51
|
Manca F, Pincet F, Truskinovsky L, Rothman JE, Foret L, Caruel M. SNARE machinery is optimized for ultrafast fusion. Proc Natl Acad Sci U S A 2019; 116:2435-2442. [PMID: 30700546 PMCID: PMC6377469 DOI: 10.1073/pnas.1820394116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
SNARE proteins zipper to form complexes (SNAREpins) that power vesicle fusion with target membranes in a variety of biological processes. A single SNAREpin takes about 1 s to fuse two bilayers, yet a handful can ensure release of neurotransmitters from synaptic vesicles much faster: in a 10th of a millisecond. We propose that, similar to the case of muscle myosins, the ultrafast fusion results from cooperative action of many SNAREpins. The coupling originates from mechanical interactions induced by confining scaffolds. Each SNAREpin is known to have enough energy to overcome the fusion barrier of 25-[Formula: see text]; however, the fusion barrier only becomes relevant when the SNAREpins are nearly completely zippered, and from this state, each SNAREpin can deliver only a small fraction of this energy as mechanical work. Therefore, they have to act cooperatively, and we show that at least three of them are needed to ensure fusion in less than a millisecond. However, to reach the prefusion state collectively, starting from the experimentally observed half-zippered metastable state, the SNAREpins have to mechanically synchronize, which takes more time as the number of SNAREpins increases. Incorporating this somewhat counterintuitive idea in a simple coarse-grained model results in the prediction that there should be an optimum number of SNAREpins for submillisecond fusion: three to six over a wide range of parameters. Interestingly, in situ cryoelectron microscope tomography has very recently shown that exactly six SNAREpins participate in the fusion of each synaptic vesicle. This number is in the range predicted by our theory.
Collapse
Affiliation(s)
- Fabio Manca
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Lev Truskinovsky
- Physique et Mécanique des Milieux Hétérogènes, CNRS, Ecole Supérieure de Physique et de Chimie Industrielles, Université PSL, 75231 Paris Cedex 05, France
| | - James E Rothman
- Department of Cell Biology, Yale University, New Haven, CT 06520;
- Department of Experimental Epilepsy, Institute of Neurology, University College London, London WC1E 6BT, United Kingdom
| | - Lionel Foret
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS, Ecole Normale Supérieure, 75005 Paris, France
- LPENS, Sorbonne Université, 75005 Paris, France
- LPENS, Université Paris-Diderot, 75005 Paris, France
- LPENS, Université PSL, 75005 Paris, France
| | - Matthieu Caruel
- Modélisation et Simulation Multi-Echelle, CNRS, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| |
Collapse
|
52
|
|
53
|
Suddala KC, Lee CC, Meraner P, Marin M, Markosyan RM, Desai TM, Cohen FS, Brass AL, Melikyan GB. Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes. PLoS Pathog 2019; 15:e1007532. [PMID: 30640957 PMCID: PMC6347298 DOI: 10.1371/journal.ppat.1007532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/25/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Late endosome-resident interferon-induced transmembrane protein 3 (IFITM3) inhibits fusion of diverse viruses, including Influenza A virus (IAV), by a poorly understood mechanism. Despite the broad antiviral activity of IFITM3, viruses like Lassa virus (LASV), are fully resistant to its inhibitory effects. It is currently unclear whether resistance arises from a highly efficient fusion machinery that is capable of overcoming IFITM3 restriction or the ability to enter from cellular sites devoid of this factor. Here, we constructed and validated a functional IFITM3 tagged with EGFP or other fluorescent proteins. This breakthrough allowed live cell imaging of virus co-trafficking and fusion with endosomal compartments in cells expressing fluorescent IFITM3. Three-color single virus and endosome tracking revealed that sensitive (IAV), but not resistant (LASV), viruses become trapped within IFITM3-positive endosomes where they underwent hemifusion but failed to release their content into the cytoplasm. IAV fusion with IFITM3-containing compartments could be rescued by amphotericin B treatment, which has been previously shown to antagonize the antiviral activity of this protein. By comparison, virtually all LASV particles trafficked and fused with endosomes lacking detectable levels of fluorescent IFITM3, implying that this virus escapes restriction by utilizing endocytic pathways that are distinct from the IAV entry pathways. The importance of virus uptake and transport pathways is further reinforced by the observation that LASV glycoprotein-mediated cell-cell fusion is inhibited by IFITM3 and other members of the IFITM family expressed in target cells. Together, our results strongly support a model according to which IFITM3 accumulation at the sites of virus fusion is a prerequisite for its antiviral activity and that this protein traps viral fusion at a hemifusion stage by preventing the formation of fusion pores. We conclude that the ability to utilize alternative endocytic pathways for entry confers IFITM3-resistance to otherwise sensitive viruses.
