51
|
Hu Y, Barbier L, Li Z, Ji X, Le Blay H, Hourdet D, Sanson N, Lam JWY, Marcellan A, Tang BZ. Hydrophilicity-Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AIEgens in Mechanically Strong Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101500. [PMID: 34350646 DOI: 10.1002/adma.202101500] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Guangdong-Hong Kong-Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
| | - Lucile Barbier
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Research University, Sorbonne Universités, Laboratoire Sciences et Ingénierie de la Matière Molle CNRS, 10 Rue Vauquelin, Paris, 75005, France
| | - Zhao Li
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Guangdong-Hong Kong-Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xiaofan Ji
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Guangdong-Hong Kong-Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Heiva Le Blay
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Research University, Sorbonne Universités, Laboratoire Sciences et Ingénierie de la Matière Molle CNRS, 10 Rue Vauquelin, Paris, 75005, France
| | - Dominique Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Research University, Sorbonne Universités, Laboratoire Sciences et Ingénierie de la Matière Molle CNRS, 10 Rue Vauquelin, Paris, 75005, France
| | - Nicolas Sanson
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Research University, Sorbonne Universités, Laboratoire Sciences et Ingénierie de la Matière Molle CNRS, 10 Rue Vauquelin, Paris, 75005, France
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Guangdong-Hong Kong-Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
| | - Alba Marcellan
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL Research University, Sorbonne Universités, Laboratoire Sciences et Ingénierie de la Matière Molle CNRS, 10 Rue Vauquelin, Paris, 75005, France
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Guangdong-Hong Kong-Macro Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- AIE institute, Guangzhou Development Distinct, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
52
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
53
|
Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112226. [DOI: 10.1016/j.msec.2021.112226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
|
54
|
Biomaterials for human space exploration: A review of their untapped potential. Acta Biomater 2021; 128:77-99. [PMID: 33962071 DOI: 10.1016/j.actbio.2021.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
As biomaterial advances make headway into lightweight radiation protection, wound healing dressings, and microbe resistant surfaces, a relevance to human space exploration manifests itself. To address the needs of the human in space, a knowledge of the space environment becomes necessary. Both an understanding of the environment itself and an understanding of the physiological adaptations to that environment must inform design parameters. The space environment permits the fabrication of novel biomaterials that cannot be produced on Earth, but benefit Earth. Similarly, designing a biomaterial to address a space-based challenge may lead to novel biomaterials that will ultimately benefit Earth. This review describes several persistent challenges to human space exploration, a variety of biomaterials that might mitigate those challenges, and considers a special category of space biomaterial. STATEMENT OF SIGNIFICANCE: This work is a review of the major human and environmental challenges facing human spaceflight, and where biomaterials may mitigate some of those challenges. The work is significant because a broad range of biomaterials are applicable to the human space program, but the overlap is not widely known amongst biomaterials researchers who are unfamiliar with the challenges to human spaceflight. Additionaly, there are adaptations to microgravity that mimic the pathology of certain disease states ("terrestrial analogs") where treatments that help the overwhelmingly healthy astronauts can be applied to help those with the desease. Advances in space technology have furthered the technology in that field on Earth. By outlining ways that biomaterials can promote human space exploration, space-driven advances in biomaterials will further biomaterials technology.
Collapse
|
55
|
Ding F, Ding H, Shen Z, Qian L, Ouyang J, Zeng S, Seery TAP, Li J, Wu G, Chavez SE, Smith AT, Liu L, Li Y, Sun L. Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7760-7770. [PMID: 34129778 DOI: 10.1021/acs.langmuir.1c00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by hook-and-loop fasteners, we designed a hydrogel network containing α-zirconium phosphate (ZrP) two-dimensional nanosheets with a high density of surface hydroxyl groups serving as nanopatches with numerous "hooks," while polymer chains with plentiful amine functional groups serve as "loops." Our multiscale molecular simulations confirm that both the high density of hydroxyl groups on nanosheets and the large number of amine functional groups on polymer chains are essential to achieve reversible interactions at the molecular scale, functioning as nano hook-and-loop fasteners to dissipate energy. As a result, the synthesized hydrogel possesses superior stretchability (>2100% strain), resilience to compression (>90% strain), and durability. Remarkably, the hydrogel can sustain >5000 cycles of compression with torsion in a solution mimicking synovial fluid, thus promising for potential biomedical applications such as artificial articular cartilage. This hook-and-loop model can be adopted and generalized to design a wide range of multifunctional materials with exceptional mechanical properties.
