51
|
Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020; 12:E625. [PMID: 32120799 PMCID: PMC7146370 DOI: 10.3390/nu12030625] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed type of cancer worldwide. Dietary features play an important role in its development, and the involvement of human microbial communities in this pathology has also recently been recognized. Individuals with CRC display alterations in gut bacterial composition and a notably higher abundance of putative oral bacteria in colonic tumors. Many experimental studies and preclinical evidence propose that dietary polyphenols have a relevant role in CRC development and progression, mainly attributed to their immunomodulatory activities. Furthermore, polyphenols can modulate oral and gut microbiota, and in turn, intestinal microbes catabolize polyphenols to release metabolites that are often more active and better absorbed than the original phenolic compounds. The current study aimed to review and summarize current knowledge on the role of microbiota and the interactions between dietary polyphenols and microbiota in relation to CRC development. We have highlighted the mechanisms by which dietary polyphenols and/or their microbial metabolites exert their action on the pathogenesis and prevention of CRC as modulators of the composition and/or activity of oral and intestinal microbiota, including novel screening biomarkers and possible nutritional therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (C.C.); (M.S.); (I.P.); (B.B.)
| |
Collapse
|
52
|
Ávila-Gálvez MA, Giménez-Bastida JA, González-Sarrías A, Espín JC. Tissue deconjugation of urolithin A glucuronide to free urolithin A in systemic inflammation. Food Funct 2019; 10:3135-3141. [PMID: 31041969 DOI: 10.1039/c9fo00298g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Urolithin A (Uro-A) is an anti-inflammatory and cancer chemopreventive metabolite produced by the gut microbiota from the polyphenol ellagic acid. However, in vivo conjugation of Uro-A to Uro-A glucuronide (Uro-A glur) dramatically hampers its activity. We describe here for the first time the tissue deconjugation of Uro-A glur to Uro-A after lipopolysaccharide (LPS)-induced inflammation, which could explain the systemic in vivo activity of free Uro-A in microenvironments subjected to inflammatory stimuli.
Collapse
Affiliation(s)
- M A Ávila-Gálvez
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | | | | | | |
Collapse
|
53
|
Lv MY, Shi CJ, Pan FF, Shao J, Feng L, Chen G, Ou C, Zhang JF, Fu WM. Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/β-catenin signaling. J Cell Biochem 2019; 120:17273-17282. [PMID: 31218741 DOI: 10.1002/jcb.28989] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Consumption of dietary ellagitannins (ETs) has been proven to benefit multiple chronic health disorders including cancers and cardiovascular diseases. Urolithins, gut microbiota metabolites derived from ETs, are considered as the molecules responsible for these health effects. Previous studies have demonstrated that urolithins exhibit antiproliferative effects on prostate, breast, and colon cancers. However, as for hepatocellular carcinoma (HCC), it remains elusive. Herein, we aim to investigate the function of urolithin B (UB), a member of urolithins family, in HCC. The effects of UB on cell viability, cell cycle and apoptosis were evaluated in HCC cells, and we found UB could inhibit the proliferation of HCC cells, which resulted from cell cycle arrest and apoptosis. Furthermore, UB could increase phosphorylated β-catenin expression and block its translocation from nuclear to cytoplasm, thus inducing the inactivation of Wnt/β-catenin signaling. Using a xenograft mice model, UB was found to suppress tumor growth in vivo. In conclusion, our data demonstrated that UB could inhibit the proliferation of HCC cells in vitro and in vivo via inactivating Wnt/β-catenin signaling, suggesting UB could be a promising candidate in the development of anticancer drugs targeting HCC.
Collapse
Affiliation(s)
- Min-Yi Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chuan-Jian Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Fei-Fei Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiang Shao
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Guoqin Chen
- Department of Central Hospital of Panyu, Cardiovascular Medicine, Guangzhou, People's Republic of China
| | - Caiwen Ou
- Zhujiang Hospital, Southern Medical University, Key Laboratory of Construction and Detection of Guangdong Province, Guangdong Province Center of Biomedical Engineering for Cardiovascular Diseases, No. 1023, Shatai Nan Road, Guangzhou, People's Republic of China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
54
|
Martini S, Conte A, Tagliazucchi D. Antiproliferative Activity and Cell Metabolism of Hydroxycinnamic Acids in Human Colon Adenocarcinoma Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3919-3931. [PMID: 30892877 DOI: 10.1021/acs.jafc.9b00522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the antiproliferative activity and the stability and metabolic fate of the main dietary hydroxycinnamates, using two colonic adenocarcinoma cell models (Caco-2 and SW480). Dihydrocaffeic and dihydroferulic acids were the most effective against cell proliferation in both cell lines with IC50 values of 71.7 ± 1.1 and 83.1 ± 1.1 μmol/L, respectively ( P < 0.05) in Caco-2. At 200 μmol/L, caffeic and ferulic acids inhibited SW480 proliferation by 40.8 ± 1.6 and 59.9 ± 1.3%, respectively. Hydroxycinnamic acids with a catechol-type structure were degraded in Caco-2 cell medium, resulting in the production of H2O2. Intracellular Caco-2 UDP-glucuronosyltransferases and catechol- O-methyltransferases were able to form glucuronide and methyl conjugates. However, only the sulfate conjugates were detected after incubation with SW480. In addition, simple hydroxycinnamates were released from quinic and aspartic conjugates. The remarkable effect of dihydrocaffeic and dihydroferulic acids against cell proliferation is of paramount importance, since these compounds are the main metabolites detectable at the colonic level.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| | - Angela Conte
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| | - Davide Tagliazucchi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Amendola 2 , 42100 Reggio Emilia , Italy
| |
Collapse
|
55
|
Toney AM, Fan R, Xian Y, Chaidez V, Ramer-Tait AE, Chung S. Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity Through Augmentation of Mitochondrial Function and Biogenesis. Obesity (Silver Spring) 2019; 27:612-620. [PMID: 30768775 DOI: 10.1002/oby.22404] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Urolithin A (UroA) is a major metabolite of ellagic acid produced following microbial catabolism in the gut. Emerging evidence has suggested that UroA modulates energy metabolism in various cells. However, UroA's physiological functions related to obesity and insulin resistance remain unclear. METHODS Male mice were intraperitoneally administrated either UroA or dimethyl sulfoxide (vehicle) along with a high-fat diet for 12 weeks. Insulin sensitivity was evaluated via glucose and insulin tolerance tests and acute insulin signaling. The effects of UroA on hepatic triglyceride accumulation, adipocyte size, mitochondrial DNA content, and proinflammatory gene expressions were determined. The impact of UroA on macrophage polarization and mitochondrial respiration were assessed in bone marrow-derived macrophages. RESULTS Administration of UroA (1) improved systemic insulin sensitivity, (2) attenuated triglyceride accumulation and elevated mitochondrial biogenesis in the liver, (3) reduced adipocyte hypertrophy and macrophage infiltration into the adipose tissue, and (4) altered M1/M2 polarization in peritoneal macrophages. In addition, UroA favored macrophage M2 polarization and mitochondrial respiration in bone marrow-derived macrophages. CONCLUSIONS UroA plays a direct role in improving systemic insulin sensitivity independent of its parental compounds. This work supports UroA's role in the metabolic benefits of ellagic acid-rich foods and highlights the significance of its microbial transformation in the gut.