Collapse
Affiliation(s)
- Krishna C Suddala
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Christine C Lee
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Paul Meraner
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mariana Marin
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Ruben M Markosyan
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Tanay M Desai
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Fredric S Cohen
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
- Gastroenterology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
- Children's Healthcare of Atlanta, Atlanta, GA, United States of America
| |
Collapse
|
54
|
Abstract
Rhabdoviruses are enveloped viruses with a negative-sense single strand RNA genome and are widespread among a great variety of organisms. In their membrane, they have a single glycoprotein (G) that mediates both virus attachment to cellular receptors and fusion between viral and endosomal membranes allowing viral genome release in the cytoplasm. We present structural and cellular aspects of Rhabdovirus entry into their host cell with a focus on vesicular stomatitis virus (VSV) and rabies virus (RABV) for which the early events of the viral cycle have been extensively studied. Recent data have shown that the only VSV receptors are the members of the LDL-R family. This is in contrast with RABV for which multiple receptors belonging to unrelated families have been identified. Despite having different receptors, after attachment, rhabdovirus internalization occurs through clathrin-mediated endocytosis (CME) in an actin-dependent manner. There are still debates about the exact endocytic pathway of VSV in the cell and on RABV transport in the neuronal axon. In any case, fusion is triggered in the endosomal vesicle via a low-pH induced structural rearrangement of G from its pre- to its postfusion conformation. Vesiculovirus G is one of the best characterized fusion glycoproteins as the previously reported crystal structures of the pre- and postfusion states have been recently completed by those of intermediates during the structural transition. Understanding the entry pathway of rhabdoviruses may have strong impact in biotechnologies as, for example, VSV G is used for pseudotyping lentiviruses to promote efficient transduction, and VSV is a promising oncolytic virus.
Collapse
|
55
|
Vadakkan KI. A potential mechanism for first-person internal sensation of memory provides evidence for the relationship between learning and LTP induction. Behav Brain Res 2018; 360:16-35. [PMID: 30502355 DOI: 10.1016/j.bbr.2018.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Studies conducted to verify learning-induced changes anticipated from Hebb's postulate led to the finding of long-term potentiation (LTP). Even though several correlations have been found between behavioural markers of memory retrieval and LTP, it is not known how memories are retrieved using learning-induced changes. In this context, the following non-correlated findings between learning and LTP induction provide constraints for discovering the mechanism: 1) Requirement of high stimulus intensity for LTP induction in contrast to what is expected for a learning mechanism, 2) Delay of at least 20 to 30 s from stimulation to LTP induction, in contrast to mere milliseconds for associative learning, and 3) A sudden drop in peak-potentiated effect (short-term potentiation) that matches with short-lasting changes expected during working memory and occurs only at the time of delayed LTP induction. When memories are viewed as first-person internal sensations, a newly uncovered mechanism provides explanation for the relationship between memory and LTP. This work interconnects large number of findings from the fields of neuroscience and psychology and provides a further verifiable mechanism of learning.
Collapse
|
56
|
Winsor J, Machi U, Han Q, Hackney DD, Lee TH. GTP hydrolysis promotes disassembly of the atlastin crossover dimer during ER fusion. J Cell Biol 2018; 217:4184-4198. [PMID: 30249723 PMCID: PMC6279388 DOI: 10.1083/jcb.201805039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/15/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The GTPase atlastin mediates homotypic ER fusion through trans-crossover dimerization, but how dimerization is coupled to the GTPase cycle has remained unclear. Winsor et al. show that GTP binding causes crossover dimerization for fusion, whereas GTP hydrolysis promotes disassembly of the crossover dimer for subunit recycling. Membrane fusion of the ER is catalyzed when atlastin GTPases anchored in opposing membranes dimerize and undergo a crossed over conformational rearrangement that draws the bilayers together. Previous studies have suggested that GTP hydrolysis triggers crossover dimerization, thus directly driving fusion. In this study, we make the surprising observations that WT atlastin undergoes crossover dimerization before hydrolyzing GTP and that nucleotide hydrolysis and Pi release coincide more closely with dimer disassembly. These findings suggest that GTP binding, rather than its hydrolysis, triggers crossover dimerization for fusion. In support, a new hydrolysis-deficient atlastin variant undergoes rapid GTP-dependent crossover dimerization and catalyzes fusion at an initial rate similar to WT atlastin. However, the variant cannot sustain fusion activity over time, implying a defect in subunit recycling. We suggest that GTP binding induces an atlastin conformational change that favors crossover dimerization for fusion and that the input of energy from nucleotide hydrolysis promotes complex disassembly for subunit recycling.
