schedule produces a dose-dependent decrease of 5-HT in the cortex. These results demonstrate that MDMA produces long-lasting rewarding effects and reinstatement after extinction, suggesting the susceptibility of this drug to induce addiction.
Collapse
Affiliation(s)
- Manuel Daza-Losada
- Facultad de Psicología, Departamento de Psicobiología, Unidad de Investigación Psicobiología de las Drogodependencias, Universitat de Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Vorhees CV, Schaefer TL, Williams MT. Developmental effects of +/-3,4-methylenedioxymethamphetamine on spatial versus path integration learning: effects of dose distribution. Synapse 2007; 61:488-99. [PMID: 17415794 PMCID: PMC2888320 DOI: 10.1002/syn.20379] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously demonstrated that postnatal day 11-20 +/-3,4-methylenedioxymethamphetamine (MDMA) exposure reduces locomotor activity and impairs path integration and spatial learning independent of the effects on activity. The effects were seen when the drug was administered twice per day, but the optimal dosing regimen is unknown. We tested whether the same total daily dose of MDMA administered in different patterns would equally affect later behavior. A split-litter design (15 litters) was used with one male/female pair per litter receiving one of four treatment regimens. All offspring received four injections per day on P11-20 as follows: 40 x 1 (40 mg/kg MDMA x 1 + saline x 3), 20 x 2 (20 mg/kg MDMA x 2 + saline x 2), 10 x 4 (10 mg/kg MDMA x 4), or Saline (saline x 4). Doses were spaced 2 h apart. Group 40 x 1 received MDMA as the first daily dose followed by three saline doses; group 20 x 2 received MDMA as the first and last dose and saline for the middle two doses; group 10 x 4 received MDMA for all four doses; and the saline group received saline for all four doses. Regardless of dose schedule, all groups treated with MDMA exhibited reduced locomotor activity. No MDMA effects were found on swimming ability in a straight channel. Modest MDMA effects were found on Barnes maze performance. The major findings were that the 40 x 1 and 20 x 2 MDMA groups showed impaired Cincinnati multiple T-water-maze learning and the 10 x 4 and 20 x 2 MDMA groups showed impaired Morris water maze learning. The results suggest that MDMA dose distribution has a long-term differential effect on different types of learning. Dose distribution warrants greater attention in the design of developmental drug studies along with the standard considerations of dose and age.
Collapse
Affiliation(s)
- Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
85
|
Martins SS, Ghandour LA, Chilcoat HD. Pathways between ecstasy initiation and other drug use. Addict Behav 2007; 32:1511-8. [PMID: 17174036 PMCID: PMC1904509 DOI: 10.1016/j.addbeh.2006.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/19/2006] [Accepted: 11/06/2006] [Indexed: 11/28/2022]
Abstract
This study aims to shed light on drug use pathways associated with ecstasy use initiation. Data from 54,573 respondents aged 12-21 years old from the 2002-2003 National Survey on Drug Use and Health (NSDUH) public use data files were analyzed via Cox proportional hazards models with time-dependent covariates. Our findings showed that marijuana, cocaine, and heroin were significant independent predictors of subsequent ecstasy use. Earlier ecstasy initiation was significantly associated with subsequent other illegal drug initiation (marijuana, cocaine and heroin). The strength of the association was greater for the pathway from earlier marijuana initiation to subsequent ecstasy initiation as compared to the pathway in the opposite direction. The pathway from earlier ecstasy initiation to subsequent cocaine and heroin initiation was also stronger as compared to pathways in the opposite directions. Pathways between ecstasy initiation and marijuana, cocaine and heroin initiation seem to be independent of the association between drug use and psychiatric symptoms/deviant behaviors. Ecstasy initiation seems to play a role in the subsequent initiation of cocaine and heroin.
