51
|
Meza-Perez S, Randall TD. Immunological Functions of the Omentum. Trends Immunol 2017; 38:526-536. [PMID: 28579319 PMCID: PMC5812451 DOI: 10.1016/j.it.2017.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
The omentum is a visceral adipose tissue with unique immune functions. Although it is primarily an adipose tissue, the omentum also contains lymphoid aggregates, called milky spots (MSs), that contribute to peritoneal immunity by collecting antigens, particulates, and pathogens from the peritoneal cavity and, depending on the stimuli, promoting a variety of immune responses, including inflammation, tolerance, or even fibrosis. Reciprocal interactions between cells in the MS and adipocytes regulate their immune and metabolic functions. Importantly, the omentum collects metastasizing tumor cells and supports tumor growth by immunological and metabolic mechanisms. Here we summarize our current knowledge about the development, organization, and function of the omentum in peritoneal immunity.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
52
|
Westenfelder C, Gooch A, Hu Z, Ahlstrom J, Zhang P. Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of "Neo-Islets," Three-Dimensional Aggregates of Allogeneic Islet and "Mesenchymal Stem Cells". Stem Cells Transl Med 2017; 6:1631-1643. [PMID: 28467694 PMCID: PMC5689775 DOI: 10.1002/sctm.17-0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Novel interventions that reestablish endogenous insulin secretion and thereby halt progressive end-organ damage and prolong survival of patients with autoimmune Type 1 diabetes mellitus (T1DM) are urgently needed. While this is currently accomplished with allogeneic pancreas or islet transplants, their utility is significantly limited by both the scarcity of organ donors and life-long need for often-toxic antirejection drugs. Coadministering islets with bone marrow-derived mesenchymal stem cells (MSCs) that exert robust immune-modulating, anti-inflammatory, anti-apoptotic, and angiogenic actions, improves intrahepatic islet survival and function. Encapsulation of insulin-producing cells to prevent immune destruction has shown both promise and failures. Recently, stem cell-derived insulin secreting β-like cells induced euglycemia in diabetic animals, although their clinical use would still require encapsulation or anti-rejection drugs. Instead of focusing on further improvements in islet transplantation, we demonstrate here that the intraperitoneal administration of islet-sized "Neo-Islets" (NIs), generated by in vitro coaggregation of allogeneic, culture-expanded islet cells with high numbers of immuno-protective and cyto-protective MSCs, resulted in their omental engraftment in immune-competent, spontaneously diabetic nonobese diabetic (NOD) mice. This achieved long-term glycemic control without immunosuppression and without hypoglycemia. In preparation for an Food and Drug Administration-approved clinical trial in dogs with T1DM, we show that treatment of streptozotocin-diabetic NOD/severe combined immunodeficiency mice with identically formed canine NIs produced durable euglycemia, exclusively mediated by dog-specific insulin. We conclude that this novel technology has significant translational relevance for canine and potentially clinical T1DM as it effectively addresses both the organ donor scarcity (>80 therapeutic NI doses/donor pancreas can be generated) and completely eliminates the need for immunosuppression. Stem Cells Translational Medicine 2017;6:1631-1643.
Collapse
Affiliation(s)
- Christof Westenfelder
- Department of Medicine, Division of Nephrology, University of Utah and VA Medical Centers, Salt Lake City, Utah, USA
| | - Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| | | | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, USA
| |
Collapse
|
53
|
Otsuka H, Yagi H, Endo Y, Soeta S, Nonaka N, Nakamura M. Nitrogen-containing bisphosphonate induces a newly discovered hematopoietic structure in the omentum of an anemic mouse model by stimulating G-CSF production. Cell Tissue Res 2017; 367:297-309. [PMID: 27817114 PMCID: PMC5269465 DOI: 10.1007/s00441-016-2525-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/09/2016] [Indexed: 12/19/2022]
Abstract
We previously reported that the injection of nitrogen-containing bisphosphonate (NBP) induced the site of erythropoiesis to shift from the bone marrow (BM) to the spleen. Our previous study established a severely anemic mouse model that was treated with a combination of NBP with phenylhydrazine (PHZ), which induced newly discovered hematopoietic organs in the omentum. No reports have shown that new hematopoietic organs form under any condition. We characterized the structures and factors related to the formation of these new organs. Splenectomized mice were treated with NBP to inhibit erythropoiesis in the BM and then injected with PHZ to induce hemolytic anemia. The mice showed severe anemia and wine-colored structures appeared in the omentum. Some hematopoietic cells, including megakaryocytes, and well-developed sinuses were observed in these structures. Numerous TER119-positive erythroblasts were located with cells positive for PCNA, a cell proliferation marker. C-kit-positive cells were detected and mRNAs related to hematopoiesis were expressed in these structures. Moreover, TER119-positive erythroblasts emerged and formed clusters and hematopoiesis-related factors were detected in the omentum of mice treated with NBP and PHZ. The levels of G-CSF in the serum and hematopoietic progenitor cells (HPCs) in the peripheral blood were increased upon treatment with both NBP and PHZ. These results suggest that the induced hematopoietic structures act as the sites of erythropoiesis and that NBP-induced G-CSF production causes HPC mobilization, homing and colonization in the omentum because they constitutively express some factors, including SDF-1; thus, the newly discovered hematopoietic structure in this study might be formed.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Hideki Yagi
- Department of Pharmaceutical, Faculty of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara-shi, Tochigi 324-8501 Japan
| | - Yasuo Endo
- Division of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Animal Science University, 1-7–1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602 Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| |
Collapse
|
54
|
Cruz-Migoni S, Caamaño J. Fat-Associated Lymphoid Clusters in Inflammation and Immunity. Front Immunol 2016; 7:612. [PMID: 28066422 PMCID: PMC5174133 DOI: 10.3389/fimmu.2016.00612] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/05/2016] [Indexed: 01/15/2023] Open
Abstract
Fat-associated lymphoid clusters (FALCs) are atypical lymphoid tissues that were originally identified in mouse and human mesenteries due to that they contain a high number of type 2 innate lymphoid cells/nuocytes/natural helper cells. FALCs are located on adipose tissues in mucosal surfaces such as the mediastinum, pericardium, and gonadal fat. Importantly, these clusters contain B1, B2 and T lymphocytes as well as myeloid and other innate immune cell populations. The developmental cues of FALC formation have started to emerge, showing that these clusters depend on a different set of molecules and cells than secondary lymphoid tissues for their formation. Here, we review the current knowledge on FALC formation, and we compare FALCs and omental milky spots and their responses to inflammation.
Collapse
Affiliation(s)
- Sara Cruz-Migoni
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Jorge Caamaño
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| |
Collapse
|
55
|
Soares Crespo T, Oliveira Andrade JM, Barcala Jorge AS, Batista de Paula AM, Sena Guimarães AL, Sousa Santos SH. Effects of omentectomy in addition to sleeve gastrectomy on the metabolic and inflammatory profiles of obese rats. Surg Obes Relat Dis 2016; 12:1292-1299. [PMID: 27039133 DOI: 10.1016/j.soard.2016.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Visceral obesity has been considered a risk factor for metabolic and cardiovascular complications. In an attempt to reduce the visceral adipose tissue, omentectomy has been proposed to be performed along with bariatric surgery. OBJECTIVE The goal of this study was to evaluate whether omentectomy associated with sleeve gastrectomy (SG) is beneficial to the inflammatory and metabolic profile of rats fed a standard diet (STD) or high-fat diet (HFD). SETTING University hospital, Brazil. METHODS For this experiment, male Wistar rats were randomly divided into 6 groups as follows: sham surgery (STD+L or HFD+L), SG alone (STD+SG or HFD+SG), or SG with omentectomy (STD+SGO or HFD+SGO). Anthropometric data and metabolic profiles were evaluated, and the tissue expression of inflammatory markers in the visceral adipose tissue was measured. RESULTS In rats with diet-induced obesity treated with SG with or without omentectomy, there was a reduction in weight (HFD+SG: P<.01 and HFD+SGO: P<.05), adiposity (HFD+SG: P<.001 and HFD+SGO: P<.05), plasma levels of glucose (HFD+SG: P<.01 and HFD+SGO: P<.01), plasma levels of C-peptide (HFD+SG: P<.01 and HFD+SGO: P<.001), plasma levels of insulin (HFD+SG: P<.05 and HFD+SGO: P<.001), plasma levels of total cholesterol (HFD+SG: P<.01 and HFD+SGO: P<.01), and tissue expression of TNF-α (HFD+SG: P<.001 and HFD+SGO: P<.01), but there was no statistically significant difference between the groups in which omentectomy was performed or was not. CONCLUSION In this study, we did not observe additional beneficial effects due to omentectomy associated with SG in the metabolic profile and tissue expression of inflammatory markers.