Collapse
Affiliation(s)
- Fuchuan Ding
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Hao Ding
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Qian
- Department of Anatomy and Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China
| | - Jun Ouyang
- Department of Anatomy and Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China
| | - Songshan Zeng
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Thomas A P Seery
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiao Li
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Guanzheng Wu
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Sonia E Chavez
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Andrew T Smith
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Lan Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
56
|
Liang M, Ge X, Dai J, Ren P, Wei D, Xu L, Zhang Q, He C, Lu Z, Zhang T. High-Strength Hydrogel Adhesive Formed via Multiple Interactions for Persistent Adhesion under Saline. ACS APPLIED BIO MATERIALS 2021; 4:5016-5025. [PMID: 35007050 DOI: 10.1021/acsabm.1c00293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogel adhesives have been widely used in wet environments. Nonetheless, strong and stable persistent adhesion remains a challenge. Here, we report a facile yet powerful strategy to construct high-strength hydrogel adhesives for durable adhesion in a saline environment. Such a hydrogel consists of two polymer networks: a hydrophobic-associated polyacrylamide network of covalent and noncovalent cross-links and an alginate network cross-linked by divalent cations in saline. Meanwhile, polydopamine nanoparticles formed through in-situ self-polymerization are distributed evenly throughout the system to provide underwater adhesion. A low and controllable swelling rate and high compressive strength of hydrogels can be achieved via this multiple interaction strategy. Ultimately, this strategy contributes to the persistent underwater adhesion of hydrogels, and the decreasing rate of lap-shear adhesion strength of hydrogels is only 24.79 ± 8.01% after saline immersion for up to 21 days. Moreover, good cytocompatibility of hydrogels is helpful for their application in the biomedical field.
Collapse
Affiliation(s)
- Min Liang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Ge
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jidong Dai
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dandan Wei
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunpeng He
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
57
|
Abstract
Flexible bioelectronics have promising applications in electronic skin, wearable devices, biomedical electronics, etc. Hydrogels have unique advantages for bioelectronics due to their tissue-like mechanical properties and excellent biocompatibility. Particularly, conductive and tissue adhesive hydrogels can self-adhere to bio-tissues and have great potential in implantable wearable bioelectronics. This review focuses on the recent progress in tissue adhesive hydrogel bioelectronics, including the mechanism and preparation of tissue adhesive hydrogels, the fabrication strategies of conductive hydrogels, and tissue adhesive hydrogel bioelectronics and applications. Some perspectives on tissue adhesive hydrogel bioelectronics are provided at the end of the review.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | - Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
58
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
59
|
The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
60
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
61
|
Sahraro M, Barikani M, Daemi H, Baei P. Anti-fatigue, highly resilient photocrosslinkable gellan gum hydrogels reinforced by flexible nanoparticulate polyurethane multi-crosslinkers. Int J Biol Macromol 2021; 183:831-838. [PMID: 33930451 DOI: 10.1016/j.ijbiomac.2021.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, multifunctional polyurethane nanoparticles (MPUNs) were embedded into the methacrylated gellan gum (MGG) to prepare stimuli-responsive hydrogels with improved mechanical properties including remarkable fatigue resistance and excellent self-recoverability. The photocurable MPUNs/MGG nanocomposite hydrogels with different formulations were synthesized through a facile and green solution mixing method. The result obtained from mechanical analysis displayed an excellent improvement in compression strength (120 6 ± 83.7 kPa) and ultimate strain (94.2 ± 2.7%) in the optimized formulation. Furthermore, the optimized formulation could restore approximately its original shape after continuous loading-unloading compression tests over 100 cycles which might result from its favorable crosslinked structure. These reinforced hydrogels exhibited a dual physical and chemical crosslinking mechanism based on the hydrogen bonding formation and photocrosslinking of methacrylate functional groups, respectively. Interestingly, the nanocomposite hydrogels exhibited no significant cytotoxicity to human dermal fibroblast cells which made them suitable as the appropriate biomaterials for the engineering of soft tissues.
Collapse
Affiliation(s)
- Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
| | - Mehdi Barikani
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran.
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Payam Baei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
62
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
63
|
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim GD, Affatato S, Al‐Haddad H, Lisignoli G, Ricotti L. Graphene Oxide-Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Adv Healthc Mater 2021; 10:e2001434. [PMID: 33586352 PMCID: PMC11468639 DOI: 10.1002/adhm.202001434] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Lorenzo Vannozzi
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Eti Teblum
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Madina Telkhozhayeva
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Gilbert Daniel Nessim
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Saverio Affatato
- IRCSS Istituto Ortopedico RizzoliLaboratorio Tecnologie BiomedicheVia di Barbiano, 1/10Bologna40136Italy
| | - Hind Al‐Haddad
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Leonardo Ricotti
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| |
Collapse
|
64
|
Sepiolite-embedded binary nanocomposites of (alkyl)methacrylate-based responsive polymers: Role of silanol groups of fibrillar nanoclay on functional and thermomechanical properties. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Bettahar F, Bekkar F, Pérez-Álvarez L, Ferahi MI, Meghabar R, Vilas-Vilela JL, Ruiz-Rubio L. Tough Hydrogels Based on Maleic Anhydride, Bulk Properties Study and Microfiber Formation by Electrospinning. Polymers (Basel) 2021; 13:polym13060972. [PMID: 33810000 PMCID: PMC8004733 DOI: 10.3390/polym13060972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Hydrogels present a great number of advantages, such as their swelling capacity or their capability to mimic tissues, which make them very interesting biomaterials. However, one of their main disadvantages is their lack of good mechanical properties, which could limit some of their applications. Several strategies have been carried out to develop hydrogels with enhanced mechanical properties, but many of the suggested synthetic pathways to improve this property are expensive and time consuming. In this work, we studied an easy synthetic path to produce tough hydrogels based on different maleic anhydride copolymers crosslinked with polyethylenglycol. The effect of the comonomers in the mechanical properties has been studied, their excellent mechanical properties, good swelling behavior and thermal stability being remarkable. In addition, in order to evaluate their possible applications as scaffolds or in wound healing applications, microsized fibers have been fabricated by electrospinning.
