51
|
Li T, Cheng X, Wang Y, Yin X, Li Z, Liu R, Liu G, Wang Y, Xu Y. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genomics 2019; 20:362. [PMID: 31072302 PMCID: PMC6509763 DOI: 10.1186/s12864-019-5733-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The glyoxalase system usually comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII). This system converts cytotoxic methylglyoxal (MG) into non-toxic D-lactate in the presence of reduced glutathione (GSH) in two enzymatic steps. Recently, a novel type of glyoxalase III (GLYIII) activity has observed in Escherichia coli that can detoxify MG into D-lactate directly, in one step, without a cofactor. Investigation of the glyoxalase enzymes of a number of plant species shows the importance of their roles in response both to abiotic and to biotic stresses. Until now, glyoxalase gene families have been identified in the genomes of four plants, Arabidopsis, Oryza sativa, Glycine max and Medicago truncatula but no similar study has been done with the grapevine Vitis vinifera L. RESULTS In this study, four GLYI-like, two GLYII-like and three GLYIII-like genes are identified from the genome database of grape. All these genes were analysed in detail, including their chromosomal locations, phylogenetic relationships, exon-intron distributions, protein domain organisations and the presence of conserved binding sites. Using quantitative real-time PCR analysis (qRT-PCR), the expression profiles of these genes were analysed in different tissues of grape, and also when under infection stress from downy mildew (Plasmopara viticola). The study reveals that most VvGLY-like genes had higher expressions in stem, leaf, tendril and ovule but lower expressions in the flower. In addition, most of the VvGLY-like gene members were P. viticola responsive with high expressions 6-12 h and 96-120 h after inoculation. However, VvGLYI-like1 was highly expressed 48 h after inoculation, similar to VvPR1 and VvNPR1 which are involved in the defence response. CONCLUSIONS This study identified the GLYI-like, GLYII-like and GLYIII-like full gene families of the grapevine. Based on a phylogenetic analysis and the presence of conserved binding sites, we speculate that these glyoxalase-like genes in grape encode active glyoxalases. Moreover, our study provides a basis for discussing the roles of VvGLYI-like, VvGLYII-like and VvGLYIII-like genes in grape's response to downy mildew infection. Our results shed light on the selection of candidate genes for downy mildew tolerance in grape and lay the foundation for further functional investigations of these glyoxalase genes.
Collapse
Affiliation(s)
- Tiemei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuting Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xiao Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Zhiqian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Ruiqi Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Guotian Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
52
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
53
|
You X, Zhang W, Hu J, Jing R, Cai Y, Feng Z, Kong F, Zhang J, Yan H, Chen W, Chen X, Ma J, Tang X, Wang P, Zhu S, Liu L, Jiang L, Wan J. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. PLANT CELL REPORTS 2019; 38:345-359. [PMID: 30649573 DOI: 10.1007/s00299-019-02370-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 05/06/2023]
Abstract
FLO15encodes a plastidic glyoxalase I protein, OsGLYI7, which affects compound starch granule formation and starch synthesis in rice endosperm. Starch synthesis in rice (Oryza sativa) endosperm is a sophisticated process, and its underlying molecular machinery still remains to be elucidated. Here, we identified and characterized two allelic rice floury endosperm 15 (flo15) mutants, both with a white-core endosperm. The flo15 grains were characterized by defects in compound starch granule development, along with decreased starch content. Map-based cloning of the flo15 mutants identified mutations in OsGLYI7, which encodes a glyoxalase I (GLYI) involved in methylglyoxal (MG) detoxification. The mutations of FLO15/OsGLYI7 resulted in increased MG content in flo15 developing endosperms. FLO15/OsGLYI7 localizes to the plastids, and the in vitro GLYI activity derived from flo15 was significantly decreased relative to the wild type. Moreover, the expression of starch synthesis-related genes was obviously altered in the flo15 mutants. These findings suggest that FLO15 plays an important role in compound starch granule formation and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
54
|
Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, Khaskheli MA, Zhong C, Jin Q, Zhang J. 1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels. FRONTIERS IN PLANT SCIENCE 2019; 10:124. [PMID: 30846992 PMCID: PMC6393328 DOI: 10.3389/fpls.2019.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 05/03/2023]
Abstract
Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016-2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
55
|
Wu Q, Gao S, Pan YB, Su Y, Grisham MP, Guo J, Xu L, Que Y. Heterologous expression of a Glyoxalase I gene from sugarcane confers tolerance to several environmental stresses in bacteria. PeerJ 2018; 6:e5873. [PMID: 30402355 PMCID: PMC6215438 DOI: 10.7717/peerj.5873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/01/2018] [Indexed: 01/02/2023] Open
Abstract
Glyoxalase I belongs to the glyoxalase system that detoxifies methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates. The concentration of MG increases rapidly under stress conditions. In this study, a novel glyoxalase I gene, designated as SoGloI was identified from sugarcane. SoGloI had a size of 1,091 bp with one open reading frame (ORF) of 885 bp encoding a protein of 294 amino acids. SoGloI was predicted as a Ni2+-dependent GLOI protein with two typical glyoxalase domains at positions 28-149 and 159-283, respectively. SoGloI was cloned into an expression plasmid vector, and the Trx-His-S-tag SoGloI protein produced in Escherichia coli was about 51 kDa. The recombinant E. coli cells expressing SoGloI compared to the control grew faster and tolerated higher concentrations of NaCl, CuCl2, CdCl2, or ZnSO4. SoGloI ubiquitously expressed in various sugarcane tissues. The expression was up-regulated under the treatments of NaCl, CuCl2, CdCl2, ZnSO4 and abscisic acid (ABA), or under simulated biotic stress conditions upon exposure to salicylic acid (SA) and methyl jasmonate (MeJA). SoGloI activity steadily increased when sugarcane was subjected to NaCl, CuCl2, CdCl2, or ZnSO4 treatments. Sub-cellular observations indicated that the SoGloI protein was located in both cytosol and nucleus. These results suggest that the SoGloI gene may play an important role in sugarcane's response to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Qibin Wu
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Shiwu Gao
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA, USA
| | - Yachun Su
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | | | - Jinlong Guo
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Liping Xu
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Youxiong Que
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| |
Collapse
|
56
|
Proietti S, Caarls L, Coolen S, Van Pelt JA, Van Wees SC, Pieterse CM. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2342-2356. [PMID: 29852537 PMCID: PMC6175328 DOI: 10.1111/pce.13357] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.