Collapse
Affiliation(s)
- James Winsor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ursula Machi
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Qixiu Han
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
57
|
Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J, Kozlov MM, Chernomordik LV, Millay DP. Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion. Dev Cell 2018; 46:767-780.e7. [PMID: 30197239 DOI: 10.1016/j.devcel.2018.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023]
Abstract
Classic mechanisms for membrane fusion involve transmembrane proteins that assemble into complexes and dynamically alter their conformation to bend membranes, leading to mixing of membrane lipids (hemifusion) and fusion pore formation. Myomaker and Myomerger govern myoblast fusion and muscle formation but are structurally divergent from traditional fusogenic proteins. Here, we show that Myomaker and Myomerger independently mediate distinct steps in the fusion pathway, where Myomaker is involved in membrane hemifusion and Myomerger is necessary for fusion pore formation. Mechanistically, we demonstrate that Myomerger is required on the cell surface where its ectodomains stress membranes. Moreover, we show that Myomerger drives fusion completion in a heterologous system independent of Myomaker and that a Myomaker-Myomerger physical interaction is not required for function. Collectively, our data identify a stepwise cell fusion mechanism in myoblasts where different proteins are delegated to perform unique membrane functions essential for membrane coalescence.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joanna Goykhberg
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Crowe
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
58
|
Scheidt HA, Kolocaj K, Veje Kristensen J, Huster D, Langosch D. Transmembrane Helix Induces Membrane Fusion through Lipid Binding and Splay. J Phys Chem Lett 2018; 9:3181-3186. [PMID: 29799756 DOI: 10.1021/acs.jpclett.8b00859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fusion of biological membranes may require splayed lipids whose tails transiently visit the headgroup region of the bilayer, a scenario suggested by molecular dynamics simulations. Here, we examined the lipid splay hypothesis experimentally by relating liposome fusion and lipid splay induced by model transmembrane domains (TMDs). Our results reveal that a conformationally flexible transmembrane helix promotes outer leaflet mixing and lipid splay more strongly than a conformationally rigid one. The lipid dependence of basal as well as of TMD-driven lipid mixing and splay suggests that the cone-shaped phosphatidylethanolamine stimulates basal fusion via enhancing lipid splay and that the negatively charged phosphatidylserine inhibits fusion via electrostatic repulsion. Phosphatidylserine also strongly differentiates basal and helix-driven fusion, which is related to its preferred interaction with the conformationally more flexible transmembrane helix. Thus, the contribution of a transmembrane helix to membrane fusion appears to depend on lipid binding, which results in lipid splay.
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute for Medical Physics and Biophysics , Leipzig University , Härtelstrasse 16-18 , 04107 Leipzig , Germany
| | - Katja Kolocaj
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| | - Julie Veje Kristensen
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics , Leipzig University , Härtelstrasse 16-18 , 04107 Leipzig , Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| |
Collapse
|
59
|
Abou-Hamdan A, Belot L, Albertini A, Gaudin Y. Monomeric Intermediates Formed by Vesiculovirus Glycoprotein during Its Low-pH-induced Structural Transition. J Mol Biol 2018; 430:1685-1695. [PMID: 29678555 PMCID: PMC7126088 DOI: 10.1016/j.jmb.2018.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023]
Abstract
•Vesiculovirus G is the prototype of class III viral fusion glycoproteins. •The structures of both G pre- and post-fusion conformation have been determined. •The structure of monomeric intermediates reveals the pathway of the transition. •A fusion-loop-exposing antiparallel dimer may initiate the fusion process. •Those data challenge the current model proposed for viral membrane fusion.
Collapse
Affiliation(s)
- Abbas Abou-Hamdan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Laura Belot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
60
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
61
|
Liu D, Wang H, Yamamoto M, Song J, Zhang R, Du Q, Kawaguchi Y, Inoue JI, Matsuda Z. Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology 2018; 15:27. [PMID: 29609648 PMCID: PMC5879932 DOI: 10.1186/s12977-018-0410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 11/16/2022] Open
Abstract
Background The native pre-fusion structure of gp120/gp41 complex of human immunodeficiency virus type 1 was recently revealed. In the model, the helices of gp41 (α6, α7, α8, and α9) form a four-helix collar underneath trimeric gp120. Gp41 is a class I fusion protein and mediates membrane fusion by forming a post-fusion structure called the six-helix bundle (6HB). The comparison of the pre- and post-fusion structures revealed the large conformational changes in gp41 during the antiparallel packing of the N- and C-terminal heptad repeats (NHRs and CHRs) in membrane fusion. Several mutagenesis studies of gp41 performed in the past were interpreted based on 6HB, the only available structure at that time. To obtain an insight about the current pre-fusion structural model and conformational changes during membrane fusion, alanine insertion mutagenesis of the NHR, CHR and connecting loop regions of HXB2 gp41 was performed. The effects of mutations on biosynthesis and membrane fusion were analyzed by immunoblotting and fusion assays, respectively. The extent of membrane fusion was evaluated by split luciferase-based pore formation and syncytia formation assays, respectively. Results Consistent with the current structural model, drastic negative effects of mutations on biosynthesis and membrane fusion were observed for NHR, loop, and proximal regions of CHR (up to amino acid position 643). The insertions in α9 after it leaves the four-helix collar were tolerable for biosynthesis. These CHR mutants showed varying effects on membrane fusion. Insertion at position 644 or 645 resulted in poor pore and syncytia formation. Efficient pore and syncytia formation almost similar to that of the wild type was observed for insertion at position 647, 648 or 649. However, recovery of virus infectivity was only observed for the insertions beyond position 648. Conclusions The mutagenesis data for HXB2 gp41 is in agreement with the recent pre-fusion structure model. The virus infection data suggested that fusion pores sufficiently large enough for the release of the virus genome complex are formed after the completion of 6HB beyond position 648. Electronic supplementary material The online version of this article (10.1186/s12977-018-0410-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehua Liu
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Hongyun Wang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiping Song
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingling Du
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zene Matsuda
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
62
|
Rabe A, Löffler PMG, Ries O, Vogel S. Programmable fusion of liposomes mediated by lipidated PNA. Chem Commun (Camb) 2018; 53:11921-11924. [PMID: 29044250 DOI: 10.1039/c7cc06058k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We recently reported a DNA-programmed fusion cascade enabling the use of liposomes as nanoreactors for compartmentalized chemical reactions. This communication reports an alternative and robust strategy based on lipidated peptide nucleic acids (LiPs). LiPs enabled fusion of liposomes with remarkable 31% efficiency at 50 °C with low leakage (5%).