Collapse
Affiliation(s)
- Faiza Bettahar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
| | - Fadila Bekkar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Mohammed Issam Ferahi
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
| | - Rachid Meghabar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Leire Ruiz-Rubio
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnao uer, BP 1524, Oran 31000, Algeria; (F.B.); (F.B.); (M.I.F.); (R.M.); (J.L.V.-V.)
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Correspondence: ; Tel.: +34-94-6017-972
| |
Collapse
|
66
|
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115254] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Kari L. Numerically Exploring the Potential of Abating the Energy Flow Peaks through Tough, Single Network Hydrogel Vibration Isolators with Chemical and Physical Cross-Links. MATERIALS (BASEL, SWITZERLAND) 2021; 14:886. [PMID: 33668419 PMCID: PMC7917829 DOI: 10.3390/ma14040886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
Traditional vibration isolation systems, using natural rubber vibration isolators, display large peaks for the energy flow from the machine source and into the receiving foundation, at the unavoidable rigid body resonance frequencies. However, tough, doubly cross-linked, single polymer network hydrogels, with both chemical and physical cross-links, show a high loss factor over a specific frequency range, due to the intensive adhesion-deadhesion activities of the physical cross-links. In this study, vibration isolators, made of this tough hydrogel, are theoretically applied in a realistic vibration isolation system, displaying several rigid body resonances and various energy flow transmission paths. A simulation model is developed, that includes a suitable stress-strain model, and shows a significant reduction of the energy flow peaks. In particular, the reduction is more than 30 times, as compared to the corresponding results using the natural rubber. Finally, it is shown that a significant reduction is possible, also without any optimization of the frequency for the maximum physical loss modulus. This is a clear advantage for polyvinyl alcohol hydrogels, that are somewhat missing the possibility to alter the frequency for the maximum physical loss, due to the physical cross-link system involved-namely, that of the borate esterification.
Collapse
Affiliation(s)
- Leif Kari
- The Marcus Wallenberg Laboratory for Sound and Vibration Research (MWL), Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
68
|
Okten Besli NS, Orakdogen N. One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation. Gels 2021; 7:gels7010016. [PMID: 33562842 PMCID: PMC7931030 DOI: 10.3390/gels7010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/21/2023] Open
Abstract
A convenient method for the preparation of polybasic ternary hybrid cryogels consisting of Halloysite nanotubes (HNTs) and tertiary amine functional groups by freezing-induced gelation is proposed. Ternary hybrid gels were produced via one-shot radical terpolymerization of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and DEAEMA in the presence of HNTs. The equilibrium swelling in various swelling media and the mechanical properties of the produced ternary hybrid gels were analyzed to investigate their network structure and determine their final performance. The swelling ratio of HNT-free gels was significantly higher than the ternary hybrid gels composed of high amount of HNTs. The addition of HNTs to terpolymer network did not suppress pH- and temperature-sensitive behavior. While DEAEMA groups were effective for pH-sensitive swelling, it was determined that both HEMA and DEAEMA groups were effective in temperature-sensitive swelling. Ternary hybrid gels simultaneously demonstrated both negative and positive temperature-responsive swelling behavior. The swelling ratio changed considerably according to swelling temperature. Both DEAEMA and HEMA monomers in terpolymer structure were dominant in temperature-sensitive swelling. Mechanical tests in compression of both as-prepared and swollen-state demonstrated that strength and modulus of hybrid cryogels significantly increased with addition of HNTs without significant loss of mechanical strength. Ultimately, the results of the current system can benefit characterization with analysis tools for the application of innovative materials.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Department of Civil Engineering, Istanbul Kultur University, Bakırkoy, 34158 Istanbul, Turkey;
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-285-3305
| |
Collapse
|
69
|
Huang X, Wang X, Shi C, Liu Y, Wei Y. Research on synthesis and self-healing properties of interpenetrating network hydrogels based on reversible covalent and reversible non-covalent bonds. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02155-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractFirst of all, we will provide a brief background on the self-healing hydrogels we produced which are suitable for the complex environment of nature. In this paper, disulfide bonds and acylhydrazone bonds can be combined in SH-WPU and hydrogen bonds existed in PAMAM. And the hydrogel can achieve self-healing under acid, alkaline, neutral or light environment.Self-healing for 1 h, 24 h and 48 h, the self-healing efficiency is 31.58%, 49.84% and 87.35% respectively. This effect achieved the desired effect and the repair effect is more obvious than previous research results. The hydrogels have potential applications in the field of biomaterials.