Collapse
Affiliation(s)
- Silvia S. Martins
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, 8 floor, Baltimore, MD 21205-1900, USA. E-mails: (Silvia S. Martins), (Lilian A. Ghandour), , (Howard D. Chilcoat)
| | - Lilian A. Ghandour
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, 8 floor, Baltimore, MD 21205-1900, USA. E-mails: (Silvia S. Martins), (Lilian A. Ghandour), , (Howard D. Chilcoat)
| | - Howard D. Chilcoat
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, 8 floor, Baltimore, MD 21205-1900, USA. E-mails: (Silvia S. Martins), (Lilian A. Ghandour), , (Howard D. Chilcoat)
| |
Collapse
|
86
|
Acquas E, Pisanu A, Spiga S, Plumitallo A, Zernig G, Di Chiara G. Differential effects of intravenous R,S-(�)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its S(+)- and R(?)-enantiomers on dopamine transmission and extracellular signal regulated kinase phosphorylation (pERK) in the rat nucleus accumbens shell and core. J Neurochem 2007; 102:121-32. [PMID: 17564678 DOI: 10.1111/j.1471-4159.2007.04451.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
R,S(+/-)-3,4-methylenedioxymethamphetamine (R,S(+/-)-MDMA, 'Ecstasy') is known to stimulate dopamine (DA) transmission in the nucleus accumbens (NAc). In order to investigate the post-synaptic correlates of pre-synaptic changes in DA transmission and their relationship with MDMA enantiomers, we studied the effects of R,S(+/-)-MDMA, S(+)-MDMA, and R(-)-MDMA on extracellular DA and phosphorylated extracellular signal regulated kinase (pERK) in the NAc shell and core. Male Sprague-Dawley rats, implanted with a catheter in the femoral vein and vertical concentric dialysis probes in the NAc shell and core, were administered i.v. saline, R,S(+/-)-MDMA, S(+)-MDMA, or R(-)-MDMA. Extracellular DA was monitored by in vivo microdialysis with HPLC. Intravenous R,S(+/-)-MDMA (0.64, 1, and 2 mg/kg) increased dialysate DA, preferentially in the shell, in a dose-related manner. S(+)-MDMA exerted similar effects but at lower doses than R,S(+/-)-MDMA, while R(-)-MDMA (1 and 2 mg/kg) failed to affect dialysate DA. R,S(+/-)- and S(+)-MDMA but not R(-)-MDMA increased ERK phosphorylation (expressed as density/neuron and number of pERK-positive neurons/area) in both subdivisions of the NAc. The administration of the D1 receptor antagonist, SCH 39166, prevented the increase in pERK elicited by R,S(+/-)-MDMA and S(+)-MDMA, while the D2/3 receptor antagonist, raclopride, increased pERK in the NAc core per se but failed to affect the R,S(+/-)-MDMA-elicited stimulation of pERK. The present results provide evidence that the DA stimulant effects of racemic MDMA are accounted for by the S(+)-enantiomer and that pERK may represent a post-synaptic correlate of the stimulant effect of R,S(+/-)-MDMA on D1-dependent DA transmission.