Collapse
Affiliation(s)
- Thaísa Soares Crespo
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Surgery, Fundação Hospitalar de Montes Claros / Hospital Aroldo Tourinho, Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Antônio Sérgio Barcala Jorge
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Medicine, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
56
|
Liu J, Geng X, Li Y. Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis. Tumour Biol 2016; 37:5715-26. [PMID: 26831659 PMCID: PMC4875158 DOI: 10.1007/s13277-016-4887-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
As the most common metastatic disease of abdomen pelvic cavity cancer, peritoneal carcinomatosis (PC) renders significant negative impact on patient survival and quality of life. Invasive peritoneal exfoliated cancer cells (PECCs) preferentially select the omentum as a predominant target site for cancer cell colonization and proliferation compared with other tissues in the abdominal cavity. The precise pathogenic mechanism remains to be determined. As omental milky spots (MSs) are the major implantation site for malignant cells in peritoneal dissemination, researches on mechanisms of PC have been mainly focused on MS, primitive lymphoid tissues with unique structural features, and functional characteristics. To date, extensive biophysical and biochemical methods have been manipulated to investigate the MS exact function in the peritoneal cavity. This review summarized MS as hotbeds for PECC. The anatomical distribution was briefly described first. Then, MS histology was systematically reviewed, including morphological features, cellular constituents, and histological staining methods. At last, the roles of MS in PC pathological process were summarized with special emphasis on the distinct roles of macrophages.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Xiafei Geng
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yan Li
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China. .,Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital Affiliated to the Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
57
|
Konieczny MJ, Ri SJ, Georgiadis JR. Omental Approach to Functional Recovery After Cerebrovascular Disease. World Neurosurg 2015; 87:406-16. [PMID: 26493716 DOI: 10.1016/j.wneu.2015.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To review and synthesize the clinical literature regarding risks and benefits of omentum transplantation and transposition surgery in patients with ischemic stroke of other etiology (non-MMD) and Moyamoya disease (MMD), and to evaluate the evidence for biological underpinnings of the presumed physiologic effects of omentum transplantation and transposition on vascularization of brain parenchyma. METHODS Articles were searched on scientific databases using predefined key terms. Data abstraction was based on the clinical course as reported in the articles. For further analysis, patients were divided into groups according to their diagnosis (MMD or non-MMD). Descriptive statistics were computed for better integration of the results. RESULTS The final literature review contained 15 articles (11 case series, 4 single case studies) with data on 93 patients (29 non-MMD, 64 MMD). At post-assessment 56% of patients showed substantial gains in functional domains (24% in the non-MMD group, 71% in the MMD group) and 92% demonstrated improvements of cerebral vascularization (55% in the non-MMD group, 98% in the MMD group). Differences in improvement became apparent with regard to the initial symptomatology wherein transient ischemic attacks were related to superior recovery rates and language pathologies showed least improvement. CONCLUSIONS Surgical revascularization using omental tissue has shown good success rates, particularly for recurrent transient ischemic attacks and prevention of further strokes and should be considered as treatment option for selected patients. Experimental data on the physiologic basis for postoperative improvement delivered convincing evidence for its arteriogenic potential and recent developments in omental stem cell research suggest a role in recovery from long-standing neurological deficits.
Collapse
Affiliation(s)
- Marek J Konieczny
- Department of Molecular Neurobiology, Graduate School of Behavioural and Cognitive Neurosciences, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Charite-Universitätsmedizin Berlin, Department of Experimental Neurology, Campus Benjamin Franklin, Berlin, Germany.
| | - Song-Jin Ri
- Charite-Universitätsmedizin Berlin, Department of Experimental Neurology, Campus Benjamin Franklin, Berlin, Germany
| | - Janniko R Georgiadis
- Department of Neuroscience, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
58
|
Garcia-Gomez I, Gudehithlu KP, Arruda JAL, Singh AK. Autologous tissue patch rich in stem cells created in the subcutaneous tissue. World J Stem Cells 2015; 7:1127-1136. [PMID: 26435772 PMCID: PMC4584236 DOI: 10.4252/wjsc.v7.i8.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether we could create natural autologous tissue patches in the subcutaneous space for organ repair.
METHODS: We implanted the following three types of inert foreign bodies in the subcutaneous tissue of rats to produce autologous tissue patches of different geometries: (1) a large-sized polyvinyl tube (L = 25 mm, internal diameter = 7 mm) sealed at both ends by heat application for obtaining a large flat piece of tissue patch for organ repair; (2) a fine polyvinyl tubing (L = 25 mm, internal diameter = 3 mm) for creating cylindrically shaped grafts for vascular or nerve repair; and (3) a slurry of polydextran particle gel for inducing a bladder-like tissue. Implantation of inert materials was carried out by making a small incision on one or either side of the thoracic-lumbar region of rats. Subcutaneous pockets were created by blunt dissection around the incision into which the inert bodies were inserted (1 or 2 per rat). The incisions were closed with silk sutures, and the animals were allowed to recover. In case of the polydextran gel slurry 5 mL of the slurry was injected in the subcutaneous space using an 18 gauge needle. After implanting the foreign bodies a newly regenerated encapsulating tissue developed around the foreign bodies. The tissues were harvested after 4-42 d of implantation and studied by gross examination, histology, and histochemistry for organization, vascularity, and presence of mesenchymal stem cells (MSCs) (CD271+CD34+ cells).
RESULTS: Implanting a large cylindrically shaped polyvinyl tube resulted in a large flat sheet of tissue that could be tailored to a specific size and shape for use as a tissue patch for repairing large organs. Implanting a smaller sized polyvinyl tube yielded a cylindrical tissue that could be useful for repairing nerves and blood vessels. This type of patch could be obtained in different lengths by varying the length of the implanted tube. Implanting a suspension of inert polydextran suspension gave rise to a bladder-like tissue that could be potentially used for repairing heart valves. Histologically, the three different types of tissue patches generated were organized similarly, consisting of three layers, increasing in thickness until day 14. The inner layer in contact with the inert material was avascular; a middle layer that was highly vascular and filled with matrix, and an outer layer consisting of loose connective tissue. MSCs identified as CD271+CD34+ cells were present in the medial layer and around major blood vessels at day 4 but absent at later time points. The early-harvested tissues, endowed with MSCs, could be used for tissue repair, while the later-harvested tissues, being less vascular but thicker and tougher, could be used as filler tissue for cosmetic purposes.
CONCLUSION: An autologous, vascularized tissue patch of desired shape and size can be created in the subcutaneous space by implanting different types of inert bodies.
Collapse
|
59
|
The Choice of Enzyme for Human Pancreas Digestion is a Critical Factor for Increasing the Success of Islet Isolation. Transplant Direct 2015; 1. [PMID: 26146662 DOI: 10.1097/txd.0000000000000522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We evaluated three commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality post-isolation. METHODS Retrospectively compared and analyzed islet isolations from pancreata using three different enzyme groups: Liberase HI (n=63), Collagenase NB1/Neutral Protease (NP) (n=43), and Liberase Mammalian Tissue Free Collagenase/Thermolysin (MTF C/T) (n=115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate (ΔOCR), and in vivo transplantation model in mice. RESULTS Donor characteristics were not significantly different among the three enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index (BMI), hemoglobin A1c (HbA1c), cold ischemia time (CIT), and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the Liberase MTF C/T group (73.5 ± 1.5 %) when compared to the Liberase HI group (63.6 ± 2.3 %) (p<0.001) and the Collagenase NB1/NP group (61.7 ± 2.9%) (p<0.001). The stimulation index for GSIS was significantly higher in the Liberase MTF C/T group (5.3 ± 0.5) as compared to the Liberase HI (2.9 ± 0.2) (p<0.0001) and the Collagenase NB1/NP (3.6 ± 2.9) (p=0.012) groups. Furthermore, the Liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic NOD Scid mice (65%), which was significantly higher than the Liberase HI (42%, p=0.001) and the Collagenase NB1/NP enzymes (41%, p<0.001). CONCLUSIONS Liberase MTF C/T is superior to Liberase HI and Collagenase NB1/NP in terms of digestion efficacy and glucose-stimulated insulin secretion in vitro. Moreover, Liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to Liberase HI and Collagenase NB1/NP enzymes.
Collapse
|
60
|
van Wingerden JJ, Ubbink DT, van der Horst CMAM, de Mol BAJM. Poststernotomy mediastinitis: a classification to initiate and evaluate reconstructive management based on evidence from a structured review. J Cardiothorac Surg 2014; 9:179. [PMID: 25417190 PMCID: PMC4247689 DOI: 10.1186/s13019-014-0179-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/30/2014] [Indexed: 12/22/2022] Open
Abstract
Early recognition and, where possible, avoidance of risk factors that contribute to the development of poststernotomy mediastinitis (PSM) form the basis for successful prevention. Once the presence of PSM is diagnosed, the known risk factors have been shown to have limited influence on management decisions. Evidence-based knowledge on treatment decisions, which include the extent and type of surgical intervention (other than debridement), timing and others is available but has not yet been incorporated into a classification on management decisions regarding PSM. Ours is a first attempt at developing a classification system for management of PSM, taking the various evidence-based reconstructive options into consideration. The classification is simple to introduce (there are four Types) and relies on the careful establishment of two variables (sternal stability and sternal bone viability and stock) prior to deciding on the best available reconstructive option. It should allow better insight into why treatment decisions fail or have to be altered and will allow better comparison of treatment outcomes between various institutions.