Collapse
|
70
|
Zhang W, Zhang Y, Zhang Y, Dai Y, Xia F, Zhang X. Adhesive and tough hydrogels: from structural design to applications. J Mater Chem B 2021; 9:5954-5966. [PMID: 34254103 DOI: 10.1039/d1tb01166a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, multifunctional hydrogels have garnered great interest. Usually, there is a contradiction between the toughness and interface adhesion of traditional hydrogels. In engineering and medical applications, hydrogels need to have good adhesive properties and toughness. The design of functional hydrogels with strong adhesion and high toughness is key to their application. In this review, the research progress of adhesive and tough hydrogels in recent years is outlined. Specifically, the structural design (such as integrated, layered, and gradient structures) and applications (such as cartilage repair, drug delivery, strain sensors, tissue adhesives, soft actuators, and supercapacitors) of adhesive and tough hydrogels are classified and discussed, providing new insights on their design and development.
Collapse
Affiliation(s)
- Wanglong Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yuchen Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
71
|
Abstract
This review outlines progress in hydrogels with well-defined heterogeneity in structures and responsiveness by using sequential synthesis, photolithography, 3D/4D printing, and macroscopic assembling for programmable shape morphing or actuations.
Collapse
Affiliation(s)
- Feng-mei Cheng
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hong-xu Chen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hai-dong Li
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| |
Collapse
|
72
|
Akpe V, Murhekar S, Kim TH, Brown CL, Cock IE. Batch Effect Adjustment to Lower the Drug Attrition Rate of MCF-7 Breast Cancer Cells Exposed to Silica Nanomaterial-Derived Scaffolds. Assay Drug Dev Technol 2021; 19:46-61. [PMID: 33443468 DOI: 10.1089/adt.2020.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug attrition rate is the calculation or measure of the clinical efficacy of a candidate drug on a screen platform for a specific period. Determining the attrition rate of a prospective cancer drug is a reliable way of testing the clinical efficacy. A low attrition rate in the last phase of a preclinical trial increases the success of a drug discovery process. It has been reported that the attrition rates of antineoplastic drugs are much higher than for other therapeutic drugs. Among the factors identified for the high attrition rates in antineoplastic drugs are the nature of the screen-based platforms involving human-derived xenografts, extracellular matrix-derived scaffold systems, and the synthetic scaffolds, which all have propensity to proliferate tumor cells at faster rates than in vivo primary tumors. Other factors that affect the high attrition rates are induced scaffold toxicity and the use of assays that are irrelevant, yet affect data processing. These factors contribute to the wide variation in data and systematic errors. As a result, it becomes imperative to filter batch variations and to standardize the data. Importantly, understanding the interplay between the biological milieu and scaffold connections is also crucial. Here the cell viability of MCF-7 (breast cancer cell line) cells exposed to different scaffolds were screened before cisplatin dosing using the calculated p-values. The statistical significance (p-value) of data was calculated using the one-way analysis of variance, with the p-value set as: 0 < p < 0.06. In addition, the half-maximal inhibitory concentration (IC50) of the different scaffolds exposed to MCF-7 cells were calculated with the probit extension model and cumulative distribution (%) of the extension data. The chemotherapeutic dose (cisplatin, 56 mg/m2) reduced the cell viability of MCF-7 cells to 5% within 24 h on the scaffold developed from silica nanoparticles (SNPs) and polyethylene glycol (PEG) formulation (SNP:PEG) mixtures with a ratio of 1:10, respectively.
Collapse
Affiliation(s)
- Victor Akpe
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Shweta Murhekar
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Tak H Kim
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| |
Collapse
|
73
|
A Constitutive Model for Alginate-Based Double Network Hydrogels Cross-Linked by Mono-, Di-, and Trivalent Cations. Gels 2020; 7:gels7010003. [PMID: 33396891 PMCID: PMC7838819 DOI: 10.3390/gels7010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022] Open
Abstract
In this contribution, a micro-mechanically based constitutive model is proposed to describe the nonlinear inelastic rubber-like features of alginate-based double network hydrogel cross-linked via various counterions. To this end, the lengthening of the polysaccharide polymer chain after a fully stretched state is characterized. A polymer chain is firstly considered behaving entropically up to the fully stretched state. Then, enthalpic behavior is accounted for concerning the following lengthening. To calculate enthalpic behavior, the macroscopic material properties, such as elastic modulus, are integrated into the proposed model. Thus, a new energy concept for a polymer chain is proposed. The model is constituted by the proposed energy concept, the network decomposition model, the Arruda–Boyce eight chain model and the network alteration theory. The model is compared against the cyclic tensile test data of alginate-based double network hydrogels cross-linked via mono-, di-, and trivalent cations. Good agreement between the model and experiments is obtained.
