51
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
52
|
Borghi M, Perez de Souza L, Yoshida T, Fernie AR. Flowers and climate change: a metabolic perspective. THE NEW PHYTOLOGIST 2019; 224:1425-1441. [PMID: 31257600 DOI: 10.1111/nph.16031] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/24/2019] [Indexed: 05/18/2023]
Abstract
Adverse climatic conditions at the time of flowering severely hinder crop yields and threaten the interactions between plants and their pollinators. These features depend on a common trait: the metabolism of flowers. In this Viewpoint article, we aim to provide insight into the metabolic changes that occur in flowers in response to changes in climate and emphasize that these changes severely impact the fitness of autogamous and allogamous species, plant-pollinator interactions, and overall ecosystem health. We review the biochemical processes that lead to failure of gamete development and to alterations of color, scent and nectar secretion. Then, making use of open access expression data, we examine the expression of genes that may drive these changes in response to heat and drought. Finally, we present measurements of metabolites from flowers exposed to a heat wave and discuss how the results of this short-term experiment may give rise to misleading conclusions regarding the positive effect of heat on flower fitness. We hope this article draws attention to this often-neglected dynamic and its important consequences.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | | | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| |
Collapse
|
53
|
Santiago JP, Sharkey TD. Pollen development at high temperature and role of carbon and nitrogen metabolites. PLANT, CELL & ENVIRONMENT 2019; 42:2759-2775. [PMID: 31077385 DOI: 10.1111/pce.13576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 05/11/2023]
Abstract
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high-temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high-temperature stress causes morpho-anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high-temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.
Collapse
Affiliation(s)
- James P Santiago
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| | - Thomas D Sharkey
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
54
|
Liu Y, Li J, Zhu Y, Jones A, Rose RJ, Song Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. FRONTIERS IN PLANT SCIENCE 2019; 10:938. [PMID: 31417579 PMCID: PMC6684746 DOI: 10.3389/fpls.2019.00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/04/2019] [Indexed: 05/21/2023]
Abstract
Grain legumes provide a rich resource of plant nutrition to human diets and are vital for food security and sustainable cropping. Heat stress during flowering has a detrimental effect on legume seed yield, mainly due to irreversible loss of seed number. To start with, we provide an overview of the developmental and physiological basis of controlling seed setting in response to heat stress. It is shown that every single process of seed setting including male and female gametophyte development, fertilization, and early seed/fruit development is sensitive to heat stress, in particular male reproductive development in legume crops is especially susceptible. A series of physiochemical processes including heat shock proteins, antioxidants, metabolites, and hormones centered with sugar starvation are proposed to play a key role in regulating legume seed setting in response to heat stress. The exploration of the molecular mechanisms underlying reproductive heat tolerance is in its infancy. Medicago truncatula, with a small diploid genome, and well-established transformation system and molecular platforms, has become a valuable model for testing gene function that can be applied to advance the physiological and molecular understanding of legume reproductive heat tolerance.
Collapse
Affiliation(s)
- Yonghua Liu
- College of Horticulture, Hainan University, Haikou, China
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
55
|
Ding X, Wang X, Li Q, Yu L, Song Q, Gai J, Yang S. Metabolomics Studies on Cytoplasmic Male Sterility during Flower Bud Development in Soybean. Int J Mol Sci 2019; 20:E2869. [PMID: 31212804 PMCID: PMC6627938 DOI: 10.3390/ijms20122869] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal reactive oxygen species (ROS) may mediate cytoplasmic male sterility (CMS). To observe the effect of ROS on soybean CMS, metabolite content and antioxidant enzyme activity in the flower buds between soybean N8855-derived CMS line and its maintainer were compared. Of the 612 metabolites identified, a total of 74 metabolites were significantly differentiated in flower buds between CMS line and its maintainer. The differential metabolites involved 32 differential flavonoids, 13 differential phenolamides, and 1 differential oxidized glutathione (GSSG) belonging to a non-enzymatic ROS scavenging system. We observed lower levels of flavonoids and antioxidant enzyme activities in flower buds of the CMS line than in its maintainer. Our results suggest that deficiencies of enzymatic and non-enzymatic ROS scavenging systems in soybean CMS line cannot eliminate ROS in anthers effectively, excessive accumulation of ROS triggered programmed cell death and ultimately resulted in pollen abortion of soybean CMS line.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xuan Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiang Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lifeng Yu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
56
|
Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in Plant Stress Physiology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 164:187-236. [PMID: 29470599 DOI: 10.1007/10_2017_55] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolomics is an essential technology for functional genomics and systems biology. It plays a key role in functional annotation of genes and understanding towards cellular and molecular, biotic and abiotic stress responses. Different analytical techniques are used to extend the coverage of a full metabolome. The commonly used techniques are NMR, CE-MS, LC-MS, and GC-MS. The choice of a suitable technique depends on the speed, sensitivity, and accuracy. This chapter provides insight into plant metabolomic techniques, databases used in the analysis, data mining and processing, compound identification, and limitations in metabolomics. It also describes the workflow of measuring metabolites in plants. Metabolomic studies in plant responses to stress are a key research topic in many laboratories worldwide. We summarize different approaches and provide a generic overview of stress responsive metabolite markers and processes compiled from a broad range of different studies. Graphical Abstract.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
57
|