Collapse
Affiliation(s)
- Elio Acquas
- Department of Toxicology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
87
|
Compan V. Do Limits of Neuronal Plasticity Represent an Opportunity for Mental Diseases, Such as Addiction to Food and Illegal Drugs? Use and Utilities of Serotonin Receptor Knock-Out Mice. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
88
|
Verrico CD, Miller GM, Madras BK. MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology (Berl) 2007; 189:489-503. [PMID: 16220332 DOI: 10.1007/s00213-005-0174-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/17/2005] [Indexed: 01/20/2023]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, designated as "Ecstasy" if illicitly marketed in tablet form) induces significant decrements in neuronal serotonin (5-HT) markers in humans, nonhuman primates, and rats as a function of dosing and dosing regimen. In rats, MDMA-mediated effects are attributed, in part, to selective high-affinity transport of MDMA into 5-HT neurons by the 5-HT transporter (SERT), followed by extensive 5-HT release. OBJECTIVES To clarify whether SERT-selective effects of MDMA at human monoamine transporters can account for the reported MDMA-induced selective toxicity of serotonin neurons in primate brain. METHODS We investigated the interaction of [(3)H](+/-, RS)- (+, S)- and (-, R)-MDMA with the human SERT, dopamine (DA) transporter (DAT), and norepinephrine (NE) transporter (NET) in stably transfected human embryo kidney (HEK)-293 cells. RESULTS The human DAT, NET, and SERT actively transported [(3)H]RS(+/-)-MDMA saturably, stereoselectively, and in a temperature-, concentration-, and transporter-dependent manner. MDMA exhibited the highest affinity for the NET>>SERT>or=DAT, the same rank order for MDMA inhibition of [(3)H]DA, [(3)H]NE, and [(3)H]5-HT transport and stimulated release of the [(3)H]monoamines, which differed from reports derived from rodent monoamine transporters. The extent of MDMA-induced release of 5-HT was higher compared with release of DA or NE. CONCLUSIONS The affinity of MDMA for the human SERT in transfected cells does not clarify the apparent selective toxicity of MDMA for serotonin neurons, although conceivably, its higher efficacy for stimulating 5-HT release may be a distinguishing factor. The findings highlight the need to investigate MDMA effects in DAT-, SERT-, and NET-expressing neurons in the primate brain and the therapeutic potential of NET or DAT inhibitors, in addition to SERT-selective inhibitors, for alleviating the pharmacological effects of MDMA.
Collapse
Affiliation(s)
- Christopher D Verrico
- Department of Psychiatry, Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | |
Collapse
|
89
|
Baumann MH, Wang X, Rothman RB. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 2007; 189:407-24. [PMID: 16541247 PMCID: PMC1705495 DOI: 10.1007/s00213-006-0322-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/07/2006] [Indexed: 12/30/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of "interspecies scaling" to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1-2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10-20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks.
Collapse
Affiliation(s)
- Michael H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
90
|
Marie-Claire C, Salzmann J, David A, Courtin C, Canestrelli C, Noble F. Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain. Brain Res 2006; 1134:12-7. [PMID: 17196187 DOI: 10.1016/j.brainres.2006.11.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 11/17/2006] [Accepted: 11/26/2006] [Indexed: 01/28/2023]
Abstract
Drugs of abuse induce alterations in cytoskeletal and cytoskeleton associated genes in several brain areas. We have previously shown that acute MDMA regulates the mRNA level of Rnd3, a Rho GTPase involved in actin cytoskeleton regulation, in mice striatum. In this study we investigated the effects of single administration of cocaine, another psychostimulant with a slightly different mechanism of action, on the mRNA levels of the three members of the Rnd genes family (Rnd1, Rnd2 and Rnd3). Mice were treated with either MDMA (9 mg/kg) or cocaine (20 mg/jg) and brain samples (i.e. hippocampus, striatum and prefrontal cortex) were processed for quantitative real-time PCR assay 1, 2, 4 and 6 h after the injections. The expression level of Rnd2 was differentially affected depending on the drug, brain area and time point after injection. Interestingly the two drugs up-regulate Rnd3 gene expression in the three structures tested with some differences in the timing. The effects of MDMA on Rnd3 appear earlier in the hippocampus as compared to cocaine, while it is the opposite in the prefrontal cortex. However, in the dorsal striatum, the two drugs induce an early and significant up-regulation of Rnd3 expression that is longer-lasting in the case of MDMA. In the case of cocaine contrarily to what was observed with MDMA, this modulation could not be blocked with the ERK activation inhibitor SL327 suggesting that the two drugs lead to the same effect on Rnd3 by two distinct pathways.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- CNRS, UMR7157, INSERM, U705, Universite Paris Descartes, Neuropsychopharmacologie des addictions, Paris, F-75006 France