Collapse
|
74
|
Zhou Y, Yue Z, Chen Z, Wallace G. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Adv Healthc Mater 2020; 9:e2001342. [PMID: 33103357 DOI: 10.1002/adhm.202001342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Indexed: 12/31/2022]
Abstract
3D printing is now popular in tissue engineering as it provides a facile route to the fabrication of scaffolds with/without living cells with a predesigned geometry. The properties of the ink constituents are critical for printing structures to meet both mechanical and biological requirements. Despite recent advances in ink development, it remains a challenge to print biopolymer based tough and elastic hydrogels. These hydrogels are in great demand as they can mimic the biomechanics of soft tissues such as skin, muscle, and cartilage. In this study, a catechol functionalized ink system is developed for 3D coaxial printing tough and elastic hydrogels. The ink is based on biopolymers including catechol modified hyaluronic acid (HACA) and alginate. A novel crosslinking strategy is proposed, involving simple ionic crosslinking, catechol mediated crosslinking, and Michael addition that are all induced under mild conditions. The HACA and alginate form a double network with high fracture toughness and elasticity, while proteins such as gelatin can be integrated with the HACA/alginate hydrogel during printing to improve cell interactions. The printed constructs demonstrate high cytocompatibility and support the differentiation of myoblasts into aligned myotubes. The catechol functionalized ink can be further modified to target various applications in soft tissue engineering.
Collapse
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Zhi Chen
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
75
|
Sun X, Agate S, Salem KS, Lucia L, Pal L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS APPLIED BIO MATERIALS 2020; 4:140-162. [DOI: 10.1021/acsabm.0c01011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaohang Sun
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sachin Agate
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Khandoker Samaher Salem
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
76
|
Kari L. Are Single Polymer Network Hydrogels with Chemical and Physical Cross-Links a Promising Dynamic Vibration Absorber Material? A Simulation Model Inquiry. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5127. [PMID: 33202924 PMCID: PMC7697359 DOI: 10.3390/ma13225127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Tough, doubly cross-linked, single polymer network hydrogels with both chemical and physical cross-links display a high loss factor of the shear modulus over a broad frequency range. Physically, the high loss factor is resulting from the intensive adhesion-deadhesion activities of the physical cross-links. A high loss factor is frequently required by the optimization processes for optimal performance of a primary vibration system while adopting a dynamic vibration absorber, in particular while selecting a larger dynamic vibration absorber mass in order to avoid an excess displacement amplitude of the dynamic vibration absorber springs. The novel idea in this paper is to apply this tough polymer hydrogel as a dynamic vibration absorber spring material. To this end, a simulation model is developed while including a suitable constitutive viscoelastic material model for doubly cross-linked, single polymer network polyvinyl alcohol hydrogels with both chemical and physical cross-links. It is shown that the studied dynamic vibration absorber significantly reduces the vibrations of the primary vibration system while displaying a smooth frequency dependence over a broad frequency range, thus showing a distinguished potential for the tough hydrogels to serve as a trial material in the dynamic vibration absorbers in addition to their normal usage in tissue engineering.