Collapse
Affiliation(s)
- A Rabe
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
63
|
Boonstra S, Blijleven JS, Roos WH, Onck PR, van der Giessen E, van Oijen AM. Hemagglutinin-Mediated Membrane Fusion: A Biophysical Perspective. Annu Rev Biophys 2018; 47:153-173. [PMID: 29494252 DOI: 10.1146/annurev-biophys-070317-033018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.
Collapse
Affiliation(s)
- Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Antoine M van Oijen
- School of Chemistry; Faculty of Science, Medicine and Health; University of Wollongong, Wollongong, New South Wales 2522, Australia;
| |
Collapse
|
64
|
Speerstra S, Chistov AA, Proskurin GV, Aralov AV, Ulashchik EA, Streshnev PP, Shmanai VV, Korshun VA, Schang LM. Antivirals acting on viral envelopes via biophysical mechanisms of action. Antiviral Res 2018; 149:164-173. [DOI: 10.1016/j.antiviral.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
|
65
|
Ouldali M, Maury V, Nicolas G, Lepault J. Photosome membranes merge and organize tending towards rhombohedral symmetry when light is emitted. J Struct Biol 2017; 202:35-41. [PMID: 29217280 DOI: 10.1016/j.jsb.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Polynoid worm elytra emit light when mechanically or electrically stimulated. Specialized cells, the photocytes, contain light emitting machineries, the photosomes. Successive stimulations induce light intensity variations and show a coupling within and between photosomes. Here, we describe, using electron tomography of cryo-substituted elytra and freeze-fracturing, the structural transition associated to light emission: undulating tubules come closer, organize and their number forming photosomes increases. Two repeating undulating tubules in opposite phase compose the photosome. Undulations are located on three hexagonal layers that regularly repeat and are equally displaced, in x y and z. The tubule membranes within layers merge giving rise to rings that tend to obey to quasi-rhombohedral symmetry. Merging may result either from close-association, hemifusion (one leaflet fusion) or from fusion (two leaflets fusion). Although the resolution of tomograms is not sufficient to distinguish these three cases, freeze-fracturing shows that hemifusion is a frequent process that leads to an reversible anastomosed membrane complex favoring communications, appearing as a major coupling factor of photosome light emission.
Collapse
Affiliation(s)
- Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Virginie Maury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Gisèle Nicolas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| | - Jean Lepault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
66
|
Sood C, Francis AC, Desai TM, Melikyan GB. An improved labeling strategy enables automated detection of single-virus fusion and assessment of HIV-1 protease activity in single virions. J Biol Chem 2017; 292:20196-20207. [PMID: 29046351 PMCID: PMC5724006 DOI: 10.1074/jbc.m117.818088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
Enveloped viruses transfer their genomes into host cells by fusing their membrane to that of the cell. To visualize single-virus fusion in living cells, researchers take advantage of the proteolytic maturation of HIV, type 1 (HIV-1), which can generate free fluorescent proteins within the viral particle. Co-labeling viruses with a content marker and a fluorescently tagged Vpr (a viral core protein) enables detection of single-virus fusions, but a major limitation of this approach is that not all viral particles incorporate both markers. Here we designed a labeling strategy based on the bifunctional mCherry-2xCL-YFP-Vpr construct, in which 2xCL denotes a tandem cleavage site for the viral protease. This bifunctional marker was efficiently cleaved during virus maturation, producing free mCherry and the core-associated YFP-Vpr. A nearly perfect colocalization of these two markers in virions and their fixed 1:1 ratio enabled automated detection of single-particle fusion in both fixed and live cells based on loss of the mCherry signal. Furthermore, a drop in FRET efficiency between YFP and mCherry because of cleavage of the bifunctional marker, which manifested as a marked shift in the normalized YFP/mCherry fluorescence ratio, reliably predicted viral protease activity in single virions. This feature could discriminate between the particles containing free mCherry, and therefore likely representing mature viruses, and immature particles whose fusion cannot be detected. In summary, our new labeling strategy offers several advantages compared with previous approaches, including increased reliability and throughput of detection of viral fusion. We anticipate that our method will have significant utility for studying viral fusion and maturation.