| | | | | | | | | | | |
Collapse
|
91
|
Saadat KS, Elliott JM, Green AR, Moran PM. High-dose MDMA does not result in long-term changes in impulsivity in the rat. Psychopharmacology (Berl) 2006; 188:75-83. [PMID: 16896956 DOI: 10.1007/s00213-006-0470-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Evidence suggests that recreational users of (+/-)3,4-methylenedioxymethamphetamine HCl (MDMA, "ecstasy") have cognitive and behavioral deficits and show increased impulsivity consistent with 5-hydroxytryptamine (5-HT) neurotoxicity. MDMA effects on impulsivity in users are difficult to establish being confounded by polydrug use and individual predisposition to impulsivity or behavioral inhibition. OBJECTIVE We previously observed a long-term anxiolytic effect of a neurotoxic dose of MDMA on elevated plus maze behavior in Dark Agouti (DA) rats while other strains were reported to show anxiogenesis. We have now examined whether MDMA influences impulsivity producing disinhibited behavior interpretable as anxiolysis. METHODS Impulsivity was measured using an operant visuospatial discrimination procedure. Male DA rats (n = 24) were trained to lever press for food reward in response to a light-stimulus and subsequently required to withhold responding. Correct responses, premature responses, and response latencies were used as measures of accuracy and impulsivity. Trained rats were administered MDMA (5 mg/kg, i.p. at 3-h intervals to a total of three injections). Performance was measured at 3 h and 7, 27, 49, and 80 days posttreatment. RESULTS There was a short-term effect of MDMA on the percentage of correct responses at 3 h and day 1 with recovery to control levels by days 7-8 and no significant long-term changes up to day 80. There was no effect of MDMA on premature responses on any of the days measured. MDMA reduced cortical 5-HT content (MDMA 363 +/- 14 ng/g and control 440 +/- 10 ng/g tissue). CONCLUSION These results suggest that impulsivity may not be directly altered by MDMA despite serotonergic neurotoxicity.
Collapse
Affiliation(s)
- Kathryn S Saadat
- Neuropharmacology Research Group, School of Pharmacy, De Monfort University, The Gateway, Leicester, LE1 9BH, UK
| | | | | | | |
Collapse
|
92
|
Smith RM, Tivarus M, Campbell HL, Hillier A, Beversdorf DQ. Apparent Transient Effects of Recent ???Ecstasy??? Use on Cognitive Performance and Extrapyramidal Signs in Human Subjects. Cogn Behav Neurol 2006; 19:157-64. [PMID: 16957494 DOI: 10.1097/01.wnn.0000213909.41901.cc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Our purpose is to investigate cognitive performance and extrapyramidal function early after ecstasy use. BACKGROUND Ecstasy, containing 3,4 methylenedioxymethamphetamine, has shown evidence of causing cognitive deficits and parkinsonian signs. Previous research has examined cognitive performance after a period of prolonged abstinence, but research assessing the early effects of ecstasy after recent use is limited despite temporal neurochemical differences demonstrated in nonhuman models. METHODS This study compared task performance between 13 ecstasy users (10 to 15 h postdrug use) and a control group on a battery of neuropsychologic assessments while matching for education level, sleep deprivation, and premorbid IQ. The groups were also compared on measures relating to parkinsonian signs. RESULTS The ecstasy subjects showed impairments on measures of executive function as evaluated by Raven's Standard Progressive Matrices (SPM) and the Wisconsin Card Sorting Task (WCST). Short-delay free recall memory was also impaired in ecstasy subjects on the California Verbal Learning Test (CVLT-II). No extrapyramidal motor impairments were detected. CONCLUSIONS These deficits resemble deficits previously reported in chronic ecstasy use but also seem to reveal transient impairments in executive function. Future research is needed to better understand the neurologic and neuropsychologic implications of ecstasy use across time and extent of use.