Collapse
Affiliation(s)
- Leif Kari
- The Marcus Wallenberg Laboratory for Sound and Vibration Research (MWL), Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
77
|
Giuri D, Jacob KA, Ravarino P, Tomasini C. Boc‐Protection on L‐DOPA: an Easy Way to Promote Underwater Adhesion. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Kiran A. Jacob
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Paolo Ravarino
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Claudia Tomasini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
78
|
Distler T, Schaller E, Steinmann P, Boccaccini A, Budday S. Alginate-based hydrogels show the same complex mechanical behavior as brain tissue. J Mech Behav Biomed Mater 2020; 111:103979. [DOI: 10.1016/j.jmbbm.2020.103979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
79
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
80
|
A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04761-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
|
82
|
Liu X, Niu X, Fu Z, Liu L, Bai S, Wang J, Li L, Wang Y, Guo X. A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. SOFT MATTER 2020; 16:8394-8399. [PMID: 32808002 DOI: 10.1039/d0sm01132k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
LAPONITE® sheets have been widely used for the preparation of tough nanocomposite hydrogels for enticing applications; however, their inferior dispersion in aqueous media resulting from electrostatic interactions between the nanosheets remarkably limits further improvements in the mechanical performances of the nanocomposite hydrogels. Here, we show a simple approach to dramatically accelerate the dispersion of LAPONITE® sheets in water, and in turn further improve the mechanical performances of the resulting nanocomposite hydrogels. Upon addition of poly(acrylic acid) (PAA), the electrostatic interactions between the LAPONITE® sheets were effectively reduced due to the adsorption of PAA onto the positively charged edges of the LAPONITE® sheets, thereby accelerating the dispersion of the LAPONITE® sheets in water. On this basis, a series of polyacrylamide (PAAm) hydrogels with a high content of LAPONITE® sheets was prepared, showing excellent tensile strength, stretchability, and anti-fatigue properties. This study will be beneficial for the preparation of LAPONITE®-based nanocomposite hydrogels bearing excellent mechanical properties for new applications.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiaofeng Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Liqun Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. and Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, 832000 Xinjiang, China
| |
Collapse
|
83
|
Yin Y, Li X, Hu Z, Wang R. An inorganic cross‐linked quadruple shape memory hydrogel with high mechanical performance. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan‐Yu Yin
- School of Chemical Engineering Sichuan University Chengdu China
| | - Xin Li
- School of Chemical Engineering Sichuan University Chengdu China
| | - Zai‐Yin Hu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Ru Wang
- School of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
84
|
|
85
|
Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34337-34361. [PMID: 32579332 DOI: 10.1021/acsami.0c07614] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wearable biosensors for sweat-based analysis are gaining wide attention due to their potential use in personal health monitoring. Flexible wearable devices enable sweat analysis at the molecular level, facilitating noninvasive monitoring of physiological states via real-time monitoring of chemical biomarkers. Advances in sweat extraction technology, real-time biosensors, stretchable materials, device integration, and wireless digital technologies have led to the development of wearable sweat-biosensing devices that are light, flexible, comfortable, aesthetic, affordable, and informative. Herein, we summarize recent advances of sweat wearables from the aspects of sweat extraction, fabrication of stretchable biomaterials, and design of biosensing modules to enable continuous biochemical monitoring, which are essential for a biosensing device. Key chemical components of sweat, sweat capture methodologies, and considerations of flexible substrates for integrating real-time biosensors with electronics to bring innovations in the art of wearables are elaborated. The strategies and challenges involved in improving the wearable biosensing performance and the perspectives for designing sweat-based wearable biosensing devices are discussed.
Collapse
Affiliation(s)
- Laicong Qiao
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mercy Rose Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - J Anand Subramony
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
86
|
Bioprintable tough hydrogels for tissue engineering applications. Adv Colloid Interface Sci 2020; 281:102163. [PMID: 32388202 DOI: 10.1016/j.cis.2020.102163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Bioprinting is an advanced fabrication approach to engineer complex living structures as the conventional fabrication methods are incapable of integrating structural and biological complexities. It offers the versatility of printing different cell incorporated hydrogels (bioink) layer by layer; offering control over spatial resolution and cell distribution to mimic native tissue architectures. However, the bioprinting of tough hydrogels involve additional complexities, such as employing complex crosslinking or reinforcing mechanisms during printing and pre/post printing cellular activities. Solving this complexity requires attention from engineering, material science and cell biology perspectives. In this review, we discuss different types of bioprinting techniques with focus on current state-of-the-art in bioink formulations and pivotal characteristics of bioinks for tough hydrogel printing. We discuss the scope of transition from 3D to 4D bioprinting and some of the advanced characterization techniques for in-depth understanding of the 3D printing process from the microstructural perspective, along with few specific applications and conclude with the future perspectives in biofabrication of hydrogels for tissue engineering applications.
Collapse
|
87
|
Sani Mamman I, Teo YY, Misran M. Synthesis, characterization and rheological study of Arabic gum-grafted-poly (methacrylic acid) hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
88
|
Gräfe D, Walden SL, Blinco J, Wegener M, Blasco E, Barner‐Kowollik C. It's in the Fine Print: Erasable Three-Dimensional Laser-Printed Micro- and Nanostructures. Angew Chem Int Ed Engl 2020; 59:6330-6340. [PMID: 31749287 PMCID: PMC7317938 DOI: 10.1002/anie.201910634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/08/2022]
Abstract
3D printing, on all scales, is currently a vibrant topic in scientific and industrial research as it has enormous potential to radically change manufacturing. Owing to the inherent nature of the manufacturing process, 3D printed structures may require additional material to structurally support complex features. Such support material must be removed after printing-sometimes termed subtractive manufacturing-without adversely affecting the remaining structure. An elegant solution is the use of photoresists containing labile bonds that allow for controlled cleavage with specific triggers. Herein, we explore state-of-the-art cleavable photoresists for 3D direct laser writing, as well as their potential to combine additive and subtractive manufacturing in a hybrid technology. We discuss photoresist design, feature resolution, cleavage properties, and current limitations of selected examples. Furthermore, we share our perspective on possible labile bonds, and their corresponding cleavage trigger, which we believe will have a critical impact on future applications and expand the toolbox of available cleavable photoresists.