Collapse
Affiliation(s)
- Chetan Sood
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | | | - Tanay M Desai
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322; Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
67
|
D'Agostino M, Risselada HJ, Lürick A, Ungermann C, Mayer A. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 2017; 551:634-638. [PMID: 29088698 DOI: 10.1038/nature24469] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022]
Abstract
Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Herre Jelger Risselada
- Georg-August University, Department of Theoretical Physics, Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.,Leibniz Institute of Surface Modification, Chemical Department, Permoserstrasse 15, D-04318, Leipzig, Germany
| | - Anna Lürick
- University of Osnabrück, Department of Biology/Chemistry, Barbarastrasse 13, D-49076 Osnabrück, Germany
| | - Christian Ungermann
- University of Osnabrück, Department of Biology/Chemistry, Barbarastrasse 13, D-49076 Osnabrück, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
68
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
69
|
Dhara M, Mohrmann R, Bruns D. v-SNARE function in chromaffin cells. Pflugers Arch 2017; 470:169-180. [PMID: 28887593 PMCID: PMC5748422 DOI: 10.1007/s00424-017-2066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.
Collapse
Affiliation(s)
- Madhurima Dhara
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
70
|
Löffler PMG, Ries O, Rabe A, Okholm AH, Thomsen RP, Kjems J, Vogel S. A DNA-Programmed Liposome Fusion Cascade. Angew Chem Int Ed Engl 2017; 56:13228-13231. [DOI: 10.1002/anie.201703243] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/23/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Philipp M. G. Löffler
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Denmark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Denmark
| | - Anders H. Okholm
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Rasmus P. Thomsen
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Jørgen Kjems
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Denmark
| |
Collapse
|
71
|
Löffler PMG, Ries O, Rabe A, Okholm AH, Thomsen RP, Kjems J, Vogel S. Fusion von Liposomen in einer DNA-programmierten Kaskade. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Philipp M. G. Löffler
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Dänemark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Dänemark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Dänemark
| | - Anders H. Okholm
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Dänemark
| | - Rasmus P. Thomsen
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Dänemark
| | - Jørgen Kjems
- Nanoscience Center, iNANO; University of Aarhus; Gustav Wieds Vej 14 8000 Aarhus C Dänemark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense Dänemark
| |
Collapse
|
72
|
Entropic forces drive self-organization and membrane fusion by SNARE proteins. Proc Natl Acad Sci U S A 2017; 114:5455-5460. [PMID: 28490503 DOI: 10.1073/pnas.1611506114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric-electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release.
Collapse
|
73
|
Winsor J, Hackney DD, Lee TH. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion. J Cell Biol 2017; 216:1321-1335. [PMID: 28356327 PMCID: PMC5412568 DOI: 10.1083/jcb.201609071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
The GTPase atlastin mediates homotypic membrane ER fusion through trans-dimerization between GTPase heads. Winsor et al. use a mutagenesis approach to show that, upon contact between atlastin heads, the proteins concurrently display GTP hydrolysis-catalyzed head-to-head dimerization and a crossover conformational shift, and these changes energize fusion. The homotypic fusion of endoplasmic reticulum membranes is catalyzed by the atlastin GTPase. The mechanism involves trans-dimerization between GTPase heads and a favorable crossover conformational shift, catalyzed by GTP hydrolysis, that converts the dimer from a “prefusion” to “postfusion” state. However, whether crossover formation actually energizes fusion remains unclear, as do the sequence of events surrounding it. Here, we made mutations in atlastin to selectively destabilize the crossover conformation and used fluorescence-based kinetic assays to analyze the variants. All variants underwent dimerization and crossover concurrently, and at wild-type rates. However, certain variants were unstable once in the crossover dimer conformation, and crossover dimer stability closely paralleled lipid-mixing activity. Tethering, however, appeared to be unimpaired in all mutant variants. The results suggest that tethering and lipid mixing are catalyzed concurrently by GTP hydrolysis but that the energy requirement for lipid mixing exceeds that for tethering, and the full energy released through crossover formation is necessary for fusion.
Collapse
Affiliation(s)
- James Winsor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
74
|
Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W, Krishnakumar SS, O'Shaughnessy B, Karatekin E. Dilation of fusion pores by crowding of SNARE proteins. eLife 2017; 6. [PMID: 28346138 PMCID: PMC5404929 DOI: 10.7554/elife.22964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Oscar D Bello
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | | | - Sarah Marie Auclair
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Wensi Vennekate
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
75
|
Desai TM, Marin M, Mason C, Melikyan GB. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion. J Biol Chem 2017; 292:7817-7827. [PMID: 28341742 DOI: 10.1074/jbc.m117.783878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells.