Paupière MJ, Tikunov YM, Firon N, de Vos RCH, Maliepaard C, Visser RGF, Bovy AG. The effect of isolation methods of tomato pollen on the results of metabolic profiling. Metabolomics 2019; 15:11. [PMID: 30830456 PMCID: PMC6326007 DOI: 10.1007/s11306-018-1471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Untargeted metabolomics is a powerful tool to detect hundreds of metabolites within a given tissue and to compare the metabolite composition of samples in a comprehensive manner. However, with regard to pollen research such comprehensive metabolomics approaches are yet not well developed. To enable isolation of pollen that is tightly enclosed within the anthers of the flower, such as immature pollen, the current pollen isolation protocols require the use of a watery solution. These protocols raise a number of concerns for their suitability in metabolomics analyses, in view of possible metabolic activities in the pollen and contamination with anther metabolites. OBJECTIVES We assessed the effect of different sample preparation procedures currently used for pollen isolation for their suitability to perform metabolomics of tomato pollen. METHODS Pollen were isolated using different methods and the metabolic profiles were analysed by liquid chromatography-mass spectrometry (LC-MS). RESULTS Our results demonstrated that pollen isolation in a watery solution led to (i) rehydration of the pollen grains, inducing marked metabolic changes in flavonoids, phenylpropanoids and amino acids and thus resulting in a metabolite profile that did not reflect the one of mature dry pollen, (ii) hydrolysis of sucrose into glucose and fructose during subsequent metabolite extraction, unless the isolated and rehydrated pollen were lyophilized prior to extraction, and (iii) contamination with anther-specific metabolites, such as alkaloids, thus compromising the metabolic purity of the pollen fraction. CONCLUSION We conclude that the current practices used to isolate pollen are suboptimal for metabolomics analyses and provide recommendations on how to improve the pollen isolation protocol, in order to obtain the most reliable metabolic profile from pollen tissue.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Yury M Tikunov
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Nurit Firon
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, Israel
| | - Ric C H de Vos
- Bioscience, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Arnaud G Bovy
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
58
|
Fragallah SADA, Wang P, Li N, Chen Y, Lin S. Metabolomic Analysis of Pollen Grains with Different Germination Abilities from Two Clones of Chinese Fir (Cunninghamia lanceolata (Lamb) Hook). Molecules 2018; 23:E3162. [PMID: 30513683 PMCID: PMC6321011 DOI: 10.3390/molecules23123162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Abstract
Pollen grains produce certain metabolites, which can improve or inhibit germination and tube growth. Metabolomic analysis of germinating and growing Chinese fir pollen has not been reported. Therefore, this study aimed to analyse metabolites changes, content and expression in the germinating pollen of Chinese fir. To understand the metabolic differences, two clones from Chinese fir were selected. Metabolomics analyses were performed on three stages (1-, 24- and 48-h) during in vitro pollen germination. The metabolites profiles at different time points were analyzed by using liquid chromatography-mass spectrometry. The results showed that 171 peaks were screened; the corresponding differential metabolites of 121 peaks were classified into nine types of substances. The expression of metabolites showed significant differences across and between clones, and the variation was evident at all germination stages. The expression was obvious at the early stage of germination, which differed clearly from that of the late stage after pollen tube growth. Moreover, the metabolites were mainly enriched in 14 metabolic pathways. Pollen germination and tube growth and metabolites expressions changed per incubation time. Since this work is preliminary, we suggest further investigations to understand the relationship between the differential metabolites and pollen development, and factors affecting pollen germination process.
Collapse
Affiliation(s)
- Seif Aldin Dawina Abdallah Fragallah
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Faculty of Natural Resources and Environmental Studies, University of Kordofan, Elobied 160, Sudan.
| | - Pei Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
| | - Nuo Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory for Forest Adversity Physiological Ecology and Molecular Biology, Fuzhou 350002, China.
| | - Yu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
- Key Laboratory for Forest Adversity Physiological Ecology and Molecular Biology, Fuzhou 350002, China.
| | - Sizu Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
- Key Laboratory for Forest Adversity Physiological Ecology and Molecular Biology, Fuzhou 350002, China.
| |
Collapse
|
59
|
Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci U S A 2018; 115:E11188-E11197. [PMID: 30413622 DOI: 10.1073/pnas.1811492115] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plant reproduction requires long-distance growth of a pollen tube to fertilize the female gametophyte. Prior reports suggested that mutations altering synthesis of flavonoids, plant specialized metabolites that include flavonols and anthocyanins, impair pollen development in several species, but the mechanism by which flavonols enhanced fertility was not defined. Here, we used genetic approaches to demonstrate that flavonols enhanced pollen development by reducing the abundance of reactive oxygen species (ROS). We further showed that flavonols reduced high-temperature stress-induced ROS accumulation and inhibition of pollen tube growth. The anthocyanin reduced (are) tomato mutant had reduced flavonol accumulation in pollen grains and tubes. This mutant produced fewer pollen grains and had impaired pollen viability, germination, tube growth, and tube integrity, resulting in reduced seed set. Consistent with flavonols acting as ROS scavengers, are had elevated levels of ROS. The pollen viability, tube growth and integrity defects, and ROS accumulation in are were reversed by genetic complementation. Inhibition of ROS synthesis or scavenging of excess ROS with an exogenous antioxidant treatment also reversed the are phenotypes, indicating that flavonols function by reducing ROS levels. Heat stress resulted in increased ROS in pollen tubes and inhibited tube growth, with more pronounced effects in the are mutant that could be rescued by antioxidant treatment. These results are consistent with increased ROS inhibiting pollen tube growth and with flavonols preventing ROS from reaching damaging levels. These results reveal that flavonol metabolites regulate plant sexual reproduction at both normal and elevated temperatures by maintaining ROS homeostasis.
Collapse
|