Collapse
Affiliation(s)
- Jan J van Wingerden
- Department of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, the Netherlands.
| | - Dirk T Ubbink
- Department of Quality Assurance and Process Innovation, Academic Medical Center, Amsterdam, the Netherlands.
| | - Chantal M A M van der Horst
- Department of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, the Netherlands.
| | - Bas A J M de Mol
- Department of Cardiothoracic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
61
|
Soffer-Tsur N, Shevach M, Shapira A, Peer D, Dvir T. Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues. Biofabrication 2014; 6:035023. [DOI: 10.1088/1758-5082/6/3/035023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
62
|
Jabłoński S, Brocki M, Wawrzycki M, Klejszmit P, Kutwin L, Kozakiewicz M. Pericardial flap: an effective method of surgical repair of late post-pneumonectomy fistula. Surg Infect (Larchmt) 2014; 15:560-6. [PMID: 24830332 DOI: 10.1089/sur.2012.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We report our experience with the surgical closure of late post-pneumonectomy bronchopleural fistula (PBF) using our own method of coverage of the bronchial stump: Pedicled pericardial flap in combination with fibrin glue. METHODS We reviewed the surgical results of 33 patients who underwent surgical closure of PBF by thoracotomy access using three methods: Myoplasty (MYO)-12, omentoplasty (OMT)-10, and pedicled pericardial flap (PPF) with fibrin glue-11. Post-operative follow up was six months. RESULTS The patients' demography was comparable among the groups. The diameter of the fistulas ranged from 5 mm to total dehiscence. The mean time of the fistula manifestation (in weeks) was 21.5 in the MYO group, 19.50 in the OMT, and 20.1 in the PPF group. The shortest period of hospital drainage of the pleural space was noted in the PPF group. Healing of the fistula was obtained in 66.67% in the MYO group, 80% in the OMT, and 100% in the PPF group. The number of complications was similar in all groups. The hospitalization time was significantly shorter in the PPF group (13.00 d) versus the MYO group (19.58 d) and the OMT (20.01 d). Overall mortality rate was 18.18%; 33.33% of the patients in the MYO group and 20% in the OMT group died. There were no hospital deaths in the PPF group. CONCLUSION Pericardial flap supported by fibrin glue can be an effective method adjunctive to the treatment of postpneumonectomy PBF in selected patients. Compared with other methods of bronchial stump coverage (omentopasty and myoplasty), this one showed a higher percentage of healing of the fistulas and shorter duration of hospital drainage and hospitalization.
Collapse
Affiliation(s)
- Sławomir Jabłoński
- 1 Department of Thoracic Surgery, General and Oncological Surgery, Medical University of Lodz , Lodz, Poland
| | | | | | | | | | | |
Collapse
|
63
|
Westenfelder C. Does the greater omentum ("policeman of the abdomen") possess therapeutic utility in CKD? J Am Soc Nephrol 2014; 25:1133-5. [PMID: 24627351 DOI: 10.1681/asn.2014010127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christof Westenfelder
- Division of Nephrology, University of Utah, George E. Wahlen Department of Veterans Affairs Health Care System, Salt Lake City, Utah
| |
Collapse
|
64
|
Garcia-Gomez I, Pancholi N, Patel J, Gudehithlu KP, Sethupathi P, Hart P, Dunea G, Arruda JAL, Singh AK. Activated omentum slows progression of CKD. J Am Soc Nephrol 2014; 25:1270-81. [PMID: 24627352 DOI: 10.1681/asn.2013040387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cells show promise in the treatment of AKI but do not survive long term after injection. However, organ repair has been achieved by extending and attaching the omentum, a fatty tissue lying above the stomach containing stem cells, to various organs. To examine whether fusing the omentum to a subtotally nephrectomized kidney could slow the progression of CKD, we used two groups of rats: an experimental group undergoing 5/6 nephrectomy only and a control group undergoing 5/6 nephrectomy and complete omentectomy. Polydextran gel particles were administered intraperitoneally before suture only in the experimental group to facilitate the fusion of the omentum to the injured kidney. After 12 weeks, experimental rats exhibited omentum fused to the remnant kidney and had lower plasma creatinine and urea nitrogen levels; less glomerulosclerosis, tubulointerstitial injury, and extracellular matrix; and reduced thickening of basement membranes compared with controls. A fusion zone formed between the injured kidney and the omentum contained abundant stem cells expressing stem cell antigen-1, Wilms' tumor 1 (WT-1), and CD34, suggesting active, healing tissue. Furthermore, kidney extracts from experimental rats showed increases in expression levels of growth factors involved in renal repair, the number of proliferating cells, especially at the injured edge, the number of WT-1-positive cells in the glomeruli, and WT-1 gene expression. These results suggest that contact between the omentum and injured kidney slows the progression of CKD in the remnant organ, and this effect appears to be mediated by the presence of omental stem cells and their secretory products.
Collapse
Affiliation(s)
- Ignacio Garcia-Gomez
- Division of Nephrology, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois; Hektoen Institute of Medicine, Chicago, Illinois; and Division of Nephrology, Department of Medicine, University of Illinois Medical Center at Chicago, Illinois; and
| | | | - Jilpa Patel
- Hektoen Institute of Medicine, Chicago, Illinois; and
| | | | | | - Peter Hart
- Division of Nephrology, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois; Hektoen Institute of Medicine, Chicago, Illinois; and
| | - George Dunea
- Division of Nephrology, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois; Hektoen Institute of Medicine, Chicago, Illinois; and Division of Nephrology, Department of Medicine, University of Illinois Medical Center at Chicago, Illinois; and
| | - Jose A L Arruda
- Division of Nephrology, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois; Hektoen Institute of Medicine, Chicago, Illinois; and Division of Nephrology, Department of Medicine, University of Illinois Medical Center at Chicago, Illinois; and Jesse Brown Chicago Veterans Affairs Medical Center, Chicago, Illinois
| | - Ashok K Singh
- Division of Nephrology, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois; Hektoen Institute of Medicine, Chicago, Illinois; and Division of Nephrology, Department of Medicine, University of Illinois Medical Center at Chicago, Illinois; and
| |
Collapse
|
65
|
Bu P, Vin AP, Sethupathi P, Ambrecht LA, Zhai Y, Nikolic N, Qiao L, Bouchard CS. Effects of activated omental cells on rat limbal corneal alkali injury. Exp Eye Res 2014; 121:143-6. [PMID: 24582890 DOI: 10.1016/j.exer.2014.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/27/2014] [Accepted: 02/15/2014] [Indexed: 11/28/2022]
Abstract
Omental cells (OCs) are shown to help wound healing. The purpose of this study is to investigate if OCs improve cornea repair after alkali injury by subconjunctival injection of activated OCs in rats. Forty eight hours after limbal corneal alkali injury, fresh isolated OCs were injected subconjunctivally into the recipient rat's eye. Prior to the injury and at 0, 4 and 8 days after injury, the eyes were examined using slit lamp biomicroscopy. Corneal opacification and corneal neovascularization were graded in a masked fashion. The inflammatory response to the injury was evaluated by counting neutrophil cell numbers in the cornea under microscope. There was no significant difference in corneal opacification between the control and OCs treatment groups; however, the corneal neovascularization was significantly less in the eyes treated with OCs as compared to the controls. Also OCs treatment markedly decreased neutrophil infiltration after corneal-limbal alkali injury. Our results suggest that OCs may have a beneficial role in corneal healing after limbal corneal alkali injury by suppressing inflammatory cell infiltrates and corneal neovascularization.