Collapse
Affiliation(s)
- Ashley Mulcahy Toney
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Virginia Chaidez
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
56
|
De Almeida CV, Lulli M, di Pilato V, Schiavone N, Russo E, Nannini G, Baldi S, Borrelli R, Bartolucci G, Menicatti M, Taddei A, Ringressi MN, Niccolai E, Prisco D, Rossolini GM, Amedei A. Differential Responses of Colorectal Cancer Cell Lines to Enterococcus faecalis' Strains Isolated from Healthy Donors and Colorectal Cancer Patients. J Clin Med 2019; 8:jcm8030388. [PMID: 30897751 PMCID: PMC6463247 DOI: 10.3390/jcm8030388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
The metabolites produced by the host’s gut microbiota have an important role in the maintenance of intestinal homeostasis, but can also act as toxins and induce DNA damage in colorectal epithelial cells increasing the colorectal cancer (CRC) chance. In this scenario, the impact of some of the components of the natural human gastrointestinal microbiota, such as Enterococcus faecalis (E. faecalis), at the onset of CRC progression remains controversial. Since under dysbiotic conditions it could turn into a pathogen, the aim of this study was to compare the effect of E. faecalis’ strains (isolated from CRC patients and healthy subjects’ stools) on the proliferation of different colorectal cells lines. First, we isolated and genotyping characterized the Enterococcus faecalis’ strains. Then, we analyzed the proliferation index (by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay) of three tumor and one normal intestinal cell lines, previously exposed to E. faecalis strains pre-cultured medium. Stool samples of CRC patients demonstrated a reduced frequency of E. faecalis compared to healthy subjects. In addition, the secreted metabolites of E. faecalis’ strains, isolated from healthy donors, decreased the human ileocecal adenocarcinoma cell line HCT-8 and human colon carcinoma cell line HCT-116 cell proliferation without effects on human colorectal adenocarcinoma cell line SW620 and on normal human diploid cell line CLR-1790. Notably, the metabolites of the strains isolated from CRC patients did not influence the cell growth of CRC cell lines. Our results demonstrated a new point of view in the investigation of E. faecalis’ role in CRC development, which raises awareness of the importance of not only associating the presence/absence of a unique microorganism, but also in defining the specific characteristics of the different investigated strains.
Collapse
Affiliation(s)
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
| | - Vincenzo di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Rossella Borrelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, 50139 Florence, Italy.
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, 50139 Florence, Italy.
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy.
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy.
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
- Department of Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy.
| |
Collapse
|
57
|
Ávila‐Gálvez MÁ, García‐Villalba R, Martínez‐Díaz F, Ocaña‐Castillo B, Monedero‐Saiz T, Torrecillas‐Sánchez A, Abellán B, González‐Sarrías A, Espín JC. Metabolic Profiling of Dietary Polyphenols and Methylxanthines in Normal and Malignant Mammary Tissues from Breast Cancer Patients. Mol Nutr Food Res 2019; 63:e1801239. [DOI: 10.1002/mnfr.201801239] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Indexed: 12/22/2022]
Affiliation(s)
- María Ángeles Ávila‐Gálvez
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Rocío García‐Villalba
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Francisco Martínez‐Díaz
- Reina Sofía University HospitalService of Anatomical Pathology Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Beatriz Ocaña‐Castillo
- Reina Sofía University HospitalService of Anatomical Pathology Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Tamara Monedero‐Saiz
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Adela Torrecillas‐Sánchez
- Reina Sofía University HospitalService of Breast Unit Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Beatriz Abellán
- Reina Sofía University HospitalService of Surgery Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Antonio González‐Sarrías
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Juan Carlos Espín
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| |
Collapse
|
58
|
Lorenzo JM, Munekata PE, Putnik P, Kovačević DB, Muchenje V, Barba FJ. Sources, Chemistry, and Biological Potential of Ellagitannins and Ellagic Acid Derivatives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Gong X, Li Y, Lu L, Hu M, Liu Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2018; 15:151-165. [PMID: 30583703 DOI: 10.1080/17425255.2019.1559815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Polyphenols, which are widely distributed in plants and the human diets, are known to have numerous biological activities. However, the low bioavailability of polyphenols is mediated by coupled metabolic pathways. Areas covered: The key role of the interplay between drug metabolic enzymes (DMEs) and efflux transporters (ETs), nuclear receptors (NRs), and intestinal microflora in the disposition of polyphenols is summarized. Expert opinion: ETs are shown to act as a 'revolving door', facilitating and/or controlling cellular polyphenol glucuronide/sulfate excretion. Elucidating the mechanisms underlying the glucuronidation/sulfation-transport interplay and structure-activity relationships (SAR) of glucuronide/sulfate efflux by an ET is important. Some new physiologically based pharmacokinetic (PBPK) models could be developed to predict the interplay between glucuronides/sulfates and ETs. Additionally, the combined actions of uridine-5'-diphosphate glucuronosyltransferases, ETs, and intestinal microflora/enterocyte-derived β-glucuronidase enable triple recycling (local, enteric, and enterohepatic recycling), thereby increasing the residence time of polyphenols and their glucuronides in the local intestine and liver. Further studies are necessary to explore these recycling mechanisms and interactions between polyphenols and the intestinal microbiota. Since NRs govern the inducible expression of target genes that encode DMEs and ETs. Determination of the regulation mechanism mediated by NRs using transgenic and knockout animals is still needed.