Collapse
Affiliation(s)
- Tanay M Desai
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Caleb Mason
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Gregory B Melikyan
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and .,the Children's Healthcare of Atlanta, Atlanta, Georgia 300322
| |
Collapse
|
76
|
Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292:6014-6026. [PMID: 28179429 DOI: 10.1074/jbc.m117.777714] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
The host proteins, SERINC3 and SERINC5, have been recently shown to incorporate into HIV-1 particles and compromise their ability to fuse with target cells, an effect that is antagonized by the viral Nef protein. Envelope (Env) glycoproteins from different HIV-1 isolates exhibit a broad range of sensitivity to SERINC-mediated restriction, and the mechanism by which SERINCs interfere with HIV-1 fusion remains unclear. Here, we show that incorporation of SERINC5 into virions in the absence of Nef inhibits the formation of small fusion pores between viruses and cells. Strikingly, we found that SERINC5 promotes spontaneous functional inactivation of sensitive but not resistant Env glycoproteins. Although SERINC5-Env interaction was not detected by co-immunoprecipitation, incorporation of this protein enhanced the exposure of the conserved gp41 domains and sensitized the virus to neutralizing antibodies and gp41-derived inhibitory peptides. These results imply that SERINC5 restricts HIV-1 fusion at a step prior to small pore formation by selectively inactivating sensitive Env glycoproteins, likely through altering their conformation. The increased HIV-1 sensitivity to anti-gp41 antibodies and peptides suggests that SER5 also delays refolding of the remaining fusion-competent Env trimers.
Collapse
Affiliation(s)
- Chetan Sood
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Ajit Chande
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Massimo Pizzato
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Gregory B Melikyan
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
77
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
78
|
Existence, bifurcation, and geometric evolution of quasi-bilayers in the multicomponent functionalized Cahn-Hilliard equation. J Math Biol 2017; 75:443-489. [PMID: 28040877 DOI: 10.1007/s00285-016-1089-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/20/2016] [Indexed: 10/20/2022]
Abstract
Multicomponent bilayer structures arise as the ubiquitous plasma membrane in cellular biology and as blends of amphiphilic copolymers used in electrolyte membranes, drug delivery, and emulsion stabilization within the context of synthetic chemistry. We present the multicomponent functionalized Cahn-Hilliard (mFCH) free energy as a model which allows competition between bilayers with distinct composition and between bilayers and higher codimensional structures, such as co-dimension two filaments and co-dimension three micelles. We construct symmetric and asymmetric homoclinic bilayer profiles via a billiard limit potential and show that co-dimensional bifurcation is driven by the experimentally observed layer-by-layer pearling mechanism. We investigate the stability and slow geometric evolution of multicomponent bilayer interfaces within the context of an [Formula: see text] gradient flow of the mFCH, addressing the impact of aspect ratio of the amphiphile (lipid or copolymer unit) on the intrinsic curvature and the codimensional bifurcation. In particular we derive a Canham-Helfrich sharp interface energy whose intrinsic curvature arises through a Melnikov parameter associated to amphiphile aspect ratio.
Collapse
|
79
|
Ries O, Löffler PMG, Rabe A, Malavan JJ, Vogel S. Efficient liposome fusion mediated by lipid–nucleic acid conjugates. Org Biomol Chem 2017; 15:8936-8945. [DOI: 10.1039/c7ob01939d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Highly efficient fusion and content mixing of liposomes encoded by lipidated oligonucleotides (LiNAs). “Hot fusion of biomembranes” – a low leakage process at elevated temperature.
Collapse
Affiliation(s)
- O. Ries
- Biomolecular Nanoscale Engineering Center
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense
| | - P. M. G. Löffler
- Biomolecular Nanoscale Engineering Center
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense
| | - A. Rabe
- Biomolecular Nanoscale Engineering Center
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense
| | - J. J. Malavan
- Biomolecular Nanoscale Engineering Center
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense
| | - Stefan Vogel
- Biomolecular Nanoscale Engineering Center
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense
| |
Collapse
|
80
|
Cohen FS. How Viruses Invade Cells. Biophys J 2016; 110:1028-32. [PMID: 26958878 DOI: 10.1016/j.bpj.2016.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Fredric S Cohen
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
81
|
Yao H, Lee M, Liao SY, Hong M. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. Biochemistry 2016; 55:6787-6800. [DOI: 10.1021/acs.biochem.6b00568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
82
|
SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Proc Natl Acad Sci U S A 2016; 113:13051-13056. [PMID: 27807132 DOI: 10.1073/pnas.1615885113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fusion of lipid bilayers is usually prevented by large energy barriers arising from removal of the hydration shell, formation of highly curved structures, and, eventually, fusion pore widening. Here, we measured the force-dependent lifetime of fusion intermediates using membrane-coated silica spheres attached to cantilevers of an atomic-force microscope. Analysis of time traces obtained from force-clamp experiments allowed us to unequivocally assign steps in deflection of the cantilever to membrane states during the SNARE-mediated fusion with solid-supported lipid bilayers. Force-dependent lifetime distributions of the various intermediate fusion states allowed us to propose the likelihood of different fusion pathways and to assess the main free energy barrier, which was found to be related to passing of the hydration barrier and splaying of lipids to eventually enter either the fully fused state or a long-lived hemifusion intermediate. The results were compared with SNARE mutants that arrest adjacent bilayers in the docked state and membranes in the absence of SNAREs but presence of PEG or calcium. Only with the WT SNARE construct was appreciable merging of both bilayers observed.