Collapse
Affiliation(s)
- Silvia Proietti
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Lotte Caarls
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Silvia Coolen
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Johan A. Van Pelt
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C.M. Van Wees
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
57
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
58
|
Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1186-1200. [PMID: 28425127 DOI: 10.1111/pce.12968] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/05/2023]
Abstract
Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anil K Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
59
|
Alam NB, Ghosh A. Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:54-64. [PMID: 29223068 DOI: 10.1016/j.plaphy.2017.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 05/05/2023]
Abstract
Stress induces the generation of Reactive Oxygen Species (ROS) that ultimately hampers the growth, development, and productivity of the plant. As an antioxidant enzyme, catalase converts hydrogen peroxide to water and keeps ROS level down to protect cells from stress-induced apoptosis. Here, a genome-wide analysis of catalase gene family has been performed in two model plants- Arabidopsis thaliana and Oryza sativa. Both Arabidopsis and rice has a small family of three and four genes, respectively; that code for seven proteins each. Detailed analysis of these members in terms of their structure, duplication, chromosomal position and proteins subcellular localization, as well as expression profiling under various developmental and environmental cues, was performed. Catalase proteins were mostly found to be localized in the cytoplasm, followed by peroxisome and mitochondria. Phylogenetically plant catalases showed strong divergence from their non-plant counterparts. Expression profiling revealed that AtCAT3 and OsCATA are the constitutively expressive member; while AtCAT2, OsCATA, and OsCATC are the stress-responsive members. Moreover, an altered level of total rice catalase enzyme activity and H2O2 level was observed under various abiotic stress conditions. This indicates the stress-responsive transcriptome as well as proteome alteration of catalase in the plant.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
60
|
Yan G, Xiao X, Wang N, Zhang F, Gao G, Xu K, Chen B, Qiao J, Wu X. Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS One 2018; 13:e0191159. [PMID: 29324881 PMCID: PMC5764358 DOI: 10.1371/journal.pone.0191159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
The glyoxalase pathway is composed of glyoxalase I (GLYI) and glyoxalase II (GLYII) and is responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione. The two glyoxalase enzymes play a crucial role in stress tolerance in various plant species. Recently, the GLY gene families have well been analyzed in Arabidopsis, rice and soybean, however, little is known about them in Chinese cabbage (Brassica rapa). Here, 16 BrGLYI and 15 BrGLYII genes were identified in the B. rapa genome, and the BrGLYI and BrGLYII proteins were both clustered into five subfamilies. The classifications, chromosomal distributions, gene duplications, exon–intron structures, localizations, conserved motifs and promoter cis-elements were also predicted and analyzed. In addition, the expression pattern of these genes in different tissues and their response to biotic and abiotic stresses were analyzed using publicly available data and a quantitative real-time PCR analysis (RT-qPCR). The results indicated that the expression profiles of BrGLY genes varied among different tissues. Notably, a number of BrGLY genes showed responses to biotic and abiotic stress treatments, including Plasmodiophora brassicae infection and various heavy metal stresses. Taken together, this study identifies BrGLYI and BrGLYII gene families in B. rapa and offers insight into their roles in plant development and stress resistance, especially in heavy metal stress tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Guixin Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xin Xiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Nian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Fugui Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Guizhen Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Kun Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Biyun Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jiangwei Qiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
61
|
Schmitz J, Rossoni AW, Maurino VG. Dissecting the Physiological Function of Plant Glyoxalase I and Glyoxalase I-Like Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1618. [PMID: 30483284 PMCID: PMC6240745 DOI: 10.3389/fpls.2018.01618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
The Arabidopsis genome annotation include 11 glyoxalase I (GLXI) genes, all encoding for protein members of the vicinal oxygen chelate (VOC) superfamily. The biochemical properties and physiological importance of three Arabidopsis GLXI proteins in the detoxification of reactive carbonyl species has been recently described. Analyses of phylogenetic relationships and conserved GLXI binding sites indicate that the other eight GLXI genes (GLXI-like) do not encode for proteins with GLXI activity. In this perspective article we analyse the structural features of GLXI and GLXI-like proteins, and explore splice forms and transcript abundance under abiotic stress conditions. Finally, we discuss future directions of research on this topic with respect to the substrate identification of GLXI and GLXI-like proteins and the need of reliable quantitative measurements of reactive carbonyl species in plant tissues.