Collapse
Affiliation(s)
- Liping Wang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Rongjin Sun
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qisong Zhang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qing Luo
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Sijing Zeng
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xiaoyan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xia Gong
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Yuhuan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Linlin Lu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Ming Hu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Zhongqiu Liu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,b State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Macau , SAR , China
| |
Collapse
|
60
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
61
|
Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins (Basel) 2018; 10:toxins10110469. [PMID: 30441778 PMCID: PMC6266065 DOI: 10.3390/toxins10110469] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Even if cancer represents a burden for human society, an exhaustive cure has not been discovered yet. Low therapeutic index and resistance to pharmacotherapy are two of the major limits of antitumour treatments. Natural products represent an excellent library of bioactive molecules. Thus, tapping into the natural world may prove useful in identifying new therapeutic options with favourable pharmaco-toxicological profiles. Juglans regia, or common walnut, is a very resilient tree that has inhabited our planet for thousands of years. Many studies correlate walnut consumption to beneficial effects towards several chronic diseases, such as cancer, mainly due to the bioactive molecules stored in different parts of the plant. Among others, polyphenols, quinones, proteins, and essential fatty acids contribute to its pharmacologic activity. The present review aims to offer a comprehensive perspective about the antitumour potential of the most promising compounds stored in this plant, such as juglanin, juglone, and the ellagitannin-metabolites urolithins or deriving from walnut dietary intake. All molecules and a chronic intake of the fruit provide tangible anticancer effects. However, the scarcity of studies on humans does not allow results to be conclusive.
Collapse
|
62
|
Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Physiological Relevance of the Antiproliferative and Estrogenic Effects of Dietary Polyphenol Aglycones versus Their Phase-II Metabolites on Breast Cancer Cells: A Call of Caution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8547-8555. [PMID: 30025453 DOI: 10.1021/acs.jafc.8b03100] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While preclinical studies suggest the breast cancer (BC) chemopreventive effects of dietary polyphenols, the human evidence is still very weak. The huge existing in vitro-in vivo gap is mainly due to the plethora of potential effects reported by in vitro studies that usually assay polyphenols as occurring in the food (beverages, extracts, foods) and/or derived aglycone metabolites with doubtful physiological relevance. Since phase-II metabolites can reach systemic tissues such as malignant breast tumors, we aimed here to compare for the first time the antiproliferative and estrogenic/antiestrogenic effects of dietary polyphenols and microbiota-derived metabolites (i.e., resveratrol, dihydroresveratrol, urolithins (A, B, and Isourolithin A), and the flavanone hesperetin), with those effects exerted by their physiologically relevant glucuronides and sulfates on human BC cell lines (MDA-MB-231 and MCF-7). Results showed that aglycones exerted dose-dependent antiproliferative and estrogenic/antiestrogenic activities, but both their glucuronide and sulfate conjugates lacked these activities. In addition, aglycones underwent phase-II metabolism in BC cells, mainly via sulfation, which determined the cell-dependent differences in the effects observed. Therefore, phase-II metabolism limits the antiproliferative, estrogenic, and antiestrogenic activities of dietary polyphenols on BC cells. Likewise, as a call of caution, enthusiasm should be limited for publishing effects that are not physiologically relevant.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| |
Collapse
|
63
|
Stanisławska IJ, Piwowarski JP, Granica S, Kiss AK. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:176-183. [PMID: 30097116 DOI: 10.1016/j.phymed.2018.03.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Urolithins are bioavailable products of gut microbiota metabolism of ellagitannins. Their biological activity includes anti-cancer effects. PURPOSE The aim of this study was to explore the effects of urolithins on prostate cancer cells and activity of clinically used anti-androgen, bicalutamide. METHODS Prostate cancer cells were treated with urolithin A, urolithin B, urolithin C or their combinations with bicalutamide. Cell proliferation was determined by DNA fluorescence with Hoechst 33258. The combination index method was used to examine interactions. Apoptosis and androgen receptor (AR) localization were analysed by flow cytometry. Prostate specific antigen (PSA) secretion was measured by ELISA. RESULTS Urolithins inhibited proliferation of LNCaP prostate cancer cells. The mixtures of bicalutamide with uroA and uroB had additive anti-proliferative effect. All tested urolithins induced apoptosis of LNCaP cells. However, the combinations of bicalutamide with urolithin A and urolithin B had attenuated pro-apoptotic activity. UroA and uroC decreased DHT-induced PSA secretion. In contrast, uroB impaired PSA lowering effect of bicalutamide. UroA, individually and in combination with bicalutamide, promoted cytoplasmic localization of AR. CONCLUSION Urolithins might contribute to chemopreventive activity of ellagitannin rich preparations. Our results support use of ellagitannin rich preparations in prostate cancer chemoprevention, but advise caution in their potential use in complementary therapy of prostate cancer. The differences in activity profiles of urolithins indicate that possible health benefits and interactions will depend on the type of produced ellagitannins metabolite.
Collapse
Affiliation(s)
- Iwona J Stanisławska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland.
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| |
Collapse
|
64
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
65
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
66
|
Rupiani S, Guidotti L, Manerba M, Di Ianni L, Giacomini E, Falchi F, Di Stefano G, Roberti M, Recanatini M. Synthesis of natural urolithin M6, a galloflavin mimetic, as a potential inhibitor of lactate dehydrogenase A. Org Biomol Chem 2018; 14:10981-10987. [PMID: 27827510 DOI: 10.1039/c6ob01977c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolysis is the main route for energy production in tumors. LDH-A is a key enzyme of this process and its inhibition represents an attractive strategy to hamper cancer cell metabolism. Galloflavin is a reliable LDH-A inhibitor as previously identified by us; however, its poor physicochemical properties and chemical tractability render it unsuitable for further development. Therefore, a rational design was undertaken with the aim to reproduce the pharmacophore of galloflavin on simpler, potentially more soluble and synthetic accessible scaffolds. Following a process of structural simplification, natural urolithin M6 (UM6), which is an ellagitannin metabolite produced by gut microbiota, was identified as a putative galloflavin mimetic. In the present study, the synthesis of UM6 is described for the first time. An efficient synthetic pathway has been developed, which involved five steps from readily accessible starting materials. The key reaction steps, a Suzuki coupling and an intramolecular C-H oxygenation, have been optimized to improve the synthetic feasibility and provide the best conditions in terms of reaction time and yield. Moreover, this route would be suitable to obtain other analogs for SAR studies. Preliminary biological tests revealed that UM6 was able to smoothly reproduce the behavior of galloflavin, confirming that our approach was successful in providing a new and accessible structure in the search for new LDH-A inhibitors.