Collapse
Affiliation(s)
- Ryan M Smith
- Department of Neurology, The Ohio State University, 1654 Upham Drive, Rm. 461, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
93
|
Camarasa J, Pubill D, Escubedo E. Association of caffeine to MDMA does not increase antinociception but potentiates adverse effects of this recreational drug. Brain Res 2006; 1111:72-82. [PMID: 16889759 DOI: 10.1016/j.brainres.2006.06.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Ecstasy (MDMA) street tablets often contain several other compounds in addition to MDMA, particularly caffeine. Then, it becomes necessary to study the consequences of caffeine plus MDMA combination. MDMA (1 mg/kg) elicited an analgesic response both at the spinal and supraspinal levels. However, when associated, MDMA and caffeine did not show any synergistic interaction. When caffeine was administered prior to MDMA, a potentiation of locomotor activity was observed, which consisted in an increase in maximal values and in a prolonged time of activity. In the neurotoxicity studies, a hyperthermic effect of MDMA was observed. Although caffeine alone failed to alter body temperature, it potentiated MDMA-induced hyperthermia. This association also significantly increased MDMA lethality (from 22% to 34%). Following administration of MDMA to rats, there was a persistent decrease in the number of serotonin transporter sites in the cortex, striatum and hippocampus, which was potentiated by caffeine co-treatment. This MDMA toxicity in rats was accompanied by a transient dopaminergic impairment in the striatum, measured as decreased [(3)H]WIN35428 binding sites, by 31% 3 days after treatment, which was not modified by caffeine. A transient down-regulation of 5-HT(2) receptors occurred in the cortex of MDMA-treated rats, whose recovery was slowed by co-treatment with caffeine. In conclusion, the association of MDMA with caffeine does not generate any beneficial effects at the antinociceptive level. The acute effects stemming from this association, in tandem with the final potentiation of serotonergic terminals injury, provide evidence of the potentially greater long-term adverse effects of this particular recreational drug combination.
Collapse
Affiliation(s)
- Jordi Camarasa
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | |
Collapse
|
94
|
Bishop C, Taylor JL, Kuhn DM, Eskow KL, Park JY, Walker PD. MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 2006; 23:2669-76. [PMID: 16817869 DOI: 10.1111/j.1460-9568.2006.04790.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) pharmacotherapy in Parkinson's disease is often accompanied by the development of abnormal and excessive movements known as dyskinesia. Clinical and experimental studies indicate that indirect serotonin agonists can suppress dyskinesia without affecting the efficacy of L-DOPA. While the mechanism by which these effects occur is not clear, recent research suggests that serotonin 5-HT1A receptors may play a pivotal role. To test this, male Sprague-Dawley rats with unilateral 6-hydroxydopamine medial forebrain bundle lesions received 1 week of daily treatment with L-DOPA (12 mg/kg, i.p.) plus benserazide (15 mg/kg, i.p.). Beginning on the 8th day of treatment and every 3rd or 4th day thereafter, rats were pretreated with vehicle (0.9% NaCl), the serotonin and dopamine releaser 3,4-methylenedioxymethamphetamine (MDMA; 0.25 or 2.5 mg/kg, i.p.) or the serotonin releaser fenfluramine (FEN; 0.25 or 2.5 mg/kg, i.p.) 5 min prior to L-DOPA, after which abnormal involuntary movements (AIMs) and rotations were quantified every 20th minute for 2 h. Pretreatment with 2.5 mg/kg of either MDMA or FEN reduced AIMs. To determine the contribution of the 5-HT1A receptor to these effects, another group of L-DOPA-primed 6-hydroxydopamine-lesioned rats were pretreated with the 5-HT1A antagonist WAY100635 (0.5 mg/kg, i.p.), MDMA + WAY100635 (2.5 + 0.5 mg/kg, i.p.) or FEN + WAY100635 (2.5 + 0.5 mg/kg, i.p.) 5 min prior to L-DOPA and subsequent AIMs and rotation tests. The antidyskinetic effects of MDMA and FEN were reversed by cotreatment with WAY100635. These results suggest that 5-HT-augmenting compounds such as MDMA and FEN probably convey antidyskinetic properties in part via stimulation of 5-HT1A receptors.