Collapse
|
83
|
Leslie GJ, Wang J, Richardson MW, Haggarty BS, Hua KL, Duong J, Secreto AJ, Jordon APO, Romano J, Kumar KE, DeClercq JJ, Gregory PD, June CH, Root MJ, Riley JL, Holmes MC, Hoxie JA. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathog 2016; 12:e1005983. [PMID: 27855210 PMCID: PMC5113989 DOI: 10.1371/journal.ppat.1005983] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022] Open
Abstract
HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans.
Collapse
Affiliation(s)
- George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Beth S. Haggarty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin L. Hua
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Jennifer Duong
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Anthony J. Secreto
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrea P. O. Jordon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Josephine Romano
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kritika E. Kumar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | - Carl H. June
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
84
|
Najafinobar N, Mellander LJ, Kurczy ME, Dunevall J, Angerer TB, Fletcher JS, Cans AS. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci Rep 2016; 6:33702. [PMID: 27650365 PMCID: PMC5030643 DOI: 10.1038/srep33702] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.
Collapse
Affiliation(s)
- Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Michael E. Kurczy
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tina B. Angerer
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
85
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 06/16/2024] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant's head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K. Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
86
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant’s head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
87
|
Sugden S, Cohen ÉA. Attacking the Supply Lines: HIV-1 Restricts Alanine Uptake to Prevent T Cell Activation. Cell Host Microbe 2016; 18:514-7. [PMID: 26567503 DOI: 10.1016/j.chom.2015.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
HIV commonly escapes host antiviral immunity by downregulating cell-surface immunoreceptors. In a recent issue of Cell Host & Microbe, Matheson et al. (2015) systematically examined how HIV-1 infection remodels the T cell surface and identified serine carriers SERINC3/5 and alanine transporter SNAT1 as targets of HIV-1 Nef and Vpu, respectively.
Collapse
Affiliation(s)
- Scott Sugden
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
88
|
Matheson NJ, Greenwood EJ, Lehner PJ. Manipulation of immunometabolism by HIV-accessories to the crime? Curr Opin Virol 2016; 19:65-70. [PMID: 27448768 DOI: 10.1016/j.coviro.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Evolutionary pressure has produced an 'arms race' between cellular restriction factors (limiting viral replication) and viral proteins (overcoming host restriction). The host factors SAMHD1 and SLFN1 patrol metabolic bottlenecks required for HIV replication. Conversely, the HIV accessory proteins Vpx, Vpu and Nef manipulate cellular metabolism to enable viral replication. Recent work identifying Vpu-mediated downregulation of the alanine transporter SNAT1 and Nef-mediated downregulation of the serine carriers SERINC3/5 has uncovered the importance of HIV manipulation of the amino acid supply. Interference with CD4(+) T-cell amino acid metabolism suggests a novel paradigm of viral immunomodulation, and signposts fundamental aspects of lymphocyte biology.
Collapse
Affiliation(s)
- Nicholas J Matheson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Edward Jd Greenwood
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
89
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
90
|
Chauveau L, Schwartz O. [A mystery solved: HIV-1 Nef targets SERINC3 and SERINC5]. Med Sci (Paris) 2016; 32:560-2. [PMID: 27406758 DOI: 10.1051/medsci/20163206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lise Chauveau
- Institut Pasteur, Unité Virus et Immunité, URA CNRS 3015, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Olivier Schwartz
- Institut Pasteur, Unité Virus et Immunité, URA CNRS 3015, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
91
|
Blijleven JS, Boonstra S, Onck PR, van der Giessen E, van Oijen AM. Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol 2016; 60:78-88. [PMID: 27401120 DOI: 10.1016/j.semcdb.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022]
Abstract
Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.