Collapse
Affiliation(s)
- Sebastiano Rupiani
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Laura Guidotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Marcella Manerba
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Lorenza Di Ianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Elisa Giacomini
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Federico Falchi
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
67
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
68
|
Prasain JK, Rajbhandari R, Keeton AB, Piazza GA, Barnes S. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells. Food Funct 2018; 7:4012-4019. [PMID: 27711848 DOI: 10.1039/c6fo00499g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, anti-proliferative activities of cranberry derived flavonoids and some of their in vivo metabolites were evaluated using a panel of human bladder tumor cell lines (RT4, SCABER, and SW-780) and non-tumorigenic immortalized human uroepithelial cells (SV-HUC). Among the compounds tested, quercetin 3-O-glucoside, isorhamnetin (3'-O-methylquercetin), myricetin and quercetin showed strong concentration-dependent cell growth inhibitory activities in bladder cancer cells with IC50 values in a range of 8-92 μM. Furthermore, isorhamnetin and myricetin had very low inhibitory activity against SV-HUC even at very high concentrations (>200 μM) compared to bladder cancer cells, indicating that their cytotoxicity is selective for cancer cells. To determine whether the differential cell growth inhibitory effects of isomeric flavonoids quercetin 3-O-glucoside (active) and hyperoside (quercetin 3-O-galactoside) (inactive) are related to their metabolism by the cancer cells, SW-780 cells were incubated with these compounds and their metabolism was examined by LC-MS/MS. Compared to quercetin 3-O-glucoside, hyperoside undergoes relatively less metabolic biotransformation (methylation, glucuronidation and quinone formation). These data suggest that isorhamnetin and quercetin 3-O-glucoside may be the active forms of quercetin in prevention of bladder cancer in vivo and emphasize the importance of metabolism for the prevention of bladder cancer by diets rich in cranberries.
Collapse
Affiliation(s)
- Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rajani Rajbhandari
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Adam B Keeton
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Suite 3029, Mobile AL 36604-1405, USA
| | - Gary A Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Suite 3029, Mobile AL 36604-1405, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
69
|
Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
70
|
Aragonès G, Danesi F, Del Rio D, Mena P. The importance of studying cell metabolism when testing the bioactivity of phenolic compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
71
|
Abstract
Nut consumption is clearly related to human health outcomes. Its beneficial effects have been mainly attributed to nut fatty acid profiles and content of vegetable protein, fiber, vitamins, minerals, phytosterols and phenolics. However, in this review we focus on the prebiotics properties in humans of the non-bioaccessible material of nuts (polymerized polyphenols and polysaccharides), which provides substrates for the human gut microbiota and on the formation of new bioactive metabolites and the absorption of that may partly explain the health benefits of nut consumption.
Collapse
Affiliation(s)
- Rosa M. Lamuel-Raventos
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marie-Pierre St. Onge
- Department of Medicine and Institute of Human Nutrition, Columbia University, New York, New York, USA
| |
Collapse
|
72
|
Teixeira LL, Costa GR, Dörr FA, Ong TP, Pinto E, Lajolo FM, Hassimotto NMA. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food Funct 2017; 8:2266-2274. [PMID: 28541359 DOI: 10.1039/c7fo00076f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bioavailability and metabolism of anthocyanins and ellagitannins following acute intake of grumixama fruit, native Brazilian cherry, by humans, and its in vitro antiproliferative activity against breast cancer cells (MDA-MB-231) were investigated. A single dose of grumixama juice was administered to healthy women (n = 10) and polyphenol metabolites were analyzed in urine and plasma samples collected over 24 h. The majority of the metabolites circulating and excreted in urine were phenolic acids and urolithin conjugates, the gut microbiota catabolites of both classes of polyphenols, respectively. According to pharmacokinetic parameters, the subjects were divided into two distinct groups, high and low urinary metabolite excretors. The pool of polyphenol metabolites found in urine samples showed a significant inhibition of cell proliferation and G2/M cell cycle arrest in MDA-MB-231 cells. Our findings demonstrate the large interindividual variability concerning the polyphenol metabolism, which possibly could reflect in health promotion.
Collapse
Affiliation(s)
- L L Teixeira
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
73
|
Panzella L, Pérez-Burillo S, Pastoriza S, Martín MÁ, Cerruti P, Goya L, Ramos S, Rufián-Henares JÁ, Napolitano A, d'Ischia M. High Antioxidant Action and Prebiotic Activity of Hydrolyzed Spent Coffee Grounds (HSCG) in a Simulated Digestion-Fermentation Model: Toward the Development of a Novel Food Supplement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6452-6459. [PMID: 28692261 DOI: 10.1021/acs.jafc.7b02302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spent coffee grounds are a byproduct with a large production all over the world. The aim of this study was to explore the effects of a simulated digestion-fermentation treatment on hydrolyzed spent coffee grounds (HSCG) and to investigate the antioxidant properties of the digestion and fermentation products in the human hepatocellular carcinoma HepG2 cell line. The potentially bioaccessible (soluble) fractions exhibited high chemoprotective activity in HepG2 cells against oxidative stress. Structural analysis of both the indigestible (insoluble) and soluble material revealed partial hydrolysis and release of the lignin components in the potentially bioaccessible fraction following simulated digestion-fermentation. A high prebiotic activity as determined from the increase in Lactobacillus spp. and Bifidobacterium spp. and the production of short-chain fatty acids (SCFAs) following microbial fermentation of HSCG was also observed. These results pave the way toward the use of HSCG as a food supplement.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II" , Via Cintia 4, I-80126 Naples, Italy
| | - Sergio Pérez-Burillo
- Departmento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada , Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Silvia Pastoriza
- Departmento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada , Campus Universitario de Cartuja, 18071 Granada, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC) , José Antonio Novais 10, 28040 Madrid, Spain
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR) , Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC) , José Antonio Novais 10, 28040 Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC) , José Antonio Novais 10, 28040 Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada , 18071 Granada, Spain
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II" , Via Cintia 4, I-80126 Naples, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II" , Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
74
|
Urolithins impair cell proliferation, arrest the cell cycle and induce apoptosis in UMUC3 bladder cancer cells. Invest New Drugs 2017. [PMID: 28631098 DOI: 10.1007/s10637-017-0483-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ellagitannins have been gaining attention as potential anticancer molecules. However, the low bioavailability of ellagitannins and their extensive metabolization in the gastrointestinal tract into ellagic acid and urolithins suggest that the health benefits of consuming ellagitannins rely on the direct effects of their metabolites. Recently, chemopreventive and chemotherapeutic activities were ascribed to urolithins. Nonetheless, there is still a need to screen and evaluate the selectivity of these molecules and to elucidate their cellular mechanisms of action. Therefore, this work focused on the antiproliferative effects of urolithins A, B and C and ellagic acid on different human tumor cell lines. The evaluation of cell viability and the determination of the half-maximal inhibitory concentrations indicated that the sensitivity to the studied urolithins varied markedly between the different cell lines, with the bladder cancer cells (UMUC3) being the most susceptible. In UMUC3 cells, urolithin A was the most active molecule, promoting cell cycle arrest at the G2/M checkpoint, increasing apoptotic cell death and inhibiting PI3K/Akt and MAPK signaling. Overall, the present study emphasizes the chemopreventive/chemotherapeutic potential of urolithins, highlighting the stronger effects of urolithin A and its potential to target transitional bladder cancer cells.