Collapse
Affiliation(s)
- Ping Bu
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA.
| | - Anita P Vin
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| | - Periannan Sethupathi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Lindsay A Ambrecht
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| | - Yougang Zhai
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Nicole Nikolic
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| | - Liang Qiao
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Charles S Bouchard
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
66
|
Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:576-91. [PMID: 23885715 DOI: 10.1016/j.ajpath.2013.04.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/19/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
The goal of controlling ovarian cancer metastasis formation has elicited considerable interest in identifying the tissue microenvironments involved in cancer cell colonization of the omentum. Omental adipose is a site of prodigious metastasis in both ovarian cancer models and clinical disease. This tissue is unusual for its milky spots, comprised of immune cells, stromal cells, and structural elements surrounding glomerulus-like capillary beds. The present study shows the novel finding that milky spots and adipocytes play distinct and complementary roles in omental metastatic colonization. In vivo assays showed that ID8, CaOV3, HeyA8, and SKOV3ip.1 cancer cells preferentially lodge and grow within omental and splenoportal fat, which contain milky spots, rather than in peritoneal fat depots. Similarly, medium conditioned by milky spot-containing adipose tissue caused 75% more cell migration than did medium conditioned by milky spot-deficient adipose. Studies with immunodeficient mice showed that the mouse genetic background does not alter omental milky spot number and size, nor does it affect ovarian cancer colonization. Finally, consistent with the role of lipids as an energy source for cancer cell growth, in vivo time-course studies revealed an inverse relationship between metastatic burden and omental adipocyte content. Our findings support a two-step model in which both milky spots and adipose have specific roles in colonization of the omentum by ovarian cancer cells.
Collapse
|
67
|
Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol 2013; 2013:352315. [PMID: 24106517 PMCID: PMC3782812 DOI: 10.1155/2013/352315] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022]
Abstract
Since the initial reporting of the successful reversal of hyperglycemia through the transplantation of pancreatic islets, significant research efforts have been conducted in elucidating the process of revascularization and the influence of engraftment site on graft function and survival. During the isolation process the intrinsic islet vascular networks are destroyed, leading to impaired revascularization after transplant. As a result, in some cases a significant quantity of the beta cell mass transplanted dies acutely following the infusion into the portal vein, the most clinically used site of engraftment. Subsequently, despite the majority of patients achieving insulin independence after transplant, a proportion of them recommence small, supplemental exogenous insulin over time. Herein, this review considers the process of islet revascularization after transplant, its limiting factors, and potential strategies to improve this critical step. Furthermore, we provide a characterization of alternative transplant sites, analyzing the historical evolution and their role towards advancing transplant outcomes in both the experimental and clinical settings.
Collapse
|
68
|
Autotaxin signaling governs phenotypic heterogeneity in visceral and parietal mesothelia. PLoS One 2013; 8:e69712. [PMID: 23936085 PMCID: PMC3723636 DOI: 10.1371/journal.pone.0069712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022] Open
Abstract
Mesothelia, which cover all coelomic organs and body cavities in vertebrates, perform diverse functions in embryonic and adult life. Yet, mesothelia are traditionally viewed as simple, uniform epithelia. Here we demonstrate distinct differences between visceral and parietal mesothelia, the most basic subdivision of this tissue type, in terms of gene expression, adhesion, migration, and invasion. Gene profiling determined that autotaxin, a secreted lysophospholipase D originally discovered as a tumor cell-motility-stimulating factor, was expressed exclusively in the more motile and invasive visceral mesothelia and at abnormally high levels in mesotheliomas. Gain and loss of function studies demonstrate that autotaxin signaling is indeed a critical factor responsible for phenotypic differences within mesothelia. Furthermore, we demonstrate that known and novel small molecule inhibitors of the autotaxin signaling pathway dramatically blunt migratory and invasive behaviors of aggressive mesotheliomas. Taken together, this study reveals distinct phenotypes within the mesothelial cell lineage, demonstrates that differential autotaxin expression is the molecular underpinning for these differences, and provides a novel target and lead compounds to intervene in invasive mesotheliomas.
Collapse
|
69
|
Sun G, Yang Y, Zhang X, Li W, Wang Y, Zhang L, Tang P, Kong J, Zhang R, Meng J, Wang X. Comparison of gastrotomy closure modalities for natural orifice transluminal surgery: a canine study. Gastrointest Endosc 2013; 77:774-83. [PMID: 23453129 DOI: 10.1016/j.gie.2012.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/17/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reliable closure of the gastrotomy after transgastric natural orifice transluminal endoscopic surgery (NOTES) remains unresolved. OBJECTIVE To compare the technical aspects and clinical and histologic outcomes of NOTES gastrotomy closure techniques. DESIGN Experimental study. SETTING Animal laboratory. PATIENTS Thirty-four dogs, 14 for nonsurvival study and 20 for survival study. INTERVENTIONS The animals randomly received different gastrotomy closures after NOTES: endoclip, omentoplasty, over-the-scope-clip (OTSC), and hand-suturing. MAIN OUTCOME MEASUREMENTS Procedure time, closure strength, survival, postoperative adverse events, and histologic evaluation of wound healing. RESULTS Omentoplasty and OTSC groups needed shorter procedure times and fewer clips than the endoclip group. The endoclip and omentoplasty groups generated similar leakage pressures (34.5 ± 2.6 vs 42.2 ± 4.1 mm Hg, P > .05), both lower than OTSC and hand-suturing groups (81.5 ± 2.1 and 87.0 ± 3.0 mm Hg, respectively, P < .001). Of the 20 animals in the survival study (all 4 groups), only 2 of 6 in the endoclip group were killed prematurely due to sepsis. Necropsy revealed the OTSC group reached a 100% clip retention rate, higher than the endoclip (47.9%) and omentoplasty groups (44.4%, P < .05) rates. Complete healing, defined as intact and continuous gastric layers microscopically, was seen in 83.3% of animals (5 of 6) in the omentoplasty group, comparable with OTSC (4 of 6, 66.7%, P = .500) but higher than the endoclip group (1 of 6, 16.7%, P = .04). LIMITATIONS Animal study. CONCLUSIONS Omentoplasty is easier and safer for NOTES gastrotomy closure than endoclips and offers safety profile and efficacy similar to OTSC and hand-suturing.
Collapse
Affiliation(s)
- Gang Sun
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Mesothelium is the simple squamous epithelium covering all abdominal organs and the coeloms in which those organs reside. While the structural characteristics of this cell type were documented a century ago, its potential in development, disease, and wound healing is only now becoming apparent. In the embryo, mesothelia provide vasculogenic cells for the developing heart, lungs, and gut. Furthermore, adult mesothelial cells can be reactivated using thymosin β4 and mobilized to aid in tissue repair. Despite their positive role in development and repair, mesothelia are also susceptible to adhesion and tumor formation. With knowledge that the mesothelium is an important mediator of tissue repair as well as disease, it will be important to identify other factors like thymosin β4 that have the ability to potentiate these cells. Future use of chemical and genetic agents in conjunction with mesothelial cells will lead to enhanced therapeutic potential and mitigation of deleterious outcomes.
Collapse
Affiliation(s)
- Elaine L Shelton
- The Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
71
|
Omentum in the pediatric umbilical hernia: is it a potential alarm for the appearance of complications? Case Rep Pediatr 2012; 2012:463628. [PMID: 23213589 PMCID: PMC3502821 DOI: 10.1155/2012/463628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/17/2012] [Indexed: 11/17/2022] Open
Abstract
Umbilical hernia is a common benign condition which resolves spontaneously during the first five years of life. However, in certain cases there are some characteristics which may be indicative of a different prognostic approach, as they increase the possibility of complications. The two cases of umbilical hernia that we describe here were treated operatively and revealed the presence of strangulated and adhered omentum, respectively. Reflecting on the adhesive properties of the omentum, we hypothesized that this may occur more often than it is believed, especially in those cases that are described as recurrent symptomatic herniations. In such cases, there should be increased alert for the possibility of complications during the period of the conservative expectance for resolution.
Collapse
|
72
|
Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 2012; 34:1-11. [PMID: 23068073 DOI: 10.1016/j.mam.2012.10.001] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity, defined as excess fat mass, increases risks for multiple metabolic diseases, such as type 2 diabetes, cardiovascular disease and several types of cancer. Over and above fat mass per se, the pattern of fat distribution, android or truncal as compared to gynoid or peripheral, has a profound influence on systemic metabolism and hence risk for metabolic diseases. Increases in upper body adipose tissue (visceral and abdominal subcutaneous) confer an independent risk, while the quantity of gluteofemoral adipose tissue is protective. Variations in the capacity of different depots to store and release fatty acids and to produce adipokines are important determinants of fat distribution and its metabolic consequences. Depot differences in cellular composition and physiology, including innervation and blood flow, likely influence their phenotypic properties. A number of lines of evidence also support the idea that adipocytes from different anatomical depots are intrinsically different as a result of genetic or developmental events. In this chapter, we will review the phenotypic characteristics of different adipose depots and mechanisms that link their depot-specific biology to metabolic complications in men and women.