Collapse
Affiliation(s)
- Christopher Bishop
- Behavioural Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Ferrington L, Kirilly E, McBean DE, Olverman HJ, Bagdy G, Kelly PAT. Persistent cerebrovascular effects of MDMA and acute responses to the drug. Eur J Neurosci 2006; 24:509-19. [PMID: 16836637 DOI: 10.1111/j.1460-9568.2006.04923.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Acutely, 3,4,-methylenedioxymethamphetamine (MDMA) induces cerebrovascular dysfunction [Quate et al., (2004)Psychopharmacol., 173, 287-295]. In the longer term the same single dose results in depletion of 5-hydroxytrptamine (5-HT) nerve terminals. In this study we examined the cerebrovascular consequences of this persistent neurodegeneration, and the acute effects of subsequent MDMA exposure, upon the relationship that normally exists between local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCMRglu). Dark agouti (DA) rats were pre-treated with 15 mg/kg i.p. MDMA or saline. Three weeks later, rats from each pre-treatment group were treated with an acute dose of MDMA (15 mg/kg i.p.) or saline. Quantitative autoradiographic imaging was used to measure LCBF or LCMRglu with [(14)C]-iodoantipyrine and [(14)C]-2-deoxyglucose, respectively. Serotonergic terminal depletion was assessed using radioligand binding with [(3)H]-paroxetine and immunohistochemistry. Three weeks after MDMA pre-treatment there were significant reductions in densities of 5-HT transporter (SERT)-positive fibres (-46%) and [(3)H]-paroxetine binding (-47%). In animals pre-treated with MDMA there were widespread significant decreases in LCMRglu, but no change in LCBF indicating a persistent loss of cerebrovascular constrictor tone. In both pre-treatment groups, acute MDMA produced significant increases in LCMRglu, while LCBF was significantly decreased. In 50% of MDMA-pre-treated rats, random areas of focal hyperaemia indicated a loss of autoregulatory capacity in response to MDMA-induced hypertension. These results suggest that cerebrovascular regulatory dysfunction resulting from acute exposure to MDMA is not diminished by previous exposure, despite a significant depletion in 5-HT terminals. However, there may be a sub-population, or individual circumstances, in which this dysfunction develops into a condition that might predispose to stroke.
Collapse
Affiliation(s)
- Linda Ferrington
- Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | | | | | | | | | |
Collapse
|
96
|
Able JA, Gudelsky GA, Vorhees CV, Williams MT. 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 2006; 59:1219-26. [PMID: 16324685 PMCID: PMC2888296 DOI: 10.1016/j.biopsych.2005.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/26/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND +/-3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that causes cognitive deficits in humans. A rat model for learning and memory deficits has not been established, although some cognitive deficits have been reported. METHODS Male Sprague-Dawley rats were treated with MDMA (15 mg/kg x 4 doses) or saline (SAL) (n = 20/treatment group) and tested in different learning paradigms: 1) path integration in the Cincinnati water maze (CWM), 2) spatial learning in the Morris water maze (MWM), and 3) novel object recognition (NOR). One week after drug administration, testing began in the CWM, then four phases of MWM, and finally NOR. Following behavioral testing, monoamine levels were assessed. RESULTS +/-3,4-Methylenedioxymethamphetamine-treated rats committed more CWM errors than did SAL-treated rats. +/-3,4-Methylenedioxymethamphetamine-treated animals were further from the former platform position during each 30-second MWM probe trial but showed no differences during learning trials with the platform present. There were no group differences in NOR. +/-3,4-Methylenedioxymethamphetamine depleted serotonin in all brain regions and dopamine in the striatum. CONCLUSIONS +/-3,4-Methylenedioxymethamphetamine produced MWM reference memory deficits even after complex learning in the CWM, where deficits in path integration learning occurred. Assessment of path integration may provide a sensitive index of MDMA-induced learning deficits.