Collapse
|
75
|
Abstract
Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.
Collapse
|
76
|
The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017; 139:82-93. [PMID: 28483461 DOI: 10.1016/j.bcp.2017.04.033] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
(Poly)phenols (PPs) constitute a large family of phytochemicals with high chemical diversity that are known to be active principles of plant-derived nutraceuticals and herbal medicinal products. Their pharmacological activity, however, is difficult to demonstrate due to their mild physiological effects, and to the large inter-individual variability observed. Many PPs have little bioavailability and reach the colon almost unaltered. There they encounter the gut microbes resulting in a two-way interaction in which PPs modulate the gut microbiota composition, and the intestinal microbes catabolize the ingested PPs to release metabolites that are often more active and better absorbed than the native phenolic compounds. The type and quantity of the PP metabolites produced in humans depend on the gut microbiota composition and function, and different metabotypes have been identified. However, not all the metabolites have the same biological activity, and therefore the final health effects of dietary PPs depend on the gut microbiota composition. Stratification in clinical trials according to individuals' metabotypes is necessary to fully understand the health effects of PPs. In this review, we present and discuss the most significant and updated knowledge regarding the reciprocal interrelation of the gut microbiota with dietary PPs as a key factor that modulates the health effects of these compounds. The review will focus in those PPs that are known to be metabolized by gut microbiota resulting in bioactive metabolites.
Collapse
|
77
|
Cui GH, Chen WQ, Shen ZY. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacol Rep 2017; 70:519-524. [PMID: 29660655 DOI: 10.1016/j.pharep.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/26/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND This study investigates the therapeutic potential of urothelin A in attenuating atherosclerotic lesion in wistar rat models and explore the role of Scavenger receptor-class B type I (SR-BI) and activation of Nrf-2 singling pathway. METHODS Wistar rats (n=48) were feed with high cholesterol diet supplemented with Vitamin D3 and subjected to balloon injury of the aorta. Three days prior to the aortal injury, rats (n=16) were administered urothelin A (3mg/kg/d; po). Positive control were rats receiving high cholesterol diet and balloon injury of the aorta (n=16). The sham group (n=16) consisted of rats fed on basal diet. After twelve weeks blood was collected from all animals for estimation of lipid and angiotensin II (Ang II) levels along, subsequently all animals were sacrificed and morphologic analysis of the aorta was performed. Expression of SR-BI and phosphorylated extracellular signal regulated kinase 1/2 (p-ERK1/2) protein were evaluated by Western blot. RESULTS After twelve weeks of treatment with urolithin A, there was a significant decrease in the plasma lipid and Ang II levels and improvement of aortic lesion compared with the sham group. There was an increased expression of SR-BI and inhibition of p-ERK1/2 (p<0.05). The expression of SR-BI was inversely correlated with levels of Ang II. CONCLUSION From the results it can be safely concluded that administration of urolithin A attenuates atherosclerosis via upregulation of SR-BI expression and inhibition of p-ERK1/2 levels.
Collapse
Affiliation(s)
- Guang-Hao Cui
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Wei-Qian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
78
|
Piwowarski JP, Stanisławska I, Granica S, Stefańska J, Kiss AK. Phase II Conjugates of Urolithins Isolated from Human Urine and Potential Role ofβ-Glucuronidases in Their Disposition. Drug Metab Dispos 2017; 45:657-665. [DOI: 10.1124/dmd.117.075200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022] Open
|
79
|
Yin P, Zhang J, Yan L, Yang L, Sun L, Shi L, Ma C, Liu Y. Urolithin C, a gut metabolite of ellagic acid, induces apoptosis in PC12 cells through a mitochondria-mediated pathway. RSC Adv 2017. [DOI: 10.1039/c7ra01548h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urolithin C includes apoptosis in PC12 cells through a mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Peipei Yin
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Jianwei Zhang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Linlin Yan
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingguang Yang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingling Shi
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Chao Ma
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|
80
|
Bayle M, Roques C, Marion B, Audran M, Oiry C, Bressolle-Gomeni FM, Cros G. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 131:33-39. [DOI: 10.1016/j.jpba.2016.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/15/2023]
|
81
|
Kang I, Buckner T, Shay NF, Gu L, Chung S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv Nutr 2016; 7:961-72. [PMID: 27633111 PMCID: PMC5015040 DOI: 10.3945/an.116.012575] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellagic acid (EA) is a naturally occurring polyphenol found in some fruits and nuts, including berries, pomegranates, grapes, and walnuts. EA has been investigated extensively because of its antiproliferative action in some cancers, along with its anti-inflammatory effects. A growing body of evidence suggests that the intake of EA is effective in attenuating obesity and ameliorating obesity-mediated metabolic complications, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this review, we summarize how intake of EA regulates lipid metabolism in vitro and in vivo, and delineate the potential mechanisms of action of EA on obesity-mediated metabolic complications. We also discuss EA as an epigenetic effector, as well as a modulator of the gut microbiome, suggesting that EA may exert a broader spectrum of health benefits than has been demonstrated to date. Therefore, this review aims to suggest the potential metabolic benefits of consumption of EA-containing fruits and nuts against obesity-associated health conditions.