Collapse
|
73
|
Pinheiro DF, da Silva RF, Carvalho LP, Paiva-Oliveira EL, Pereira RS, Leite PEC, de Fátima Pinho M, Quirico-Santos T, Lagrota-Candido J. Persistent activation of omentum influences the pattern of muscular lesion in the mdx diaphragm. Cell Tissue Res 2012; 350:77-88. [DOI: 10.1007/s00441-012-1443-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/26/2012] [Indexed: 11/30/2022]
|
74
|
Shah S, Lowery E, Braun RK, Martin A, Huang N, Medina M, Sethupathi P, Seki Y, Takami M, Byrne K, Wigfield C, Love RB, Iwashima M. Cellular basis of tissue regeneration by omentum. PLoS One 2012; 7:e38368. [PMID: 22701632 PMCID: PMC3368844 DOI: 10.1371/journal.pone.0038368] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/03/2012] [Indexed: 01/01/2023] Open
Abstract
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells. Omentum consists of a variety of phenotypically and functionally distinctive cells. To understand the mechanism of tissue repair support by the omentum in more detail, we analyzed the cell subsets derived from the omentum on immune and inflammatory responses. Our data demonstrate that the omentum contains at least two groups of cells that support tissue repair, immunomodulatory myeloid derived suppressor cells and omnipotent stem cells that are indistinguishable from mesenchymal stem cells. Based on these data, we propose that the omentum is a designated organ for tissue repair and healing in response to foreign invasion and tissue damage.
Collapse
Affiliation(s)
- Shivanee Shah
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Erin Lowery
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rudolf K. Braun
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alicia Martin
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Nick Huang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Melissa Medina
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Periannan Sethupathi
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Mariko Takami
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kathryn Byrne
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Christopher Wigfield
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Robert B. Love
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
75
|
Shelton EL, Poole SD, Reese J, Bader DM. Omental grafting: a cell-based therapy for blood vessel repair. J Tissue Eng Regen Med 2012; 7:421-33. [PMID: 22318999 DOI: 10.1002/term.528] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/18/2011] [Accepted: 09/26/2011] [Indexed: 01/15/2023]
Abstract
Clinicians regularly transplant omental pedicles to repair a wide variety of injured tissues, but the basic mechanism underlying this efficacious procedure is not understood. One possibility that has not been addressed is the ability of omentum to directly contribute regenerative cells to injured tissues. We hypothesized that if omental progenitor cells could be mobilized to incorporate into damaged tissue, the power of this therapy would be greatly expanded. Labelled omental grafts were transplanted into a murine carotid artery injury model. Selected grafts were treated with thymosin β4 (Tβ4) prior to transplantation to investigate the effects of chemical potentiation on healing. We found treatment of grafts with Tβ4-induced progenitor cells to fully integrate into the wall of injured vessels and differentiate into vascular smooth muscle. Myographic studies determined that arteries receiving Tβ4-stimulated grafts were functionally indistinguishable from uninjured controls. Concurrent in vitro analyses showed that Tβ4 promoted proliferation, migration and trans-differentiation of cells via AKT signalling. This study is the first to demonstrate that omentum can provide progenitor cells for repair, thus revealing a novel and naturally occurring source of vascular smooth muscle for use in cell-based therapies. Furthermore, our data show that this system can be optimized with inducing factors, highlighting a more powerful therapeutic potential than that of its current clinical application. This is a paradigm-setting concept that lays the foundation for the use of chemical genetics to enhance therapeutic outcomes in a myriad of fields.
Collapse
Affiliation(s)
- Elaine L Shelton
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology and Department of Medicine, Vanderbilt University, Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
76
|
Papadopoulos IN, Christodoulou S, Economopoulos N. Asymptomatic omental granuloma following spillage of gallstones during laparoscopic cholecystectomy protects patients and influences surgeons' decisions: a review. BMJ Case Rep 2012; 2012:bcr.10.2011.4980. [PMID: 22665910 DOI: 10.1136/bcr.10.2011.4980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Spillage of gallstones in the peritoneal cavity during laparoscopic cholecystectomy (LC) occurs at rates varying from 5.7% to 16%. These gallstones often cannot be retrieved and can cause early and late abscesses at rates ranging from 0.08% to 1.4%. The case of an 86-year-old woman with colon cancer is described because during an elective right hemicolectomy a granuloma of the omentum with retained gallstones from LC performed 8 years earlier was unexpectedly found. Importantly, the gallstones were found high up in the abdominal cavity. Moreover, this report reaffirms the excellent response of the peritoneal cavity defence mechanisms for protecting patients against gallstones through asymptomatic omental granuloma. Current data indicate that every effort should be made to retrieve spilled gallstones, but routine conversion to an open cholecystectomy is not recommended. Identifying factors that impair host defence mechanisms should help surgeons' decision-making.
Collapse
Affiliation(s)
- Iordanis N Papadopoulos
- Fourth Surgery Department, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | | | | |
Collapse
|
77
|
Zhang YG, Huang JH, Hu XY, Sheng QS, Zhao W, Luo ZJ. Omentum-wrapped scaffold with longitudinally oriented micro-channels promotes axonal regeneration and motor functional recovery in rats. PLoS One 2011; 6:e29184. [PMID: 22195018 PMCID: PMC3241706 DOI: 10.1371/journal.pone.0029184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/22/2011] [Indexed: 01/19/2023] Open
Abstract
Background Tissue-engineered nerve scaffolds hold great potential in bridging large peripheral nerve defects. However, insufficient vascularization of nerve scaffolds limited neural tissues survival and regeneration, which hampered the successful implantation and clinical application of nerve scaffolds. The omentum possesses a high vascularization capacity and enhances regeneration and maturation of tissues and constructs to which it is applied. However, combined application of nerve scaffolds and omentum on axonal regeneration and functional recovery in the treatment of large peripheral nerve defects has rarely been investigated thus far. Methods In the present study, an omentum-wrapped collagen-chitosan scaffold was used to bridge a 15-mm-long sciatic nerve defect in rats. Rats that received nerve autografts or scaffolds alone were served as positive control or negative control, respectively. The axonal regeneration and functional recovery were examined by a combination of walking track analysis, electrophysiological assessment, Fluoro-Gold (FG) retrograde tracing, as well as morphometric analyses to both regenerated nerves and target muscles. Findings The results demonstrated that axonal regeneration and functional recovery were in the similar range between the omentum-wrapping group and the autograft group, which were significantly better than those in the scaffold alone group. Further investigation showed that the protein levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were significantly higher in the omentum-wrapping group than those in the scaffold alone group in the early weeks after surgery. Conclusion These findings indicate that the omentum-wrapped scaffold is capable of enhancing axonal regeneration and functional recovery, which might be served as a potent alternative to nerve autografts. The beneficial effect of omentum-wrapping on nerve regeneration might be related with the proteins produced by omentum.
Collapse
Affiliation(s)
- Yong-Guang Zhang
- Institution of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- 476 Clinical Division, Fuzhou General Hospital, Fuzhou, China
| | - Jing-Hui Huang
- Institution of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Yu Hu
- Institution of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing-Song Sheng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhao
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Ningxia Medical University, Yinchuan, China
| | - Zhuo-Jing Luo
- Institution of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail:
| |
Collapse
|
78
|
Ebata T, Takagi K, Nagino M. Hilar cholangioplasty using omentum for ductal defect in biliobiliary fistula. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:458-62. [PMID: 20886358 DOI: 10.1007/s00534-010-0332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE A non-circumferential defect of the biliary system is occasionally faced at surgery for biliobiliary fistula. The condition represents an uncommon but important complication of gallstone disease. Although direct closure and patch repair using the gallbladder cuff are recommended as first-line treatments, these procedures are sometimes technically difficult in the presence of severe inflammation. The authors, herein, present a novel procedure denoted as hilar cholangioplasty, which utilizes the pedicled omentum. METHODS An 80-year-old man was referred to our hospital because of cholangitis. Endoscopic retrograde cholangiography demonstrated a large gallstone astride the common hepatic duct with upstream biliary dilation, indicating biliobiliary fistula. Upon laparotomy, a 2 × 3 cm ductal defect was found just under the hepatic bifurcation, after removal of the gallstones and the gallbladder. The surrounding tissue, as well as the bile duct, was extensively inflamed with dense fibrosis, such that first-line repair methods could not be performed. As an alternative method, the pedicled omentum was used for cholangioplasty. RESULTS Postoperative cholangioscopy showed a yellow polypoid mass without constriction. Histologically, ordinary biliary epithelium overlaid the surface of the grafted omentum. The patient has remained well at 3-year follow-up. CONCLUSION The present method is simple and could be a promising option when standard repair methods cannot be applied.
Collapse
Affiliation(s)
- Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | |
Collapse
|
79
|
Abstract
The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being an ideal site because of immunologic, anatomic, and physiologic factors leading to a significant early graft loss. A huge amount of alternative sites have been used for islet transplantation in experimental animal models to provide improved engraftment and long-term survival minimizing surgical complications. The pancreas, gastric submucosa, genitourinary tract, muscle, omentum, bone marrow, kidney capsule, peritoneum, anterior eye chamber, testis, and thymus have been explored. Site-specific differences exist in term of islet engraftment, but few alternative sites have potential clinical translation and generally the evidence of a post-transplant islet function better than that reached after intraportal infusion is still lacking. This review discusses site-specific benefits and drawbacks taking into account immunologic, metabolic, and technical aspects to identify the ideal microenvironment for islet function and survival.