Collapse
Affiliation(s)
- Jessica Schmitz
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- *Correspondence: Jessica Schmitz,
| | - Alessandro W. Rossoni
- Institute of Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Veronica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
62
|
Borysiuk K, Ostaszewska-Bugajska M, Vaultier MN, Hasenfratz-Sauder MP, Szal B. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2018; 9:667. [PMID: 29881392 PMCID: PMC5976750 DOI: 10.3389/fpls.2018.00667] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| | - Marie-Noëlle Vaultier
- UMR 1137, INRA, Ecologie et Ecophysiologie Forestières, Université de Lorraine, Nancy, France
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| |
Collapse
|
63
|
An B, Lan J, Deng X, Chen S, Ouyang C, Shi H, Yang J, Li Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2071. [PMID: 29259615 PMCID: PMC5723347 DOI: 10.3389/fpls.2017.02071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Collapse
Affiliation(s)
- Baoguang An
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Jie Lan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huiyun Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
64
|
Ganie SA, Pani DR, Mondal TK. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS One 2017; 12:e0182469. [PMID: 28846681 PMCID: PMC5573286 DOI: 10.1371/journal.pone.0182469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
DUF221 domain-containing genes (DDP genes) play important roles in developmental biology, hormone signalling transduction, and responses to abiotic stress. Therefore to understand their structural and evolutionary relationship, we did a genome-wide analysis of this important gene family in rice. Further, through comparative genomics, DDP genes from Oryza sativa subsp. (indica), nine different wild species of rice and Arabidopsis were also identified. We also found an expansion of the DDP gene families in rice and Arabidopsis which is due to the segmental duplication events in some of the gene family members. In general, a highly purifying selection was found acting on all the deduced paralogous and orthologous DDP gene pairs. The data from microarray and subsequent qRT-PCR analysis revealed that although several OsDDPs were differentially regulated under salinity stress, yet OsDDP6 was upregulated at all the developmental stages in salt tolerant rice genotype, FL478. Interestingly, OsDDP6 was found to be involved in proline metabolism pathway as indicated by protein network analysis. The diverse gene structures, varied transmembrane topologies and the differential expression patterns implied the functional diversity in DDP genes. Therefore, the comprehensive evolutionary analysis of DDP genes from different Oryza species and Arabidopsis performed in this study will provide the basis for further functional validation studies vis-à-vis DDP genes of rice and other plant species.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Dipti Ranjan Pani
- NBPGR Base Centre, ICAR-National Rice Research Institute Campus, Cuttack, Orissa, India
| | - Tapan Kumar Mondal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| |
Collapse
|
65
|
Liang Y, Wan N, Cheng Z, Mo Y, Liu B, Liu H, Raboanatahiry N, Yin Y, Li M. Whole-Genome Identification and Expression Pattern of the Vicinal Oxygen Chelate Family in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:745. [PMID: 28536594 PMCID: PMC5422514 DOI: 10.3389/fpls.2017.00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/20/2017] [Indexed: 05/25/2023]
Abstract
Vicinal oxygen chelate proteins (VOC) are members of the metalloenzyme superfamily, which plays roles in many biological reactions. Some members of the VOC superfamily have been systematically characterized but not in Brassica napus. In this study, 38 VOC genes were identified based on their conserved domains. The present results revealed that most of the BnaVOC genes have few introns, and all contained the typical VOC structure of βαβββ modules. The BnaVOC genes are distributed unevenly across 15 chromosomes in B. napus and occur as gene clusters on chromosomes C5 and A6. The synteny and phylogenetic analyses revealed that the VOC gene family is a consequence of mesopolyploidy events that occurred in Brassica evolution, and whole-genome duplication and segmental duplication played a major role in the expansion of the BnaVOC gene family. The expression profile analysis indicated that the expression of most BnaVOCs was increased in the leaves and late stage seeds. Further results indicated that seeds of B. napus with a high oil content show higher expression levels under drought stress conditions, suggesting that BnaVOCs not only respond to abiotic stress but may also affect lipid metabolism in drought stress. This present study provides a comprehensive overview of the VOC gene family and provides new insights into their biological function in B. napus evolution.
Collapse
Affiliation(s)
- Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Neng Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zao Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yufeng Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Baolin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hui Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
66
|
Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA. Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants. Int J Mol Sci 2017; 18:ijms18040898. [PMID: 28441779 PMCID: PMC5412477 DOI: 10.3390/ijms18040898] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous glyoxalase enzymatic pathway is involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis. The glyoxalase system has been more extensively studied in animals versus plants. Plant glyoxalases have been primarily associated with stress responses and their overexpression is known to impart tolerance to various abiotic stresses. In plants, glyoxalases exist as multigene families, and new roles for glyoxalases in various developmental and signaling pathways have started to emerge. Glyoxalase-based MG detoxification has now been shown to be important for pollination responses. During self-incompatibility response in Brassicaceae, MG is required to target compatibility factors for proteasomal degradation, while accumulation of glyoxalase leads to MG detoxification and efficient pollination. In this review, we discuss the importance of glyoxalase systems and their emerging biological roles in plants.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Abhinandan Kumar
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Logan Skori
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Sabine Scandola
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| | - Tina Wang
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - David Spiegel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| |
Collapse
|
67
|
Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Int J Mol Sci 2017; 18:ijms18040250. [PMID: 28358304 PMCID: PMC5412262 DOI: 10.3390/ijms18040250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
- Department of Plant Molecular Biology, University of Delhi South campus, New Delhi 110021, India.
| | - Mohammad Rokebul Hasan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
68
|
Kaur C, Tripathi AK, Nutan KK, Sharma S, Ghosh A, Tripathi JK, Pareek A, Singla-Pareek SL, Sopory SK. A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:565-576. [PMID: 27797431 DOI: 10.1111/tpj.13407] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
The cellular levels of methylglyoxal (MG), a toxic byproduct of glycolysis, rise under various abiotic stresses in plants. Detoxification of MG is primarily through the glyoxalase pathway. The first enzyme of the pathway, glyoxalase I (GLYI), is a cytosolic metalloenzyme requiring either Ni2+ or Zn2+ for its activity. Plants possess multiple GLYI genes, of which only some have been partially characterized; hence, the precise molecular mechanism, subcellular localization and physiological relevance of these diverse isoforms remain enigmatic. Here, we report the biochemical properties and physiological role of a putative chloroplast-localized GLYI enzyme, OsGLYI-8, from rice, which is strikingly different from all hitherto studied GLYI enzymes in terms of its intracellular localization, metal dependency and kinetics. In contrast to its predicted localization, OsGLYI-8 was found to localize in the nucleus along with its substrate, MG. Further, OsGLYI-8 does not show a strict requirement for metal ions for its activity, is functional as a dimer and exhibits unusual biphasic steady-state kinetics with a low-affinity and a high-affinity substrate-binding component. Loss of AtGLYI-2, the closest Arabidopsis ortholog of OsGLYI-8, results in severe germination defects in the presence of MG and growth retardation under salinity stress conditions. These defects were rescued upon complementation with AtGLYI-2 or OsGLYI-8. Our findings thus provide evidence for the presence of a GLYI enzyme and MG detoxification in the nucleus.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamlesh K Nutan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jayant K Tripathi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
69
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
70
|
Batth R, Singh K, Kumari S, Mustafiz A. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:198. [PMID: 28261251 PMCID: PMC5314155 DOI: 10.3389/fpls.2017.00198] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/02/2017] [Indexed: 05/03/2023]
Abstract
Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants.