Collapse
Affiliation(s)
- Inhae Kang
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Teresa Buckner
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR; and
| | - Liwei Gu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE;
| |
Collapse
|
82
|
Spigoni V, Mena P, Cito M, Fantuzzi F, Bonadonna RC, Brighenti F, Dei Cas A, Del Rio D. Effects on Nitric Oxide Production of Urolithins, Gut-Derived Ellagitannin Metabolites, in Human Aortic Endothelial Cells. Molecules 2016; 21:molecules21081009. [PMID: 27490528 PMCID: PMC6274502 DOI: 10.3390/molecules21081009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 μM and as a mixture of 5 μM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MSn. The mix of urolithins at 5 μM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 μM did not modify NO bioavailability. Both the mix of urolithins at 5 μM and urolithin B-glucuronide at 15 μM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Monia Cito
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Federica Fantuzzi
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Riccardo C Bonadonna
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Alessandra Dei Cas
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| |
Collapse
|
83
|
Zhang W, Chen JH, Aguilera-Barrantes I, Shiau CW, Sheng X, Wang LS, Stoner GD, Huang YW. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression. Mol Nutr Food Res 2016; 60:2387-2395. [PMID: 27342949 DOI: 10.1002/mnfr.201600048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/14/2022]
Abstract
SCOPE Obese and overweight women are at high risk of developing endometrial cancer; indeed, many of endometrial cancer patients are obese. The increased number and size of adipocytes due to obesity elevate levels of circulating estrogens that stimulate cell proliferation in the endometrium. However, black raspberries are a promising approach to preventing endometrial cancer. METHODS AND RESULTS We examined 17 black raspberry constituents and metabolites (10 μM or 10 μg/mL, 48 h) for their ability to prevent endometrial cancer cells from proliferating. Urolithin A (UA) was most able to suppress proliferation in a time- and dose-dependent manner (p < 0.05). It arrested the G2/M phase of the cell cycle by upregulating cyclin-B1, cyclin-E2, p21, phospho-cdc2, and CDC25B. UA also acted as an estrogen agonist by modulating estrogen receptor-α (ERα) dependent gene expression in ER-positive endometrial cancer cells. UA enhanced the expression of ERβ, PGR, pS2, GREB1 while inhibiting the expression of ERα and GRIP1. Coincubating UA-treated cells with the estrogen antagonist ICI182,780 abolished UA's estrogenic effects. Knocking down ERα suppressed PGR, pS2, and GREB gene expression but increased GRIP1 expression. Thus, UA's actions appear to be mediated through ERα. CONCLUSION This study suggests that UA modulates ERα-dependent gene expression, thereby inhibiting endometrial cancer proliferation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine and life Science, University of Jinan-Shandong Academy of Medical Science, Jinan, Shandong, China.,Department of Gynecology Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jo-Hsin Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Xiugui Sheng
- Department of Gynecology Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gary D Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
84
|
Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500901] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rocío García-Villalba
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María A. Núñez-Sánchez
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María V. Selma
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María T. García-Conesa
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - Juan Carlos Espín
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
85
|
Kang I, Kim Y, Tomás-Barberán FA, Espín JC, Chung S. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol Nutr Food Res 2016; 60:1129-38. [DOI: 10.1002/mnfr.201500796] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Inhae Kang
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| | - YongEun Kim
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| | | | | | - Soonkyu Chung
- Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE, USA
| |
Collapse
|
86
|
Núñez-Sánchez MÁ, Karmokar A, González-Sarrías A, García-Villalba R, Tomás-Barberán FA, García-Conesa MT, Brown K, Espín JC. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer. Food Chem Toxicol 2016; 92:8-16. [PMID: 26995228 DOI: 10.1016/j.fct.2016.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022]
Abstract
Colon cancer stem cells (CSCs) offer a novel paradigm for colorectal cancer (CRC) treatment and dietary polyphenols may contribute to battle these cells. Specifically, polyphenol-derived colon metabolites have the potential to interact with and affect colon CSCs. We herein report the effects against colon CSCs of two mixtures of ellagitannin (ET) metabolites, ellagic acid (EA) and the gut microbiota-derived urolithins (Uro) at concentrations detected in the human colon tissues following the intake of ET-containing products (pomegranate, walnuts). These mixtures reduce phenotypic and molecular features in two models of colon CSCs: Caco-2 cells and primary tumour cells from a patient with CRC. The mixture containing mostly Uro-A (85% Uro-A, 10% Uro-C, 5% EA) was most effective at inhibiting the number and size of colonospheres and aldehyde dehydrogenase activity (ALDH, a marker of chemoresistance) whereas the mixture containing less Uro-A but IsoUro-A and Uro-B (30% Uro-A, 50% IsoUro-A, 10% Uro-B, 5% Uro-C, 5% EA) had some effects on the number and size of colonospheres but not on ALDH. These data support a role for polyphenols metabolites in the control of colon cancer chemoresistance and relapse and encourage the research on the effects of polyphenols against CSCs.
Collapse
Affiliation(s)
- María Ángeles Núñez-Sánchez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Ankur Karmokar
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Rocío García-Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - María Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Karen Brown
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
87
|
Mele L, Mena P, Piemontese A, Marino V, López-Gutiérrez N, Bernini F, Brighenti F, Zanotti I, Del Rio D. Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch Biochem Biophys 2016; 599:42-50. [PMID: 26891591 DOI: 10.1016/j.abb.2016.02.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 10/24/2022]
Abstract
Atherosclerosis, one of the leading causes of death worldwide, is characterized by impaired endothelial function and lipid metabolism, among other factors. Ellagitannins are a class of phenolic compounds that may play a role in cardiovascular health. This work aimed to study the potential atheroprotective effects of urolithins, ellagitannin-derived gut microbiota metabolites, on different key factors in atherosclerosis development: the ability of monocytes to adhere to endothelial cells and the uptake and efflux of cholesterol by macrophages. The biotransformations urolithins undergo in peripheral cells were also evaluated. Results indicated that some urolithins and ellagic acid were able to reduce the adhesion of THP-1 monocytes to human umbilical vein endothelial cells (HUVECs) and the secretion of a cellular adhesion molecule (sVCAM-1) and pro-inflammatory cytokine (IL-6). Urolithin C, a combination of urolithins A and B, and ellagic acid also decreased the accumulation of cholesterol in THP-1-derived macrophages, but they were not able to promote cholesterol efflux. The analysis of cell media by UHPLC-ESI-MS(n) indicated urolithins and ellagic underwent extensive metabolism, with sulfate and methyl conjugation. This evidence indicates that atherosclerotic processes may be attenuated by urolithins, but future human intervention trials are required to establish if is translated in vivo.
Collapse
Affiliation(s)
- Laura Mele
- Human Nutrition Unit, Department of Food Science, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food Science, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Antonio Piemontese
- Department of Pharmacy, University of Parma, Viale delle Scienze 27a, 43124 Parma, Italy
| | - Valentina Marino
- Department of Pharmacy, University of Parma, Viale delle Scienze 27a, 43124 Parma, Italy
| | - Noelia López-Gutiérrez
- Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics (Analytical Chemistry Area), University of Almería, Carretera de Sacramento s/n, E-04120 Almería, Spain
| | - Franco Bernini
- Department of Pharmacy, University of Parma, Viale delle Scienze 27a, 43124 Parma, Italy
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food Science, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Ilaria Zanotti
- Department of Pharmacy, University of Parma, Viale delle Scienze 27a, 43124 Parma, Italy.