Collapse
Affiliation(s)
- David Gräfe
- Centre for Materials Science, School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetQLD4000BrisbaneAustralia
| | - Sarah L. Walden
- Centre for Materials Science, School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetQLD4000BrisbaneAustralia
| | - James Blinco
- Centre for Materials Science, School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetQLD4000BrisbaneAustralia
| | - Martin Wegener
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Eva Blasco
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetQLD4000BrisbaneAustralia
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| |
Collapse
|
89
|
Gräfe D, Walden SL, Blinco J, Wegener M, Blasco E, Barner‐Kowollik C. Es ist im Kleingedruckten: Löschbare dreidimensionale lasergedruckte Mikro‐ und Nanostrukturen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Gräfe
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - Sarah L. Walden
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - James Blinco
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - Martin Wegener
- Institut für Angewandte Physik (APH) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
- Institut für Nanotechnologie (INT) Karlsruher Institut für Technologie (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Eva Blasco
- Makromolekulare Architekturen Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
- Makromolekulare Architekturen Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Karlsruhe Deutschland
| |
Collapse
|
90
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
91
|
Wickramasinhage RN, Goswami S, McAdam CJ, Hanton LR, Moratti SC. Tough polymeric hydrogels using ion-pair comonomers. SOFT MATTER 2020; 16:2715-2724. [PMID: 32104869 DOI: 10.1039/c9sm02493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogels with excellent mechanical properties were synthesized by radical photo-polymerization of three different types of ion-pair comonomers (IPC), without requiring any chemical cross-linking agent. Insoluble gels formed only at a specific solution concentration range, which was unique to the particular salt. The gels changed properties after one day soaking in water, becoming less stiff and more extendible, but remained stable after that. Strains of up to 4000% were measured for one salt pair and ultimate stresses of up to 2.53 MPa for another. Self-healing properties were noted along with some recovery of creep, due to the non-covalent nature of the gel. These properties arise through a combination of electrostatic and hydrophobic interactions of the polymer chains. Immersion of the gels in salt solution screened the electrostatic interactions, resulting in dissolution of the gel.
Collapse
|
92
|
Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110444. [DOI: 10.1016/j.msec.2019.110444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
93
|
Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:230-248. [PMID: 31928151 DOI: 10.1089/ten.teb.2019.0281] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound dressings are traditionally used to protect a wound and to facilitate healing. Currently, their function is expanding. There is an urgent need for new smart products that not only act as a protective barrier but also actively support the wound healing process. Hydrogel dressings are an example of such innovative products and typically facilitate wound healing by providing a hospitable and moist environment in which cells can thrive, while the wound can still breathe and exudate can be drained. These dressings also tend to be less painful or have a soothing effect and allow for additional drug delivery. In this review, various strategic and molecular design considerations are discussed that are relevant for developing a hydrogel into a wound dressing product. These considerations vary from material choice to ease of use and determine the dressing's final properties, application potential, and benefits for the patient. The focus of this review lies on identifying and explaining key aspects of hydrogel wound dressings and their relevance in the different phases of wound repair. Molecular targets of wound healing are discussed that are relevant when tailoring hydrogels toward specific wound healing scenarios. In addition, the potential of hydrogels is reviewed as medicine advances from a repair-based wound healing approach toward a regenerative-based one. Hydrogels can play a key role in the transition toward personal wound care and facilitating regenerative medicine strategies by acting as a scaffold for (stem) cells and carrier/source of bioactive molecules and/or drugs. Impact statement Improved wound healing will lead to a better quality of life around the globe. It can be expected that this coincides with a reduction in health care spending, as the duration of treatment decreases. To achieve this, new and modern wound care products are desired that both facilitate healing and improve comfort and outcome for the patient. It is proposed that hydrogel wound dressings can play a pivotal role in improving wound care, and to that end, this review aims to summarize the various design considerations that can be made to optimize hydrogels for the purpose of a wound dressing.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
94
|
Du X, Liu Y, Yan H, Rafique M, Li S, Shan X, Wu L, Qiao M, Kong D, Wang L. Anti-Infective and Pro-Coagulant Chitosan-Based Hydrogel Tissue Adhesive for Sutureless Wound Closure. Biomacromolecules 2020; 21:1243-1253. [PMID: 32045224 DOI: 10.1021/acs.biomac.9b01707] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multifunctional tissue adhesives with excellent adhesion, antibleeding, anti-infection, and wound healing properties are desperately needed in clinical surgery. However, the successful development of multifunctional tissue adhesives that simultaneously possess all these properties remains a challenge. We have prepared a novel chitosan-based hydrogel adhesive by integration of hydrocaffeic acid-modified chitosan (CS-HA) with hydrophobically modified chitosan lactate (hmCS lactate) and characterized its gelation time, mechanical properties, and microstructure. Tissue adhesion properties were evaluated using both pigskin and intestine models. In situ antibleeding efficacy was demonstrated via the rat hemorrhaging liver and full-thickness wound closure models. Good antibacterial activity and anti-infection capability toward S. aureus and P. aeruginosa were confirmed using in vitro contact-killing assays and an infected pigskin model. The result of coculturing with 3T3 fibroblast cells indicated that the hydrogels have no significant cytotoxicity. Most importantly, the biocompatible and biodegradable CS-HA/hmCS lactate hydrogel was able to close the wound in a sutureless way and promote wound healing. Our results demonstrate that this hydrogel has great promise for sutureless closure of surgical incisions.