Collapse
Affiliation(s)
- Rituraj Batth
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
| | - Kapil Singh
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and TechnologyJammu, India
- *Correspondence: Ananda Mustafiz, Sumita Kumari,
| | - Ananda Mustafiz
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
- *Correspondence: Ananda Mustafiz, Sumita Kumari,
| |
Collapse
|
71
|
Ghosh A. Genome-Wide Identification of Glyoxalase Genes in Medicago truncatula and Their Expression Profiling in Response to Various Developmental and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2017; 8:836. [PMID: 28620395 PMCID: PMC5452422 DOI: 10.3389/fpls.2017.00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/04/2017] [Indexed: 05/13/2023]
Abstract
Glyoxalase is an evolutionary highly conserved pathway present in all organisms. Conventional glyoxalase pathway has two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) that act sequentially to detoxify a highly cytotoxic compound methylglyoxal (MG) to D-lactate with the help of reduced glutathione. Recently, proteins with DJ-1/PfpI domain have been reported to perform the same conversion in a single step without the help of any cofactor and thus termed as "unique glyoxalase III" enzyme. Genome-wide analysis of glyoxalase genes have been previously conducted in Arabidopsis, rice and Soybean plants, but no such study was performed for one of the agricultural important model legume species, Medicago truncatula. A comprehensive genome-wide analysis of Medicago identified a total of putative 29 GLYI, 14 GLYII genes, and 5 glyoxalase III (DJ-1) genes. All these identified genes and their corresponding proteins were analyzed in detail including their chromosomal distribution, gene duplication, phylogenetic relationship, and the presence of conserved domain(s). Expression of all these genes was analyzed in different tissues as well as under two devastating abiotic stresses- salinity and drought using publicly available transcript data. This study revealed that MtGLYI-4, MtGLYII-6, and MtDJ-1A are the constitutive members with a high level of expression at all 17 analyzed tissues; while MtGLYI-1, MtGLYI-11, MtGLYI-5, MtGLYI-7, and MtGLYII-13 showed tissue-specific expression. Moreover, most of the genes displayed similar pattern of expression in response to both salinity and drought stress, irrespective of stress duration and tissue type. MtGLYI-8, MtGLYI-11, MtGLYI-6, MtGLYI-16, MtGLYI-21, and MtGLYII-9 showed up-regulation, while MtGLYI-17 and MtGLYI-7/9 showed down-regulation in response to both stresses. Interestingly, MtGLYI-14/15 showed completely opposite pattern of expression in these two stresses. This study provides an initial basis about the physiological significance of glyoxalase genes in plant development and stress response of Medicago that could be explored further.
Collapse
|
72
|
Wu S, Ning F, Wu X, Wang W. Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs. PLoS One 2016; 11:e0168959. [PMID: 28036352 PMCID: PMC5201266 DOI: 10.1371/journal.pone.0168959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/08/2016] [Indexed: 02/03/2023] Open
Abstract
The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.
Collapse
Affiliation(s)
- Si Wu
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fen Ning
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- College of Sciences, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
73
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
74
|
Zeng Z, Xiong F, Yu X, Gong X, Luo J, Jiang Y, Kuang H, Gao B, Niu X, Liu Y. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:62-71. [PMID: 27639962 DOI: 10.1016/j.plaphy.2016.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Glyoxalase I (Gly I) is a component of the glyoxalase system which is involved in the detoxification of methylglyoxal, a byproduct of glycolysis. In the present study, a gene of rice (Oryza sativa L., cv. Nipponbare) encoding Gly I was cloned and characterized. The quantitative real-time PCR analysis indicated that rice Gly I (OsGly I) was ubiquitously expressed in root, stem, leaf, leaf sheath and spikelet with varying abundance. OsGly I was markedly upregulated in response to NaCl, ZnCl2 and mannitol in rice seedlings. For further functional investigation, OsGly I was overexpressed in rice using Agrobacterium-mediated transformation. Transgenic rice lines exhibited increased glyoxalase enzyme activity, decreased methylglyoxal level and improved tolerance to NaCl, ZnCl2 and mannitol compared to wild-type plants. Enhancement of stress tolerance in transgenic lines was associated with reduction of malondialdehyde content which was derived from cellular lipid peroxidation. In addition, the OsGly I-overexpression transgenic plants performed higher seed setting rate and yield. Collectively, these results indicate the potential of bioengineering the Gly I gene in crops.
Collapse
Affiliation(s)
- Zhengming Zeng
- College of Life Science, Chongqing University, Chongqing 400030, China
| | - Fangjie Xiong
- College of Life Science, Chongqing University, Chongqing 400030, China
| | - Xiaohong Yu
- College of Life Science, Chongqing University, Chongqing 400030, China
| | - Xiaoping Gong
- College of Life Science, Chongqing University, Chongqing 400030, China
| | - Juntao Luo
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Sichuan Academy of Agricultural Sciences, Rice and Sorghum Research Institute, Luzhou Branch of National Rice Improvement Center, Ministry of Agriculture, Deyang 618000, China
| | - Yudong Jiang
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Sichuan Academy of Agricultural Sciences, Rice and Sorghum Research Institute, Luzhou Branch of National Rice Improvement Center, Ministry of Agriculture, Deyang 618000, China
| | - Haochi Kuang
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Sichuan Academy of Agricultural Sciences, Rice and Sorghum Research Institute, Luzhou Branch of National Rice Improvement Center, Ministry of Agriculture, Deyang 618000, China
| | - Bijun Gao
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Sichuan Academy of Agricultural Sciences, Rice and Sorghum Research Institute, Luzhou Branch of National Rice Improvement Center, Ministry of Agriculture, Deyang 618000, China
| | - Xiangli Niu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yongsheng Liu
- College of Life Science, Chongqing University, Chongqing 400030, China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
75
|
|
76
|
Heidel AJ, Kiefer C, Coupland G, Rose LE. Pinpointing genes underlying annual/perennial transitions with comparative genomics. BMC Genomics 2016; 17:921. [PMID: 27846808 PMCID: PMC5111240 DOI: 10.1186/s12864-016-3274-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Transitions between perennial and an annual life history occur often in plant lineages, but the genes that control whether a plant is an annual or perennial are largely unknown. To identify genes that confer differences between annuals and perennials we compared the gene content of four pairs of sister lineages (Arabidopsis thaliana/Arabidopsis lyrata, Arabis montbretiana/Arabis alpina, Arabis verna/Aubrieta parviflora and Draba nemorosa/Draba hispanica) in the Brassicaceae in which each pair contains one annual and one perennial, plus one extra annual species (Capsella rubella). RESULTS After sorting all genes in all nine species into gene families, we identified five families in which well-annotated genes are present in the perennials A. lyrata and A. alpina, but are not present in any of the annual species. For the eleven genes in perennials in these families, an orthologous pseudogene or otherwise highly diverged gene was found in the syntenic region of the annual species in six cases. The five candidate families identified encode: a kinase, an oxidoreductase, a lactoylglutathione lyase, a F-box protein and a zinc finger protein. By comparing the active gene in the perennial to the pseudogene or heavily altered gene in the annual, dN and dS were calculated. The low dN/dS values in one kinase suggest that it became pseudogenized more recently, while the other kinase, F-box, oxidoreductase and zinc-finger became pseudogenized closer to the divergence between the annual-perennial pair. CONCLUSIONS We identified five gene families that may be involved in the life history switch from perennial to annual. Considering the dN and dS data and whether syntenic pseudogenes were found and the potential functions of the genes, the F-box family is considered the most promising candidate for future functional studies to determine if it affects life history.