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food Science, University of Parma, Via Volturno 39, 43125 Parma, Italy; The Need for Nutrition Education/Innovation Programme (NNEdPro), University of Cambridge, Cambridge, UK.
| |
Collapse
|
88
|
Cho H, Jung H, Lee H, Yi HC, Kwak HK, Hwang KT. Chemopreventive activity of ellagitannins and their derivatives from black raspberry seeds on HT-29 colon cancer cells. Food Funct 2016; 6:1675-83. [PMID: 25906041 DOI: 10.1039/c5fo00274e] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Black raspberry (BRB) seeds are a major waste product after fruit processing. The seeds are abundant in ellagitannins (ET), a class of hydrolysable tannins, which are hydrolyzed to ellagic acid (EA) and further metabolized to urolithin A (UA) and urolithin B (UB), known to be bioavailable in the colon and the prostate. In this study, the anti-cancer activities of these compounds were evaluated on HT-29 colon cancer cells. ET, EA, UA and UB inhibited the proliferation of the cancer cells. EA caused a slight, but significant cell cycle arrest at the G1 phase, and urolithins caused cell cycle arrest at the G2/M phase and upregulated p21 expression. Apoptotic cells were detected by Annexin V-FITC/PI assay when treated with the compounds. Disruption in mitochondrial membrane potential and activation of caspases 8 and 9 suggest that both extrinsic and intrinsic apoptotic pathways may be involved. Activation of caspase 3 and cleavage of PARP further confirmed the induction of the apoptosis. ET, EA, UA and UB showed anti-cancer activity by arresting the cell cycle and inducing apoptosis on HT-29 human colon cancer cells. This study suggests that the BRB seeds could be a potential source of anti-cancer ET.
Collapse
Affiliation(s)
- Hyunnho Cho
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 151-742, Korea.
| | | | | | | | | | | |
Collapse
|
89
|
|
90
|
Garazd YL, Garazd MM. Natural Dibenzo[b,d]Pyran-6-Ones: Structural Diversity and Biological Activity. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1536-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. J Chromatogr A 2016; 1428:162-75. [DOI: 10.1016/j.chroma.2015.08.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 11/20/2022]
|
92
|
Selma MV, Romo-Vaquero M, García-Villalba R, González-Sarrías A, Tomás-Barberán FA, Espín JC. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct 2016; 7:1769-74. [DOI: 10.1039/c5fo01100k] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We recently identified three metabotypes (0, A and B) that depend on the metabolic profile of urolithins produced from polyphenol ellagic acid (EA).
Collapse
Affiliation(s)
- María V. Selma
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| | - María Romo-Vaquero
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| | - Rocío García-Villalba
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| | - Antonio González-Sarrías
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| | - Francisco A. Tomás-Barberán
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| | - Juan C. Espín
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- Murcia
- Spain
| |
Collapse
|
93
|
González-Sarrías A, Núñez-Sánchez MÁ, Tomé-Carneiro J, Tomás-Barberán FA, García-Conesa MT, Espín JC. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res 2015; 60:701-16. [PMID: 26634414 DOI: 10.1002/mnfr.201500780] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022]
Abstract
SCOPE Ellagitannins, ellagic acid, and the colonic metabolites urolithins (Uros) exhibit anticancer effects against colon cells, but a comprehensive molecular analysis has not been done. Herein, we used a panel of cell lines to first time evaluate the antiproliferative properties and accompanying molecular responses of two ellagitannin metabolites mixtures mimicking the situation in vivo and of each individual metabolite. METHODS AND RESULTS We examined cell growth, cell cycle, apoptosis, and the expression of related genes and microRNAs (miRs) in a panel of nonmalignant and malignant colon cell lines. Regardless of the composition, the mixed metabolites similarly inhibited proliferation, induced cycle arrest, and apoptosis. All the metabolites contributed to these effects, but Uro-A, isourolithin A, Uro-C, and Uro-D were more potent than Uro-B and ellagic acid. Despite molecular differences between the cell lines, we discerned relevant changes in key cancer markers and corroborated the induction of CDKN1A (cyclin-dependent kinase inhibitor 1A gene (p21, Cip1); encoding p21) as a common step underlying the anticancer properties of Uros. Interestingly, cell-unique downregulation of miR-224 or upregulation of miR-215 was found associated with CDKN1A induction. CONCLUSION Physiologically relevant mixtures of Uros exert anticancer effects against colon cancer cells via a common CDKN1A upregulatory mechanism. Other associated molecular responses are however heterogeneous and mostly cell-specific.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Ángeles Núñez-Sánchez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Joao Tomé-Carneiro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
94
|
González-Sarrías A, Núñez-Sánchez MÁ, García-Villalba R, Tomás-Barberán FA, Espín JC. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. Eur J Nutr 2015; 56:831-841. [DOI: 10.1007/s00394-015-1131-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
|
95
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
96
|
Sánchez-González C, Ciudad CJ, Izquierdo-Pulido M, Noé V. Urolithin A causes p21 up-regulation in prostate cancer cells. Eur J Nutr 2015; 55:1099-112. [PMID: 25962506 DOI: 10.1007/s00394-015-0924-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
PURPOSE Walnuts contain several bioactive compounds, including pedunculagin, a polyphenol metabolized by microbiota to form urolithins, namely urolithin A (UA). The aim of this study was to determine gene expression changes in prostate cancer cells after incubation with UA. METHODS We performed a genomic analysis to study the effect of UA on LNCaP prostate cells. Cells were incubated with 40 µM UA for 24 h, and RNA was extracted and hybridized to Affymetrix Human Genome U219 array. Microarray results were analyzed using GeneSpring v13 software. Differentially expressed genes (p < 0.05, fold change > 2) were used to perform biological association networks. Cell cycle was analyzed by flow cytometry and apoptosis measured by the rhodamine method and by caspases 3 and 7 activation. Cell viability was determined by MTT assay. RESULTS We identified two nodes, FN-1 and CDKN1A, among the differentially expressed genes upon UA treatment. CDKN1A was validated, its mRNA and protein levels were significantly up-regulated, and the promoter activation measured by luciferase. Cell cycle analysis showed an increase in G1-phase, and we also observed an induction of apoptosis and caspases 3 and 7 activation upon UA treatment. CONCLUSION Our results indicate a potential role of UA as a chemopreventive agent for prostate cancer.