Collapse
Affiliation(s)
- Elisa Cantarelli
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
80
|
Basu J, Genheimer CW, Sangha N, Quinlan SF, Guthrie KI, Kelley R, Ilagan RM, Jain D, Bertram T, Ludlow JW. Organ specific regenerative markers in peri-organ adipose: kidney. Lipids Health Dis 2011; 10:171. [PMID: 21957910 PMCID: PMC3190351 DOI: 10.1186/1476-511x-10-171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/29/2011] [Indexed: 11/15/2022] Open
Abstract
Background Therapeutically bioactive cell populations are currently understood to promote regenerative outcomes in vivo by leveraging mechanisms of action including secretion of growth factors, site specific engraftment and directed differentiation. Constitutive cellular populations undoubtedly participate in the regenerative process. Adipose tissue represents a source of therapeutically bioactive cell populations. The potential of these cells to participate in various aspects of the regenerative process has been demonstrated broadly. However, organ association of secretory and developmental markers to specific peri-organ adipose depots has not been investigated. To characterize this topographical association, we explored the potential of cells isolated from the stromal vascular fraction (SVF) of kidney sourced adipose to express key renal associated factors. Results We report that renal adipose tissue is a novel reservoir for EPO expressing cells. Kidney sourced adipose stromal cells demonstrate hypoxia regulated expression of EPO and VEGF transcripts. Using iso-electric focusing, we demonstrate that kidney and non-kidney sourced adipose stromal cells present unique patterns of EPO post-translational modification, consistent with the idea that renal and non-renal sources are functionally distinct adipose depots. In addition, kidney sourced adipose stromal cells specifically express the key renal developmental transcription factor WT1. Conclusions Taken together, these data are consistent with the notion that kidney sourced adipose stromal (KiSAS) cells may be primed to recreate a regenerative micro-environment within the kidney. These findings open the possibility of isolating solid-organ associated adipose derived cell populations for therapeutic applications in organ-specific regenerative medicine products.
Collapse
Affiliation(s)
- Joydeep Basu
- Bioprocess Research and Assay Development, Tengion Inc, 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Chandra A, Srivastava RK, Kashyap MP, Kumar R, Srivastava RN, Pant AB. The anti-inflammatory and antibacterial basis of human omental defense: selective expression of cytokines and antimicrobial peptides. PLoS One 2011; 6:e20446. [PMID: 21647223 PMCID: PMC3101256 DOI: 10.1371/journal.pone.0020446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/19/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The wound healing properties of the human omentum are well known and have extensively been exploited clinically. However, the underlying mechanisms of these effects are not well understood. We hypothesize that the omentum tissue promotes wound healing via modulation of anti-inflammatory pathways, and because the omentum is rich in adipocytes, the adipocytes may modulate the anti-inflammatory response. Factors released by human omentum may affect healing, inflammation and immune defense. METHODOLOGY Six human omentum tissues (non obese, free from malignancy, and any other systemic disorder) were obtained during diagnostic laparoscopies having a negative outcome. Healthy oral mucosa (obtained from routine oral biopsies) was used as control. Cultured adipocytes derived from human omentum were exposed to lipopolysaccharide (LPS) (1-50 ng/mL) for 12-72 hours to identify the non-cytotoxic doses. Levels of expression (mRNA and protein) were carried out for genes associated with pro- and anti-inflammatory cytokine responses and antibacterial/antimicrobial activity using qRT-PCR, western blotting, and cell-based ELISA assays. RESULTS The study shows significant higher levels of expression (mRNA and protein) of several specific cytokines, and antibacterial peptides in the omentum tissues when compared to oral sub-mucosal tissues. In the validation studies, primary cultures of adipocytes, derived from human omentum were exposed to LPS (5 and 10 ng/mL) for 24 and 48 h. The altered expressions were more pronounced in cultured adipocytes cells when exposed to LPS as compared to the omentum tissue. CONCLUSIONS/SIGNIFICANCE Perhaps, this is the first report that provides evidence of expressional changes in pro- and anti-inflammatory cytokines and antibacterial peptides in the normal human omentum tissue as well as adipocytes cultured from this tissue. The study provides new insights on the molecular and cellular mechanisms of healing and defense by the omentum, and suggests the potential applicability of cultured adipocytes derived from the omentum for future therapeutic applications.
Collapse
Affiliation(s)
- Abhijit Chandra
- Department of Surgical Gastroenterology, Erstwhile KG Medical College, CSM Medical University, Lucknow, India
| | - Ritesh Kumar Srivastava
- Indian Institute of Toxicology Research, Lucknow, India
- Council of Scientific & Industrial Research, New Delhi, India
| | - Mahendra Pratap Kashyap
- Indian Institute of Toxicology Research, Lucknow, India
- Council of Scientific & Industrial Research, New Delhi, India
| | - Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Rajeshwar Nath Srivastava
- Department of Orthopaedic Surgery, Erstwhile KG Medical College, CSM Medical University, Lucknow, India
| | | |
Collapse
|
82
|
Lysaght J, Allott EH, Donohoe CL, Howard JM, Pidgeon GP, Reynolds JV. T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Br J Surg 2011; 98:964-74. [DOI: 10.1002/bjs.7498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Visceral adipose tissue may fuel obesity-associated chronic inflammation and tumorigenesis. T cells may be important in visceral adipose tissue in driving inflammation, but they have not yet been characterized in patients with cancer. This study aimed to characterize T lymphocytes in visceral adipose tissue and peripheral blood from patients with oesophageal adenocarcinoma.
Methods
Omental fat was taken from 35 patients with oesophageal adenocarcinoma at the start of surgery. Flow cytometry was performed to assess T cell activation status and cytokine production in omentum and peripheral blood.
Results
A large population of lymphocytes was present in the omentum. Omental CD4+ and CD8+ T cells displayed significantly enhanced expression of the T cell activation markers CD69 (P < 0·001) and CD107a (CD8+ T cells: P < 0·01), and significantly decreased CD62L expression (P < 0·05), compared with blood. Significantly higher proportions of CD45RO+ T cells compared with CD45RA+ T cells were present in omentum (P < 0·001 and P = 0·012 for CD4+ and CD8+ cells respectively). Interferon γ was the most abundant cytokine expressed by omental T cells, with a significantly higher level than in blood and subcutaneous adipose tissue (P < 0·01).
Conclusion
Visceral adipose tissue is a rich source of activated proinflammatory CD4+ and CD8+ T cells. It may fuel chronic inflammation via T cell-mediated pathways.
Collapse
Affiliation(s)
- J Lysaght
- Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Ireland
| | - E H Allott
- Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Ireland
| | - C L Donohoe
- Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Ireland
| | - J M Howard
- Department of Diagnostic Imaging, St James's Hospital, Dublin, Ireland
| | - G P Pidgeon
- Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Ireland
| | - J V Reynolds
- Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital and Trinity College Dublin, Ireland
| |
Collapse
|
83
|
Jones OY, Gok F, Rushing EJ, Horkayne-Szakaly I, Ahmed AA. Engraftment of donor mesenchymal stem cells in chimeric BXSB includes vascular endothelial cells and hepatocytes. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2011; 4:73-8. [PMID: 24198532 PMCID: PMC3781759 DOI: 10.2147/sccaa.s23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v.) versus intraperitoneal (i.p.), and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10–12 weeks) or long (62 weeks) posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize transplant conditions and tailor protocols that may in part be guided by fat and endothelial biomarkers. Furthermore, the role of liver chimerism in disease control and the nature of cellular communication among donor hematopoietic and mesenchymal stem cells in a chimeric host merit further investigation.
Collapse
Affiliation(s)
- Olcay Y Jones
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
84
|
Pancholi N, Patel J, Gudehithlu KP, Kraus MA, Dunea G, Arruda JAL, Singh AK. Culture of omentum-induced regenerating liver yielded hepatocyte-committed stem cells. Transl Res 2010; 156:358-68. [PMID: 21078497 DOI: 10.1016/j.trsl.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/26/2010] [Accepted: 09/01/2010] [Indexed: 12/11/2022]
Abstract
Earlier we showed that when omentum, activated by inert particles, is allowed to fuse to a wedge cut in the liver, it induces stem cell proliferation in the liver resulting in massive liver regeneration. Here, we attempt to culture stem cells from the omentum-induced regenerating liver tissue. Cells from regenerating liver tissue were harvested and cultured. Cultured cells were characterized by immune staining, fluorescence activated cell sorting analysis, growth factor assay, in vitro differentiation, and their ability to engraft to injured sites in vivo. Culture yielded cells with a mesenchymal stem cell phenotype that could be maintained in culture indefinitely. These cells, called regenerating liver stem cells, expressed both adult and embryonic stem cell markers, secreted high levels of vascular endothelial growth factor, and expressed albumin. When grown on matrigel in the presence of hepatocyte growth factor, these cells differentiated into hepatocyte-like cells in culture, but they did not differentiate to adipogenic and osteogenic lineages when grown in specific differentiation medium. The differentiated cells expressed α-fetoprotein and secreted high levels of albumin and urea. After systemic injection, the undifferentiated cells engrafted only to the injured sites in the liver and not to the normal areas of the liver. In conclusion, omentum-induced regenerating liver yields hepatocyte-committed stem cells in culture. Such cells could prove to be useful in cell transplantation therapies.