Collapse
Affiliation(s)
- Andrew J. Heidel
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Faculty of Biology & Pharmacy, Department of Bioinformatics, University of Jena, Ernst Abbe Pl 2, Jena, D-07743 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| | - Christiane Kiefer
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - George Coupland
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - Laura E. Rose
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| |
Collapse
|
77
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
78
|
Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli. PLoS One 2016; 11:e0159348. [PMID: 27415831 PMCID: PMC4945007 DOI: 10.1371/journal.pone.0159348] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG), which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI). It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6) belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250–670 fold) as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes.
Collapse
|
79
|
Alqurashi M, Gehring C, Marondedze C. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism. Int J Mol Sci 2016; 17:E852. [PMID: 27258261 PMCID: PMC4926386 DOI: 10.3390/ijms17060852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.
Collapse
Affiliation(s)
- May Alqurashi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Cambridge Centre for Proteomics, Cambridge System Biology, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge System Biology, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
80
|
Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection. Sci Rep 2016; 6:25493. [PMID: 27150822 PMCID: PMC4858701 DOI: 10.1038/srep25493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants.
Collapse
|
81
|
Ghosh A, Islam T. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC PLANT BIOLOGY 2016; 16:87. [PMID: 27083416 PMCID: PMC4833937 DOI: 10.1186/s12870-016-0773-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/11/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Glyoxalase pathway consists of two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) which detoxifies a highly cytotoxic metabolite methylglyoxal (MG) to its non-toxic form. MG may form advanced glycation end products with various cellular macro-molecules such as proteins, DNA and RNA; that ultimately lead to their inactivation. Role of glyoxalase enzymes has been extensively investigated in various plant species which showed their crucial role in salinity, drought and heavy metal stress tolerance. Previously genome-wide analysis of glyoxalase genes has been conducted in model plants Arabidopsis and rice, but no such study was performed in any legume species. RESULTS In the present study, a comprehensive genome database analysis of soybean was performed and identified a total of putative 41 GLYI and 23 GLYII proteins encoded by 24 and 12 genes, respectively. Detailed analysis of these identified members was conducted including their nomenclature and classification, chromosomal distribution and duplication, exon-intron organization, and protein domain(s) and motifs identification. Expression profiling of these genes has been performed in different tissues and developmental stages as well as under salinity and drought stresses using publicly available RNAseq and microarray data. The study revealed that GmGLYI-7 and GmGLYII-8 have been expressed intensively in all the developmental stages and tissues; while GmGLYI-6, GmGLYI-9, GmGLYI-20, GmGLYII-5 and GmGLYII-10 were highly abiotic stress responsive members. CONCLUSIONS The present study identifies the largest family of glyoxalase proteins to date with 41 GmGLYI and 23 GmGLYII members in soybean. Detailed analysis of GmGLYI and GmGLYII genes strongly indicates the genome-wide segmental and tandem duplication of the glyoxalase members. Moreover, this study provides a strong basis about the biological role and function of GmGLYI and GmGLYII members in soybean growth, development and stress physiology.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Amino Acid Sequence
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Droughts
- Exons
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genome, Plant/genetics
- Introns
- Lactoylglutathione Lyase/chemistry
- Lactoylglutathione Lyase/classification
- Lactoylglutathione Lyase/genetics
- Models, Molecular
- Multigene Family
- Phylogeny
- Plant Proteins/classification
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Domains
- Reverse Transcriptase Polymerase Chain Reaction
- Salinity
- Sequence Homology, Amino Acid
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/growth & development
- Stress, Physiological
- Thiolester Hydrolases/chemistry
- Thiolester Hydrolases/classification
- Thiolester Hydrolases/genetics
Collapse
Affiliation(s)
- Ajit Ghosh
- />Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Tahmina Islam
- />Plant Breeding and Biotechnology Laboratory, Department of Botany, Dhaka University, Dhaka, 1000 Bangladesh
| |
Collapse
|
82
|
Singh A, Jethva M, Singla-Pareek SL, Pareek A, Kushwaha HR. Analyses of Old "Prokaryotic" Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa. FRONTIERS IN PLANT SCIENCE 2016; 7:304. [PMID: 27014324 PMCID: PMC4792156 DOI: 10.3389/fpls.2016.00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old "prokaryotic" proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old "prokaryotic" proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old "prokaryotic" proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old "prokaryotic" proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old "prokaryotic" proteins in Arabidopsis and Oryza sativa.
Collapse
Affiliation(s)
- Anupama Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Minesh Jethva
- International Center for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Center for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Hemant R. Kushwaha
- International Center for Genetic Engineering and BiotechnologyNew Delhi, India
| |
Collapse
|
83
|
Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep 2016; 6:22583. [PMID: 26935041 PMCID: PMC4776286 DOI: 10.1038/srep22583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70-84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress.