Collapse
Affiliation(s)
| | - Carlos J Ciudad
- Biochemistry and Molecular Biology Department, School of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain.
| | - Maria Izquierdo-Pulido
- Nutrition and Food Science Department, University of Barcelona, 08028, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Barcelona, Spain
| | - Véronique Noé
- Biochemistry and Molecular Biology Department, School of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| |
Collapse
|
97
|
Wang Y, Qiu Z, Zhou B, Liu C, Ruan J, Yan Q, Liao J, Zhu F. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro 2015; 29:1107-15. [PMID: 25910917 DOI: 10.1016/j.tiv.2015.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 03/20/2015] [Accepted: 04/11/2015] [Indexed: 12/15/2022]
Abstract
The intestinal metabolites of ellagic acid (EA), urolithins are known to effectively inhibit cancer cell proliferation. This study investigates antiproliferative and antioxidant effects of urolithin A (UA) on cell survival of the HepG2 hepatic carcinomas cell line. The antiproliferative effects of UA (0-500 μM) on HepG2 cells were determined using a CCK assay following 12-36 h exposure. Effects on β-catenin and other factors of expression were assessed by using real-time PCR and Western blot. We found that UA showed potent antiproliferative activity on HepG2 cells. When cell death was induced by UA, it was found that the expression of β-catenin, c-Myc and Cyclin D1 were decreased and TCF/LEF transcriptional activation was notably down-regulated. UA also increased protein expression of p53, p38-MAPK and caspase-3, but suppressed expression of NF-κB p65 and other inflammatory mediators. Furthermore, the antioxidant assay afforded by UA and EA treatments was associated with decreases in intracellular ROS levels, and increases in intracellular SOD and GSH-Px activity. These results suggested that UA could inhibit cell proliferation and reduce oxidative stress status in liver cancer, thus acting as a viably effective constituent for HCC prevention and treatment.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Zhenpeng Qiu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Cong Liu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Jinlan Ruan
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, People's Republic of China
| | - Qiujin Yan
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Jianming Liao
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Fan Zhu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China.
| |
Collapse
|
98
|
Ramírez de Molina A, Vargas T, Molina S, Sánchez J, Martínez-Romero J, González-Vallinas M, Martín-Hernández R, Sánchez-Martínez R, Gómez de Cedrón M, Dávalos A, Calani L, Del Rio D, González-Sarrías A, Espín JC, Tomás-Barberán FA, Reglero G. The ellagic acid derivative 4,4'-di-O-methylellagic acid efficiently inhibits colon cancer cell growth through a mechanism involving WNT16. J Pharmacol Exp Ther 2015; 353:433-44. [PMID: 25758919 DOI: 10.1124/jpet.114.221796] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
Ellagic acid (EA) and some derivatives have been reported to inhibit cancer cell proliferation, induce cell cycle arrest, and modulate some important cellular processes related to cancer. This study aimed to identify possible structure-activity relationships of EA and some in vivo derivatives in their antiproliferative effect on both human colon cancer and normal cells, and to compare this activity with that of other polyphenols. Our results showed that 4,4'-di-O-methylellagic acid (4,4'-DiOMEA) was the most effective compound in the inhibition of colon cancer cell proliferation. 4,4'-DiOMEA was 13-fold more effective than other compounds of the same family. In addition, 4,4'-DiOMEA was very active against colon cancer cells resistant to the chemotherapeutic agent 5-fluoracil, whereas no effect was observed in nonmalignant colon cells. Moreover, no correlation between antiproliferative and antioxidant activities was found, further supporting that structure differences might result in dissimilar molecular targets involved in their differential effects. Finally, microarray analysis revealed that 4,4'-DiOMEA modulated Wnt signaling, which might be involved in the potential antitumor action of this compound. Our results suggest that structural-activity differences between EA and 4,4'-DiOMEA might constitute the basis for a new strategy in anticancer drug discovery based on these chemical modifications.
Collapse
Affiliation(s)
- Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Susana Molina
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Jenifer Sánchez
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Jorge Martínez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Margarita González-Vallinas
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Roberto Martín-Hernández
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Ruth Sánchez-Martínez
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Alberto Dávalos
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Luca Calani
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Daniele Del Rio
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Antonio González-Sarrías
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Juan Carlos Espín
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Francisco A Tomás-Barberán
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM+CSIC), Madrid, Spain (A.R.d.M., T.V., S.M., J.S., J.M.-R., M.G.-V., R.M.-H., R.S.-M., M.G.d.C., A.D., G.R.); LS9 Interlab Group, Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy (L.C., D.D.R.); and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, Murcia, Spain (A.G.-S., J.C.E., F.A.T.-B.)
| |
Collapse
|
99
|
González-Sarrías A, Tomé-Carneiro J, Bellesia A, Tomás-Barberán FA, Espín JC. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct 2015; 6:1460-9. [DOI: 10.1039/c5fo00120j] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ellagic acid-derived gut microbiota metabolite, urolithin A, at concentrations achievable in the human colorectum, enhances the anticancer effects of 5-FU-chemotherapy on three different colon cancer cells.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Joao Tomé-Carneiro
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Andrea Bellesia
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 42122 Reggio Emilia
- Italy
| | - Francisco A. Tomás-Barberán
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Juan Carlos Espín
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| |
Collapse
|
100
|
Zhang HM, Zhao L, Li H, Xu H, Chen WW, Tao L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 2014; 11:92-100. [PMID: 25009751 PMCID: PMC4069806 DOI: 10.7497/j.issn.2095-3941.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/03/2014] [Indexed: 01/15/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Cancer treatments by chemotherapeutic agents, surgery, and radiation have not been highly effective in reducing the incidence of cancers and increasing the survival rate of cancer patients. In recent years, plant-derived compounds have attracted considerable attention as alternative cancer remedies for enhancing cancer prevention and treatment because of their low toxicities, low costs, and low side effects. Ellagic acid (EA) is a natural phenolic constituent. Recent in vitro and in vivo experiments have revealed that EA elicits anticarcinogenic effects by inhibiting tumor cell proliferation, inducing apoptosis, breaking DNA binding to carcinogens, blocking virus infection, and disturbing inflammation, angiogenesis, and drug-resistance processes required for tumor growth and metastasis. This review enumerates the anticarcinogenic actions and mechanisms of EA. It also discusses future directions on the applications of EA.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Lei Zhao
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Hao Li
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Hao Xu
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Wen-Wen Chen
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Lin Tao
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| |
Collapse
|