Collapse
Affiliation(s)
- Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
92
|
Vadakkan KI. Rapid chain generation of interpostsynaptic functional LINKs can trigger seizure generation: Evidence for potential interconnections from pathology to behavior. Epilepsy Behav 2016; 59:28-41. [PMID: 27085478 DOI: 10.1016/j.yebeh.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
The experimental finding that a paroxysmal depolarizing shift (PDS), an electrophysiological correlate of seizure activity, is a giant excitatory postsynaptic potential (EPSP) necessitates a mechanism for spatially summating several EPSPs at the level of the postsynaptic terminals (dendritic spines). In this context, we will examine reversible interpostsynaptic functional LINKs (IPLs), a proposed mechanism for inducing first-person virtual internal sensations of higher brain functions concurrent with triggering behavioral motor activity for possible pathological changes that may contribute to seizures. Pathological conditions can trigger a rapid chain generation and propagation of different forms of IPLs leading to seizure generation. A large number of observations made at different levels during both ictal and interictal periods are explained by this mechanism, including the tonic and clonic motor activity, different types of hallucinations, loss of consciousness, gradual worsening of cognitive abilities, a relationship with kindling (which uses an augmented stimulation protocol than that used for inducing long-term potentiation (LTP), which is an electrophysiological correlate of behavioral makers of internal sensation of memory), effect of a ketogenic diet on seizure prevention, dendritic spine loss in seizure disorders, neurodegenerative changes, and associated behavioral changes. The interconnectable nature of these findings is explained as loss of function states of a proposed normal functioning of the nervous system.
Collapse
|
93
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
94
|
Xu W, Nathwani B, Lin C, Wang J, Karatekin E, Pincet F, Shih W, Rothman JE. A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. J Am Chem Soc 2016; 138:4439-47. [PMID: 26938705 DOI: 10.1021/jacs.5b13107] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.
Collapse
Affiliation(s)
| | - Bhavik Nathwani
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | - Chenxiang Lin
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | | | - Erdem Karatekin
- Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR8250, 45, rue des Saints Pères, 75270 Cedex 06 Paris, France
| | - Frederic Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
| | - William Shih
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | | |
Collapse
|
95
|
Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses 2016; 8:67. [PMID: 26950141 PMCID: PMC4810257 DOI: 10.3390/v8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Collapse
|
96
|
Abstract
Mammalian life begins with a cell-cell fusion event, i.e. the fusion of the spermatozoid with the oocyte and needs further cell-cell fusion processes for the development, growth, and maintenance of tissues and organs over the whole life span. Furthermore, cellular fusion plays a role in infection, cancer, and stem cell-dependent regeneration as well as including an expanded meaning of partial cellular fusion, nanotube formation, and microparticle-cell fusion. The cellular fusion process is highly regulated by proteins which carry the information to organize and regulate membranes allowing the merge of two separate lipid bilayers into one. The regulation of this genetically and epigenetically controlled process is achieved by different kinds of signals leading to communication of fusing cells. The local cellular and extracellular environment additionally initiates specific cell signaling necessary for the induction of the cell-cell fusion process. Common motifs exist in distinct cell-cell fusion processes and their regulation. However, there is specific regulation of different cell-cell fusion processes, e.g. myoblast, placental, osteoclast, and stem cell fusion. Hence, specialized fusion events vary between cell types and species. Molecular mechanisms remain largely unknown, especially limited knowledge is present for cancer and stem cell fusion mechanisms and regulation. More research is necessary for the understanding of cellular fusion processes which can lead to development of new therapeutic strategies grounding on cellular fusion regulation.
Collapse
Affiliation(s)
- Lena Willkomm
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | |
Collapse
|
97
|
Abstract
Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF-SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF-SNAP-resistant manner together with Munc18-1. In the resulting primed state, with partially assembled SNARE complexes, fusion is inhibited by Synaptotagmin-1 and Complexins, which also perform active functions in release. Upon influx of Ca(2+), Synaptotagmin-1 activates fast release, likely by relieving the inhibition caused by Complexins and cooperating with the SNAREs in bringing the membranes together. Although alternative models exist and fundamental questions remain unanswered, a definitive description of the basic release mechanism may be available soon.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | | |
Collapse
|
98
|
Vadakkan KI. A framework for the first-person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila. SPRINGERPLUS 2015; 4:833. [PMID: 26753120 PMCID: PMC4695467 DOI: 10.1186/s40064-015-1568-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/26/2015] [Indexed: 02/02/2023]
Abstract
Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception.
Collapse
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Medicine, University of Toronto, Sunnybrook health Sciences Centre, 2075 Bayview Ave. Room A4-08, Toronto, ON M4N3M5 Canada ; Neurosearch Center, 76 Henry St., Toronto, ON M5T1X2 Canada
| |
Collapse
|
99
|
Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 2015; 526:218-23. [PMID: 26416733 PMCID: PMC4600458 DOI: 10.1038/nature15400] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
HIV-1 Nef and the unrelated murine leukemia virus glycoGag strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins SERINC3 and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of SERINC3 together with SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivities. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4+ T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS.
Collapse
Affiliation(s)
- Yoshiko Usami
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yuanfei Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Heinrich G Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
100
|
HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 2015; 526:212-7. [PMID: 26416734 DOI: 10.1038/nature15399] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.
Collapse
|