Collapse
|
84
|
Mostafa I, Zhu N, Yoo MJ, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen S, El-Domiaty M. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. J Proteomics 2016; 138:1-19. [PMID: 26915584 DOI: 10.1016/j.jprot.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kelly M Balmant
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
85
|
Sharma S, Kaur C, Singla-Pareek SL, Sopory SK. OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast. FRONTIERS IN PLANT SCIENCE 2016; 7:62. [PMID: 26870074 PMCID: PMC4737904 DOI: 10.3389/fpls.2016.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 05/24/2023]
Abstract
SRO1 is an important regulator of stress and hormonal response in plants and functions by interacting with transcription factors and several other proteins involved in abiotic stress response. In the present study, we report OsRBD1, an RNA binding domain 1- containing protein as a novel interacting partner of OsSRO1a from rice. The interaction of OsSRO1a with OsRBD1 was shown in yeast as well as in planta. Domain-domain interaction study revealed that C-terminal RST domain of OsSRO1a interacts with the N-terminal RRM1 domain of OsRBD1 protein. Both the proteins were found to co-localize in nucleus. Transcript profiling under different stress conditions revealed co-regulation of OsSRO1a and OsRBD1 expression under some abiotic stress conditions. Further, co-transformation of both OsSRO1a and OsRBD1 in yeast conferred enhanced tolerance toward salinity, osmotic, and methylglyoxal treatments. Our study suggests that the interaction of OsSRO1a with OsRBD1 confers enhanced stress tolerance in yeast and may play an important role under abiotic stress responses in plants.
Collapse
|
86
|
Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1341. [PMID: 27679640 PMCID: PMC5020096 DOI: 10.3389/fpls.2016.01341] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
Collapse
Affiliation(s)
- Tahsina S. Hoque
- Department of Soil Science, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| |
Collapse
|
87
|
Kushwaha HR, Joshi R, Pareek A, Singla-Pareek SL. MATH-Domain Family Shows Response toward Abiotic Stress in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:923. [PMID: 27446153 PMCID: PMC4923191 DOI: 10.3389/fpls.2016.00923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/10/2016] [Indexed: 05/08/2023]
Abstract
Response to stress represents a highly complex mechanism in plants involving a plethora of genes and gene families. It has been established that plants use some common set of genes and gene families for both biotic and abiotic stress responses leading to cross-talk phenomena. One such family, Meprin And TRAF Homology (MATH) domain containing protein (MDCP), has been known to be involved in biotic stress response. In this study, we present genome-wide identification of various members of MDCP family from both Arabidopsis and rice. A large number of members identified in Arabidopsis and rice indicate toward an expansion and diversification of MDCP family in both the species. Chromosomal localization of MDCP genes in Arabidopsis and rice reveals their presence in a few specific clusters on various chromosomes such as, chromosome III in Arabidopsis and chromosome X in rice. For the functional analysis of MDCP genes, we used information from publicly available data for plant growth and development as well as biotic stresses and found differential expression of various members of the family. Further, we narrowed down 11 potential candidate genes in rice which showed high expression in various tissues and development stages as well as biotic stress conditions. The expression analysis of these 11 genes in rice using qRT-PCR under drought and salinity stress identified OsM4 and OsMB11 to be highly expressed in both the stress conditions. Taken together, our data indicates that OsM4 and OsMB11 can be used as potential candidates for generating stress resilient crops.
Collapse
Affiliation(s)
- Hemant R. Kushwaha
- Microbial Engineering, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Microbial Engineering, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek ;
| |
Collapse
|
88
|
Yan G, Lv X, Gao G, Li F, Li J, Qiao J, Xu K, Chen B, Wang L, Xiao X, Wu X. Identification and Characterization of a Glyoxalase I Gene in a Rapeseed Cultivar with Seed Thermotolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:150. [PMID: 26909093 PMCID: PMC4754733 DOI: 10.3389/fpls.2016.00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/28/2016] [Indexed: 05/07/2023]
Abstract
Glyoxalase I (GLYI) is a ubiquitous enzyme in all organisms that catalyzes the conversion of the potent cytotoxin methylglyoxal to S-D-lactoylglutathione. Although many reports suggest the importance of GLYI in the plant response to stress, its function in seeds requires further study. Here, we identified a heat-induced GLYI from Brassica napus seeds, BnGLYI, using a comparative proteomics approach. Two-dimensional gel analyses revealed that BnGLYI protein expression upon heat treatment was significantly elevated in thermotolerant seeds but was diminished in heat-sensitive seeds. The BnGLYI-2 and BnGLYI-3 genes from the heat-sensitive and thermotolerant cultivars, respectively, were characterized, and analyzed. Only two amino acid residue variations were found between the amino acid sequences of the two genes. Moreover, overexpressing BnGLYI-3 in yeast cells enhanced tolerance to heat and cold stress and significantly increased GLYI activity compared to overexpressing BnGLYI-2. In addition, BnGLYI-3 transformants showed enhanced superoxide dismutase activities under heat and cold treatment, whereas these activities were diminished for BnGLYI-2 transformants. Taken together, these results indicate that overexpression of the BnGLYI-3 gene imparts thermotolerance and cold tolerance in yeast and that the variations in BnGLYI-3 may play an important role in the responses to temperature stresses.
Collapse
|
89
|
Mostofa MG, Saegusa D, Fujita M, Tran LSP. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1055. [PMID: 26734015 PMCID: PMC4685665 DOI: 10.3389/fpls.2015.01055] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 05/03/2023]
Abstract
Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes.
Collapse
Affiliation(s)
- Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Daisuke Saegusa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki, Japan
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
90
|
Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi-Shinozaki K, Shinozaki K. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1114-23. [PMID: 26518251 DOI: 10.1111/tpj.13067] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Leaf senescence is the terminal phenotype of plant leaf development, and ethylene is a major plant hormone inducing leaf senescence. Recent studies have shown that abscisic acid (ABA) also induces leaf senescence. However, the detailed mechanisms of ABA-induced leaf senescence remain unclear. We focused on the A subfamily of stress-responsive NAC (SNAC-A) transcription factors, the expression of which is induced by abiotic stresses, particularly ABA. Gene expression analysis revealed that seven SNAC-A genes including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102 and ANAC032 were induced by long-term treatment with ABA and/or during age-dependent senescence. The SNAC-A septuple mutant clearly showed retardation of ABA-inducible leaf senescence. Microarray analysis indicated that SNAC-As induce ABA- and senescence-inducible genes. In addition, comparison of the expression profiles of the downstream genes of SNAC-As and ABA-responsive element (ABRE)-binding protein (AREB)/ABRE-binding factor (ABF) (AREB/ABFs) indicates that SNAC-As induce a different set of ABA-inducible genes from those mediated by AREB/ABFs. These results suggest that SNAC-As play crucial roles in ABA-induced leaf senescence signaling. We also discuss the function of SNAC-As in the transcriptional change of leaf senescence as well as in ABA response under abiotic stress conditions.