Collapse
Affiliation(s)
- Nishit Pancholi
- Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, and Hektoen Institute of Medicine, 627 S. Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate that adipose tissue undergoes a continuous process of remodeling that is pathologically accelerated in the obese state. Contrary to earlier dogma, adipocytes die and are replaced by newly differentiated ones. This review will summarize recent advances of our knowledge of the mechanisms that regulate adipose tissue remodeling and highlight the influences of obesity, depot, and sex, as well as the relevance of rodent models to humans. RECENT FINDINGS A substantial literature now points to the importance of dynamic changes in adipocyte and immune cell turnover, angiogenesis, and extracellular matrix remodeling in regulating the expandability and functional integrity of this tissue. In obesity, the macrophages are recruited, surrounding dead adipocytes and polarized toward an inflammatory phenotype. The number of dead adipocytes is closely associated with the pathophysiological consequences of obesity, including insulin resistance and hepatic steatosis. Further, there are substantial depot, sex and species differences in the extent of remodeling. SUMMARY Adipose tissue undergoes a continuous remodeling process that normally maintains tissue health, but may spin out of control and lead to adipocyte death in association with the recruitment and activation of macrophages, and systemic insulin resistance.
Collapse
Affiliation(s)
| | | | - Susan K. Fried
- Correspondence to Susan K. Fried PhD, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University, School of Medicine, 650 Albany St, EBRC-810, Boston, MA 02118, Tel: 617-638-7110; Fax: 617-638-7124;
| |
Collapse
|
87
|
Saqib NU, McGuire PG, Howdieshell TR. The omentum is a site of stromal cell-derived factor 1alpha production and reservoir for CXC chemokine receptor 4-positive cell recruitment. Am J Surg 2010; 200:276-82. [PMID: 20591406 DOI: 10.1016/j.amjsurg.2009.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanism of the omental response to injury remains poorly defined. This study investigates the omental reaction to a foreign body, examining the role of a chemokine ligand/receptor pair known to play a crucial role in angiogenesis and wound healing. METHODS A ventral hernia, surgically created in the abdominal wall of 6 swine, was repaired with silicone sheeting to activate the omentum. Omental thickness was determined by ultrasonography. Serial stromal cell-derived factor 1alpha (SDF-1alpha) concentrations were measured in blood, wound, and peritoneal fluids by enzyme-linked immunosorbent assay. RESULTS During the 14-day study period, serial ultrasonography showed a 20-fold increase in omental thickness, and enzyme-linked immunosorbent assay revealed a 4-fold increase in SDF-1alpha concentration in local wound fluid. Omental vessel count and vascular surface area were 8- to 10-fold higher in reactive omentum. Immunohistochemistry showed nearly complete replacement of control omental fat with CXC chemokine receptor 4 (CXCR4)-positive cells by day 14. CONCLUSIONS Activated omentum, important in the SDF-1alpha/CXCR4 axis, may serve as an intraperitoneal reservoir for recruitment of circulating bone marrow-derived cells vital to healing.
Collapse
Affiliation(s)
- Naveed U Saqib
- Department of Surgery, University of New Mexico HSC, Albuquerque, 87131, USA
| | | | | |
Collapse
|
88
|
Peritoneal adipocytes and their role in inflammation during peritoneal dialysis. Mediators Inflamm 2010; 2010:495416. [PMID: 20454534 PMCID: PMC2864891 DOI: 10.1155/2010/495416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/27/2010] [Accepted: 02/17/2010] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue is a major site of chronic inflammation associated with peritoneal dialysis (PD) frequently complicating peritonitis. Adiposity-associated inflammation plays a significant contributory role in the development of chronic inflammation in patients undergoing maintenance PD. However, the molecular and cellular mechanisms of this link remain uncertain. Adipose tissue synthesizes different adipokines and cytokines that orchestrate and regulate inflammation, insulin action, and glucose metabolism locally and systemically. In return, inflammation retards adipocyte differentiation and further exacerbates adipose dysfunction and inflammation. An understanding of the inflammatory roles played by adipose tissue during PD and the healing mechanism of injured mesothelium will help to devise new therapeutic approach to slow the progression of peritoneal damage during peritoneal dialysis. This article reviews the roles of peritoneal adipose tissue in chronic peritoneal inflammation under PD and in serosal repair during PD.
Collapse
|
89
|
Patel J, Gudehithlu KP, Dunea G, Arruda JAL, Singh AK. Foreign body-induced granulation tissue is a source of adult stem cells. Transl Res 2010; 155:191-9. [PMID: 20303468 DOI: 10.1016/j.trsl.2009.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 12/19/2022]
Abstract
In the current study, we have cultured and propagated the cells obtained from the granulation tissue that forms around perforated polyvinyl tubes placed in the subcutaneous space of normal rats. We found that these cells (called granulation tissue-derived stem cells [GTSCs]) expressed markers of embryonic pluripotent cells (Oct-4 and Nanog) and of adult stem cells (CXCR4 and Thy1.1) as well as produced high levels of vascular endothelial growth factor (VEGF) for up to 10 passages. By fluorescence-activated cell-sorting (FACS) analysis, GTSCs were positive for stem-cell surface markers CD90, CD59, and CD44 and were negative for CD45, which suggests that they were of mesenchymal origin and not of hematopoietic lineage. When incubated in specific differentiation medium, these cells transformed into adipogenic, osteogenic, and chondrogenic lineages, which shows that they were multipotent. Furthermore, after systemic injection, these cells were found in the vicinity of an injured site created in the liver but not in normal areas of the liver, which indicates their propensity to seek and engraft to an injured area in the body. We conclude that granulation tissue induced by a large foreign body is a convenient source of adult stem cells that can be maintained in culture and can be used to repair and regenerate injured tissue.
Collapse
Affiliation(s)
- Jilpa Patel
- Department of Medicine, Hektoen Institute of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
90
|
De Siena R, Balducci L, Blasi A, Montanaro MG, Saldarelli M, Saponaro V, Martino C, Logrieco G, Soleti A, Fiobellot S, Madeddu P, Rossi G, Ribatti D, Crovace A, Cristini S, Invernici G, Parati EA, Alessandri G. Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism. Exp Cell Res 2010; 316:1804-15. [PMID: 20156437 DOI: 10.1016/j.yexcr.2010.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 02/06/2023]
Abstract
Cell-based therapy could be a valid option to treat myocardial infarct (MI). Adipose-derived stromal cells (ADStCs) have demonstrated tissue regenerative potential including cardiomyogenesis. Omentum is an extremely rich source of visceral fat and its accumulation seems to correlate with cardiovascular diseases. We investigated the capacity of human fat Omentum-derived StCs (FOStCs) to affect heart function upon acute infarct in pigs induced by permanent ligation of the anterior interventricular artery (IVA). We demonstrated for the first time that the local injection of 50x10(6) of FOStCs ameliorates the functional parameters of post-infarct heart. Most importantly, histology of FOStCs treated hearts demonstrated a substantial improvement of cardiomyogenesis. In culture, FOStCs produced an impressive number and amount of angiogenic factors and cytokines. Moreover, the conditioned medium of FOStCs (FOStCs-CM) stimulates in vitro cardiac endothelial cells (ECs) proliferation and vascular morphogenesis and inhibits monocytes, EC activation and cardiomyocyte apoptosis. Since FOStCs in vivo did not trans-differentiate into cardiomyocyte-like cells, we conclude that FOStCs efficacy was presumably mediated by a potent paracrine mechanism involving molecules that concomitantly improved angiogenesis, reduced inflammation and prevented cardiomyocytes death. Our results highlight for the first time the important role that human FOStCs may have in cardiac regeneration.