Collapse
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Shilin Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xilu Shan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Le Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
95
|
Polyelectrolyte Polysaccharide-Gelatin Complexes: Rheology and Structure. Polymers (Basel) 2020; 12:polym12020266. [PMID: 31991901 PMCID: PMC7077483 DOI: 10.3390/polym12020266] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 01/10/2023] Open
Abstract
General features of rheological properties and structural peculiarities of polyelectrolyte polysaccharide–gelatin complexes were discussed in this paper. Experimental results were obtained for typical complexes, such as κ-carrageenan–gelatin, chitosan–gelatin and sodium alginate–gelatin complexes. A rheological method allows us to examine the physical state of a complex in aqueous phase and the kinetics of the sol–gel transition and temperature dependences of properties as a result of structural changes. The storage modulus below the gelation temperature is constant, which is a reflection of the solid-like state of a material. The gels of these complexes are usually viscoplastic media. The quantitative values of the rheological parameters depend on the ratio of the components in the complexes. The formation of the structure as a result of strong interactions of the components in the complexes was confirmed by UV and FTIR data and SEM analysis. Interaction with polysaccharides causes a change in the secondary structure of gelatin, i.e., the content of triple helices in an α-chain increases. The joint analysis of the structural and rheological characteristics suggests that the formation of additional junctions in the complex gel network results in increases in elasticity and hardening compared with those of the native gelatin.
Collapse
|
96
|
Affiliation(s)
- Kenechi A. Agbim
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | - Laura A. Schaefer
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
97
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
98
|
Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int J Biol Macromol 2020; 142:574-582. [DOI: 10.1016/j.ijbiomac.2019.09.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
|
99
|
Du X, Hou Y, Wu L, Li S, Yu A, Kong D, Wang L, Niu G. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure. J Mater Chem B 2020; 8:5682-5693. [DOI: 10.1039/d0tb00640h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An anti-infective TA/hydrogel with non-swelling and adhesion properties could close wounds in a non-invasive way.
Collapse
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Yujie Hou
- Research Center for Analytical Sciences
- College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Le Wu
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Shilin Li
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Ao Yu
- Research Center for Analytical Sciences
- College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Deling Kong
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Guiling Niu
- Department of Chemical Engineering
- Chengde Petroleum College
- Chengde 067001
- China
| |
Collapse
|
100
|
Mussault C, Guo H, Sanson N, Hourdet D, Marcellan A. Effect of responsive graft length on mechanical toughening and transparency in microphase-separated hydrogels. SOFT MATTER 2019; 15:8653-8666. [PMID: 31461108 DOI: 10.1039/c9sm01178a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective remote control of mechanical toughening can be achieved by using thermo-responsive grafts such as poly(N-isopropylacrylamide) (PNIPAm) in a hydrophilic covalently cross-linked polymer network. The weight ratio of PNIPAm grafts in the network may impart such a thermo-responsive mechanical reinforcement. Here, we show that the network topology - especially graft length - is likewise crucial. A series of covalently cross-linked poly(N,N-dimethylacrylamide) (PDMA) gels grafted with PNIPAm side-chains of different lengths were designed and studied on both sides of phase separation temperature Tc, at a fixed overall polymer concentration of 16.7 wt% and constant PDMA/PNIPAm weight ratio. Phase-separated PNIPAm organic micro-domains were expected to act as responsive fillers above Tc and to generate a purely organic nanocomposite (NC). In contrast to conventional NC gels where dissipative processes take place at the solid nanoparticle/matrix interface, here dissipation originates from the disruption of the filler itself by the unravelling of the PNIPAm grafts embedded in collapsed domains. Results show that PNIPAm graft length is a key parameter to enhance - reversibly and on-demand - the mechanical response. The longer the graft is, the more effective the mechanical toughening is. Interestingly, for long PNIPAm grafts, above Tc, the hydrogels combine perfect transparency together with both increased stiffness and fracture toughness (up to 150 J m-2) at constant macroscopic volume. As a proof of concept, stimuli-responsive adhesion and shape-memory properties were designed to probe the inter-chain bridging efficiency (in bulk or bridging the interface).
Collapse
Affiliation(s)
- Cécile Mussault
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - Hui Guo
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - Nicolas Sanson
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - Dominique Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - Alba Marcellan
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| |
Collapse
|