Collapse
Affiliation(s)
- Hironori Takasaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Miki Fujita
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takuya Yoshida
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Nakashima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Fumiyoshi Myouga
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kiminori Toyooka
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
91
|
Singh AK, Kumar R, Tripathi AK, Gupta BK, Pareek A, Singla-Pareek SL. Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. RICE (NEW YORK, N.Y.) 2015; 8:54. [PMID: 26134707 PMCID: PMC4488139 DOI: 10.1186/s12284-015-0054-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Na(+)/Ca(2+) Exchanger (NCX) protein family is a member of the Cation/Ca(2+) exchanger superfamily and its members play important roles in cellular Ca(2+) homeostasis. While the functions of NCX family of proteins is well understood in humans, not much is known about the total complement of Na(+)/Ca(2+) exchangers in plants and their role in various physiological and developmental processes. In the present study, we have identified all the NCX proteins encoded in the genomes of rice and Arabidopsis and studied their phylogeny, domain architecture and expression profiles across different tissues, at various developmental stages and under stress conditions. RESULTS Through whole genome investigation, we identified twenty-two NCX proteins encoded by fifteen genes in rice and sixteen NCX proteins encoded by thirteen genes in Arabidopsis. Based on phylogenetic reconstruction, these could be classified into five clades, members of most of which were found to possess distinct domain architecture. Expression profiling of the identified NCX genes using publicly available MPSS and microarray data showed differential expression patterns under abiotic stresses, and at various development stages. In rice, OsNCX1, OsNCX8, OsNCX9 and OsNCX15 were found to be highly expressed in all the plant parts and various developmental stages. qRT-PCR based expression analysis revealed that OsNCX3, OsNCX10 and OsNCX15 were highly induced by salt and dehydration stress. Besides, expression profiling showed differential regulation of rice NCX genes in response to calcium and EGTA. Interestingly, expression of none of the NCX genes was found to be co-regulated by NaCl and calcium. CONCLUSIONS Together, our results present insights into the potential role of NCX family of proteins in abiotic stresses and development. Findings of the present investigation should serve as a starting point for future studies aiming functional characterization of plant NCX family proteins.
Collapse
Affiliation(s)
- Anil Kumar Singh
- />Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
- />Present address: Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur -, 176061, H.P. India
| | - Ritesh Kumar
- />Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
- />Present address: Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701 Korea
| | - Amit K. Tripathi
- />Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Brijesh K. Gupta
- />Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh L. Singla-Pareek
- />Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
92
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
93
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
94
|
Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, Singh P, Singla-Pareek SL, Pareek A. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics 2015; 15:395-412. [PMID: 25523384 DOI: 10.1007/s10142-014-0429-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/23/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Cyclophilins are a set of ubiquitous proteins present in all subcellular compartments, involved in a wide variety of cellular processes. Comparative bioinformatics analysis of the rice and Arabidopsis genomes led us to identify novel putative cyclophilin gene family members in both the genomes not reported previously. We grouped cyclophilin members with similar molecular weight and subtypes together in the phylogenetic tree which indicated their co-evolution in rice and Arabidopsis. We also characterized a rice cyclophilin gene, OsCyp2-P (Os02g0121300), isolated from a salinity-tolerant landrace, Pokkali. Publicly available massively parallel signature sequencing (MPSS) and microarray data, besides our quantitative real time PCR (qRT-PCR) data suggest that transcript abundance of OsCyp2-P is regulated under different stress conditions in a developmental and organ specific manner. Ectopic expression of OsCyp2-P imparted multiple abiotic stress tolerance to transgenic tobacco plants as evidenced by higher root length, shoot length, chlorophyll content, and K(+)/Na(+) ratio under stress conditions. Transgenic plants also showed reduced lipid peroxidase content, electrolyte leakage, and superoxide content under stress conditions suggesting better ion homeostasis than WT plants. Localization studies confirmed that OsCyp2-P is localized in both cytosol and nucleus, indicating its possible interaction with several other proteins. The overall results suggest the explicit role of OsCyp2-P in bestowing multiple abiotic stress tolerance at the whole plant level. OsCyp2-P operates via reactive oxygen species (ROS) scavenging and ion homeostasis and thus is a promising candidate gene for enhancing multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Sumita Kumari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
The glyoxalase pathway is required for detoxification of cytotoxic metabolite MG (methylglyoxal) that would otherwise increase to lethal concentrations under adverse environmental conditions. Since its discovery 100 years ago, several roles have been assigned to glyoxalases, but, in plants, their involvement in stress response and tolerance is the most widely accepted role. The plant glyoxalases have emerged as multigene family and this expansion is considered to be important from the perspective of maintaining a robust defence machinery in these sessile species. Glyoxalases are known to be differentially regulated under stress conditions and their overexpression in plants confers tolerance to multiple abiotic stresses. In the present article, we review the importance of glyoxalases in plants, discussing possible roles with emphasis on involvement of the glyoxalase pathway in plant stress tolerance.