Collapse
Affiliation(s)
- Rocco De Siena
- Medestea Research and Production Laboratories, Consorzio Carso, 70010 Valenzano, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, Okano T. Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 2009; 30:5943-9. [PMID: 19674781 DOI: 10.1016/j.biomaterials.2009.07.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/22/2009] [Indexed: 12/18/2022]
Abstract
The present study was designed to establish a novel tissue engineering approach for diabetes mellitus (DM) by fabricating a tissue sheet composed of pancreatic islet cells for in vivo transplantation. Pancreatic islet cell suspensions were obtained from Lewis rats, and plated onto temperature-responsive culture dishes coated with extracellular matrix (ECM) proteins. After the cells reached confluency, islet cells cultured on laminin-5 coated dishes were successfully harvested as a uniformly spread tissue sheet by lowering the culture temperature to 20 degrees C for 20 min. The functional activity of the islet cell sheets was confirmed by histological examination and Insulin secretion assay prior to in vivo transplantation. Histological examination revealed that the harvested islet cell sheet was comprised of insulin- (76%) and glucagon- (19%) positive cells, respectively. In vivo functionality of the islet cell sheet was maintained even 7 days after transplantation into the subcutaneous space of Lewis rats. The present study describes an approach to generate a functional sheet of pancreatic islet cells on laminin-5 coated temperature-responsive dishes, which can be subsequently transplanted in vivo. This study serves as the foundation for the creation of a novel cell-based therapy for DM to provide patients an alternative method.
Collapse
Affiliation(s)
- Hirofumi Shimizu
- Department of Surgery 1, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 2009; 39:1893-901. [PMID: 19585513 DOI: 10.1002/eji.200939349] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells recognize lipid antigens presented by CD1d and respond rapidly by killing tumor cells and release cytokines that activate and regulate adaptive immune responses. They are essential for tumor rejection in various mouse models, but clinical trials in humans involving iNKT cells have been less successful, partly due to their rarity in humans compared with mice. Here we describe an accumulation of functional iNKT cells in human omentum, a migratory organ with healing properties. Analysis of 39 omental samples revealed that T cells are the predominant lymphoid cell type and of these, 10% expressed the invariant Valpha24Jalpha18 TCR chain, found on iNKT cells, higher than in any other human organ tested to date. About 15% of omental hematopoietic cells expressed CD1d, compared with 1% in blood (p<0.001). Enriched omental iNKT cells killed CD1d(+) targets and released IFN-gamma and IL-4 upon activation. Omental iNKT-cell frequencies were lower in patients with severe obesity (p=0.005), and with colorectal carcinoma (p=0.004) compared with lean healthy subjects. These data suggest a novel role for the omentum in immune regulation and tumor immunity and identify it as a potential source of iNKT cells for therapeutic use.
Collapse
Affiliation(s)
- Lydia Lynch
- Education and Research Centre, St.Vincent's University Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
94
|
Biologic anastomosis: the first case of biologic coronary bypass surgery. J Thorac Cardiovasc Surg 2009; 138:775-7. [PMID: 19698872 DOI: 10.1016/j.jtcvs.2008.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/26/2008] [Indexed: 11/21/2022]
|
95
|
D'Andrilli A, Ibrahim M, Andreetti C, Ciccone AM, Venuta F, Rendina EA. Transdiaphragmatic Harvesting of the Omentum Through Thoracotomy for Bronchial Stump Reinforcement. Ann Thorac Surg 2009; 88:212-5. [DOI: 10.1016/j.athoracsur.2009.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
96
|
The omentum: anatomical, metabolic, and surgical aspects. J Gastrointest Surg 2009; 13:1138-46. [PMID: 19291335 DOI: 10.1007/s11605-009-0855-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/26/2009] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The omentum is acknowledged to have diverse functions in the pathophysiology of intra-abdominal disease. Its angiogenic properties act as a natural defense mechanism in peritonitis and intra-abdominal sepsis. With advancing technology the omentum is revealing itself as a new player in the field of molecular surgery with special reference to cancer, obesity and tissue reconstruction. MATERIALS AND METHODS This article reviews the existing and potential surgical applications of the omentum.
Collapse
|
97
|
Singh AK, Pancholi N, Patel J, Litbarg NO, Gudehithlu KP, Sethupathi P, Kraus M, Dunea G, Arruda JAL. Omentum facilitates liver regeneration. World J Gastroenterol 2009; 15:1057-64. [PMID: 19266597 PMCID: PMC2655194 DOI: 10.3748/wjg.15.1057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism of liver regeneration induced by fusing the omentum to a small traumatic injury created in the liver. We studied three groups of rats. In one group the rats were omentectomized; in another group the omentum was left in situ and was not activated, and in the third group the omentum was activated by polydextran particles.
METHODS: We pre-activated the omentum by injecting polydextran particles and then made a small wedge wound in the rat liver to allow the omentum to fuse to the wound. We monitored the regeneration of the liver by determining the ratio of liver weight/body weight, by histological evaluation (including immune staining for cytokeratin-19, an oval cell marker), and by testing for developmental gene activation using reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: There was no liver regeneration in the omentectomized rats, nor was there significant regeneration when the omentum was not activated, even though in this instance the omentum had fused with the liver. In contrast, the liver in the rats with the activated omentum expanded to a size 50% greater than the original, and there was histologically an interlying tissue between the wounded liver and the activated omentum in which bile ducts, containing cytokeratin-19 positive oval cells, extended from the wound edge. In this interlying tissue, oval cells were abundant and appeared to proliferate to form new liver tissue. In rats pre-treated with drugs that inhibited hepatocyte growth, liver proliferation was ongoing, indicating that regeneration of the liver was the result of oval cell expansion.
CONCLUSION: Activated omentum facilitates liver regeneration following injury by a mechanism that depends largely on oval cell proliferation.
Collapse
|
98
|
Merani S, Toso C, Emamaullee J, Shapiro AMJ. Optimal implantation site for pancreatic islet transplantation. Br J Surg 2008; 95:1449-61. [PMID: 18991254 DOI: 10.1002/bjs.6391] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Since the first report of successful pancreatic islet transplantation to reverse hyperglycaemia in diabetic rodents, there has been great interest in determining the optimal site for implantation. Although the portal vein remains the most frequently used site clinically, it is not ideal. About half of the islets introduced into the liver die during or shortly after transplantation. Although many patients achieve insulin independence after portal vein infusion of islets, in the long term most resume insulin injections. METHODS This review considers possible sites and techniques of islet transplantation in small and large animal models, and in humans. Metabolic, immunological and technical aspects are discussed. RESULTS AND CONCLUSION Many groups have sought an alternative site that might offer improved engraftment and long-term survival, together with reduced procedure-related complications. The spleen, pancreas, kidney capsule, peritoneum and omental pouch have been explored. The advantages and disadvantages of various sites are discussed in order to define the most suitable for clinical use and to direct future research.
Collapse
Affiliation(s)
- S Merani
- Surgical Medical Research Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
99
|
Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res 2008; 332:81-8. [PMID: 18196277 DOI: 10.1007/s00441-007-0560-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/20/2007] [Indexed: 01/06/2023]
Abstract
When rat omentum becomes activated by intraperitoneal injection of inert polydextran particles, these particles are rapidly surrounded by cells that express markers of adult stem cells (SDF-1alpha, CXCR4, WT-1) and of embryonic pluripotent cells (Oct-4, Nanog, SSEA-1). We have cultured such cells, because they may offer a convenient source of adult stem cells, and have found that they retain stem cell markers and produce high levels of vascular endothelial growth factor for up to ten passages. After systemic or local injection of these cultured cells into rats with acute injury of various organs, the cells specifically engraft at the injured sites. Thus, our experiments show that omental stromal cells can be cultured from activated omentum, and that these cells exhibit stem cell properties enabling them to be used for repair and possibly for the regeneration of damaged tissues.
Collapse
|
100
|
Singh AK, Gudehithlu KP, Litbarg NO, Sethupathi P, Arruda JAL, Dunea G. Transplanting fragments of diabetic pancreas into activated omentum gives rise to new insulin producing cells. Biochem Biophys Res Commun 2007; 355:258-62. [PMID: 17292859 DOI: 10.1016/j.bbrc.2007.01.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 01/29/2007] [Indexed: 12/19/2022]
Abstract
To determine if pancreatic progenitor cells can be induced to form insulin producing cells in vivo, we auto-transplanted fragments of streptozotocin-induced diabetic pancreas into omentum pre-injected with a foreign material. As shown previously, omentum pre-activated in this manner becomes rich in growth factors and progenitor cells. After auto-transplanting diabetic pancreas in the activated omentum, new insulin secreting cells appeared in the omentum in niches surrounding the foreign particles--a site previously shown to harbor progenitor cells. Extracts of these omenta contained measurable insulin. Four of eight diabetic animals treated in this manner became normoglycemic. This shows that new insulin producing cells can be regenerated from diabetic pancreas by auto-transplanting pancreatic fragments into the activated omentum, an environment rich in growth factors and progenitor cells.
Collapse
Affiliation(s)
- Ashok K Singh
- The Division of Nephrology, Stroger Hospital of Cook County, 637 South Wood Street (Durand Bldg 2nd Floor), Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|