Collapse
Affiliation(s)
- Jessica A Able
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
97
|
Hall AP, Henry JA. Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 2006; 96:678-85. [PMID: 16595612 DOI: 10.1093/bja/ael078] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the late 1980s 'Ecstasy' (3,4-methylenedioxymethamphetamine, MDMA) has become established as a popular recreational drug in western Europe. The UK National Criminal Intelligence Service estimates that 0.5-2 million tablets are consumed weekly in Britain. It has been reported that 4.5% of young adults (15-34 yr) in the UK have used MDMA in the previous 12 months. Clinically important toxic effects have been reported, including fatalities. While the phenomenon of hyperpyrexia and multi-organ failure is now relatively well known, other serious effects have become apparent more recently. Patients with acute MDMA toxicity may present to doctors working in Anaesthesia, Intensive Care and Emergency Medicine. A broad knowledge of these pathologies and their treatment is necessary for anyone working in an acute medical speciality. An overview of MDMA pharmacology and acute toxicity will be given followed by a plan for clinical management.
Collapse
Affiliation(s)
- A P Hall
- Department of Anaesthesia and Intensive Care Medicine, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| | | |
Collapse
|
98
|
Easton N, Marsden CA. Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 2006; 20:194-210. [PMID: 16510478 DOI: 10.1177/0269881106061153] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The number of 3,4-methylenedioxymethamphetamine (ecstasy or MDMA) animal research articles is rapidly increasing and yet studies which place emphasis on the clinical significance are limited due to a lack of reliable human data. MDMA produces an acute, rapid release of brain serotonin and dopamine in experimental animals and in the rat this is associated with increased locomotor activity and the serotonin behavioural syndrome in rats. MDMA causes dose-dependent hyperthermia, which is potentially fatal, in humans, primates and rodents. Subsequent serotonergic neurotoxicity has been demonstrated by biochemical and histological studies and is reported to last for months in rats and years in non-human primates. Relating human data to findings in animals is complicated by reports that MDMA exposure in mice produces selective long-term dopaminergic impairment with no effect on serotonin. This review compares data obtained from animal and human studies and examines the acute physiological, behavioural and biochemical effects of MDMA as well as the long-term behavioural effects together with serotonergic and dopaminergic impairments. Consideration is also given to the role of neurotoxic metabolites and the influence of age, sex and user groups on the long-term actions of MDMA.
Collapse
Affiliation(s)
- Neil Easton
- School of Biomedical Science, University of Nottingham, Queen's Medical Centre, UK.
| | | |
Collapse
|
99
|
Saadat KS, Elliott JM, Colado MI, Green AR. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice. J Psychopharmacol 2006; 20:264-71. [PMID: 16510484 DOI: 10.1177/0269881106058022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.
Collapse
Affiliation(s)
- Kathryn S Saadat
- Neuropharmacology Research Group, Leicester School of Pharmacy, De Montfort University, UK
| | | | | | | |
Collapse
|
100
|
Abstract
This review of the literature aims to identify the acute effects of MDMA (ecstasy) in healthy volunteers. The wide range of relevant but methodologically diverse tests was .rst grouped into clusters to allow an evaluation of tests that would otherwise have been excluded due to their low frequency of utilization. The following three types of tests were evaluated: (1) functional tests quantifying executive, attention, visual, motor, visuomotor and auditory functions, (2) phenomenological tests assessing personal, subjective experiences, and (3) physiological measures reflecting neurophysiological, endocrine and physiological parameters. MDMA showed robust effects on most of the phenomenological and physiological tests. Functional tests were scarce, preventing any meaningful conclusions to be drawn from their evaluation other than that these tests should be incorporated into future acute-effect studies. A striking doseñresponse relationship appeared for cardiovascular effects. At doses below 1.0 mg/kg MDMA no change was observed relative to placebo while above this dose all studies reported significant increases. Furthermore, pupil size, plasma cortisol and plasma prolactin levels proved responsive to MDMA administration. The reported subjective effects of MDMA matched the entactogenic profile. Although interest in the action of MDMA is considerable, the existing knowledge about the cognitive effects of MDMA in humans is still rather limited and further research into the drug's effects is recommended, also in view of potential therapeutic uses of the drug.
Collapse
Affiliation(s)
- G J H Dumont
- Unit for Clinical Psychopharmacology and Neuropsychiatry, Department of Psychiatry, Radboud University Medical Centre Nijmegen, The Netherlands.
| | | |
Collapse
|