Collapse
|
96
|
Mostofa MG, Hossain MA, Fujita M. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. PROTOPLASMA 2015; 252:461-75. [PMID: 25164029 DOI: 10.1007/s00709-014-0691-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
Salinity in the form of abiotic stress adversely effects plant growth, development, and productivity. Various osmoprotectants are involved in regulating plant responses to salinity; however, the precise role of trehalose (Tre) in this process remains to be further elucidated. The present study investigated the regulatory role of Tre in alleviating salt-induced oxidative stress in hydroponically grown rice seedlings. Salt stress (150 and 250 mM NaCl) for 72 h resulted in toxicity symptoms such as stunted growth, severe yellowing, and leaf rolling, particularly at 250 mM NaCl. Histochemical observation of reactive oxygen species (ROS; O2 (∙-) and H2O2) indicated evident oxidative stress in salt-stressed seedlings. In these seedlings, the levels of lipoxygenase (LOX) activity, malondialdehyde (MDA), H2O2, and proline (Pro) increased significantly whereas total chlorophyll (Chl) and relative water content (RWC) decreased. Salt stress caused an imbalance in non-enzymatic antioxidants, i.e., ascorbic acid (AsA) content, AsA/DHA ratio, and GSH/GSSG ratio decreased but glutathione (GSH) content increased significantly. In contrast, Tre pretreatment (10 mM, 48 h) significantly addressed salt-induced toxicity symptoms and dramatically depressed LOX activity, ROS, MDA, and Pro accumulation whereas AsA, GSH, RWC, Chl contents, and redox status improved considerably. Salt stress stimulated the activities of SOD, GPX, APX, MDHAR, DHAR, and GR but decreased the activities of CAT and GST. However, Tre-pretreated salt-stressed seedlings counteracted SOD and MDHAR activities, elevated CAT and GST activities, further enhanced APX and DHAR activities, and maintained GPX and GR activities similar to the seedlings stressed with salt alone. In addition, Tre pretreatment enhanced the activities of methylglyoxal detoxifying enzymes (Gly I and Gly II) more efficiently in salt-stressed seedlings. Our results suggest a role for Tre in protecting against salt-induced oxidative damage attributed to reduced ROS accumulation, elevation of non-enzymatic antioxidants, and co-activation of the antioxidative and glyoxalase systems.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan,
| | | | | |
Collapse
|
97
|
Tripathi AK, Singh K, Pareek A, Singla-Pareek SL. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC PLANT BIOLOGY 2015; 15:42. [PMID: 25849155 PMCID: PMC4357127 DOI: 10.1186/s12870-015-0414-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/05/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Histone chaperones modulate chromatin architecture and hence play a pivotal role in epigenetic regulation of gene expression. In contrast to their animal and yeast counterparts, not much is known about plant histone chaperones. To gain insights into their functions in plants, we sought to identify histone chaperones from two model plant species and investigated their phylogeny, domain architecture and transcriptional profiles to establish correlation between their expression patterns and potential role in stress physiology and plant development. RESULTS Through comprehensive whole genome analyses of Arabidopsis and rice, we identified twenty-two and twenty-five genes encoding histone chaperones in these plants, respectively. These could be classified into seven different families, namely NAP, CAF1, SPT6, ASF1, HIRA, NASP, and FACT. Phylogenetic analyses of histone chaperones from diverse organisms including representative species from each of the major plant groups, yeast and human indicated functional divergence in NAP and CAF1C in plants. For the largest histone chaperone family, NAP, phylogenetic reconstruction suggested the presence of two distinct groups in plants, possibly with differing histone preferences. Further, to comment upon their physiological roles in plants, we analyzed their expression at different developmental stages, across various plant tissues, and under biotic and abiotic stress conditions using pre-existing microarray and qRT-PCR. We found tight transcriptional regulation of some histone chaperone genes during development in both Arabidopsis and rice, suggesting that they may play a role in genetic reprogramming associated with the developmental process. Besides, we found significant differential expression of a few histone chaperones under various biotic and abiotic stresses pointing towards their potential function in stress response. CONCLUSIONS Taken together, our findings shed light onto the possible evolutionary trajectory of plant histone chaperones and present novel prospects about their physiological roles. Considering that the developmental process and stress response require altered expression of a large array of genes, our results suggest that some plant histone chaperones may serve a regulatory role by controlling the expression of genes associated with these vital processes, possibly via modulating chromatin dynamics at the corresponding genetic loci.
Collapse
Affiliation(s)
- Amit K Tripathi
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Khushwant Singh
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh L Singla-Pareek
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
98
|
Kaur C, Kushwaha HR, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:682. [PMID: 26388885 PMCID: PMC4558467 DOI: 10.3389/fpls.2015.00682] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 05/21/2023]
Abstract
Methylglyoxal (MG) is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA, or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into 10 functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE) in the 1 kb upstream region of genes that were more than 10-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Hemant R. Kushwaha
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sudhir K. Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek, Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
99
|
Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P. Essentiality of nickel in plants: a role in plant stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:754. [PMID: 26442067 PMCID: PMC4585283 DOI: 10.3389/fpls.2015.00754] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/03/2015] [Indexed: 05/19/2023]
Abstract
The element Ni is considered an essential plant micronutrient because it acts as an activator of the enzyme urease. Recent studies have shown that Ni may activate an isoform of glyoxalase I, which performs an important step in the degradation of methylglyoxal (MG), a potent cytotoxic compound naturally produced by cellular metabolism. Reduced glutathione (GSH) is consumed and regenerated in the process of detoxification of MG, which is produced during stress (stress-induced production). We examine the role of Ni in the relationship between the MG cycle and GSH homeostasis and suggest that Ni may have a key participation in plant antioxidant metabolism, especially in stressful situations.
Collapse
Affiliation(s)
- Caio C. Fabiano
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| | - Tiago Tezotto
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura Luiz de QueirozPiracicaba, Brazil
| | - José L. Favarin
- Departamento de Produção Vegetal, Universidade de São Paulo, Escola Superior de Agricultura Luiz de QueirozPiracicaba, Brazil
| | - Joseph C. Polacco
- Interdisciplinary Plant Group, Department of Biochemistry, University of MissouriColumbia, MO, USA
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
- *Correspondence: Paulo Mazzafera, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Rua Monteiro Lobato 255, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
100
|
Detection of genomic loci associated with environmental variables using generalized linear mixed models. Genomics 2014; 105:69-75. [PMID: 25499197 DOI: 10.1016/j.ygeno.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/27/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2022]
Abstract
We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environmental variables, taking into account the population structure of sampled individuals. We used a simulation approach to generate datasets under demographically and selectively explicit models. These datasets were used to analyze and optimize GLMM capacity to detect the association between markers and selective coefficients as environmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect of different selective intensities on the efficiency of the method was determined. Finally, we apply these models to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain genes with functions related to temperature stress.
Collapse
|