51
|
Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey-predator interactions in the grazing food web of the marine ecosystem. PLoS One 2019; 14:e0208941. [PMID: 30625142 PMCID: PMC6326421 DOI: 10.1371/journal.pone.0208941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Labyrinthuleans (Labyrinthulea, Stramenopiles) are recognized as decomposers in marine ecosystems but their nutrient sources are not fully understood. We conducted two-membered culture experiments with labyrinthuleans and diatoms to discover where labyrinthuleans obtain their nutrients from. The results showed that Aplanochytrium strains obtained nutrients by consuming living diatoms. Aplanochytrium cells did not release digestive enzymes into the medium, but adhered to diatom cells via the tip of their characteristic ectoplasmic net system to obtain nutrients from them. The chloroplast and cell contents of the diatoms shrank and were absorbed, and then the number of Aplanochytrium cells rapidly increased as multiple aplanospores were released. To estimate the effect of labyrinthulean organisms including Aplanochytrium on marine ecosystem, we explored the dataset generated by the Tara Oceans Project from a wide range of oceanic regions. The average proportion of all labyrinthulean sequences to diatom sequences at each station was about 10%, and labyrinthulids, oblongichytrids, and aplanochytrids were the major constituent genera, accounting for more than 80% of labyrinthuleans. Therefore, these groups are suggested to greatly affect the marine ecosystem. There were positive correlations between aplanochytrids and phototrophs, green algae, and diatoms. At many stations, relatively large proportions of aplanochytrid sequences were detected in the size fraction larger than their cell size. This implied that Aplanochytrium cells increased their particle size by adhering to each other and forming aggregates with diatoms that are captured by larger zooplankton in the environment, thereby bypassing the food web pathway via aplanochytrids to higher predators. The intake of nutrients from diatoms by aplanochytrids represents a newly recognized pathway in the grazing food chain in the marine ecosystem.
Collapse
|
52
|
Leong HY, Su CA, Lee BS, Lan JCW, Law CL, Chang JS, Show PL. Development of Aurantiochytrium limacinum SR21 cultivation using salt-rich waste feedstock for docosahexaenoic acid production and application of natural colourant in food product. BIORESOURCE TECHNOLOGY 2019; 271:30-36. [PMID: 30261334 DOI: 10.1016/j.biortech.2018.09.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 05/11/2023]
Abstract
Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.
Collapse
Affiliation(s)
- Hui Yi Leong
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Chien-An Su
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Bo-Sheng Lee
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
53
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
54
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
55
|
Ortega-Berlanga B, Bañuelos-Hernández B, Rosales-Mendoza S. Efficient Expression of an Alzheimer's Disease Vaccine Candidate in the Microalga Schizochytrium sp. Using the Algevir System. Mol Biotechnol 2018; 60:362-368. [PMID: 29594986 DOI: 10.1007/s12033-018-0077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, where β-amyloid (Aβ) plays a key role in forming conglomerated senile plaques. The receptor of advanced glycation end products (RAGE) is considered a therapeutic target since it transports Aβ into the central nervous system, favoring the pathology progression. Due to the lack of effective therapies for AD, several therapeutic approaches are under development, being vaccines considered a promising alternative. Herein, the use of the Algevir system was explored to produce in the Schizochytrium sp. microalga the LTB:RAGE vaccine candidate. Algevir relies in an inducible geminiviral vector and led to yields of up to 380 µg LTB:RAGE/g fresh weight biomass at 48-h post-induction. The Schizochytrium-produced LTB:RAGE vaccine retained its antigenic activity and was highly stable up to temperatures of 60 °C. These data demonstrate the potential of Schizochytrium sp. as a platform for high production of thermostable recombinant antigens useful for vaccination against AD.
Collapse
Affiliation(s)
- Benita Ortega-Berlanga
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | - Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico.
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
56
|
Dellero Y, Rose S, Metton C, Morabito C, Lupette J, Jouhet J, Maréchal E, Rébeillé F, Amato A. Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer. Environ Microbiol 2018; 20:3057-3068. [DOI: 10.1111/1462-2920.14346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Younès Dellero
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Suzanne Rose
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Coralie Metton
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Christian Morabito
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale; Université Grenoble Alpes, CNRS, CEA, INRA; Grenoble Cedex 9 France
| |
Collapse
|
57
|
Iwata I, Honda D. Nutritional Intake by Ectoplasmic Nets of Schizochytrium aggregatum (Labyrinthulomycetes, Stramenopiles). Protist 2018; 169:727-743. [PMID: 30118923 DOI: 10.1016/j.protis.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
Abstract
Thraustochytrid cells attach to their food via ectoplasmic nets (ENs). Here, we analyzed the cause and effect relationship between the various forms and functions of ENs of Schizochytrium aggregatum. The ENs spread out over a large area forming a fine network to efficiently search for the experimental food source. After recognizing the experimental food source, the ENs that attached to the food source became thicker, and net elements developed. The thick ENs on the surface at the attachment site were enveloped in dense materials (fibrous materials), which were visualized as fibrous layers under a transmission electron microscope. Experiments using fluorescein diacetate and the fluorescent glucose analog 2-NBDG showed that the production rate of hydrolytic enzymes and the absorption rate of glucose by ENs of S. aggregatum increased in the presence of an experimental food source. Our results reveal that ENs change their shape and function according to the presence/absence of a food source.
Collapse
Affiliation(s)
- Izumi Iwata
- Graduate School of Natural Science, Konan University, 8-9-1, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, 8-9-1, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan
| | - Daiske Honda
- Institute for Integrative Neurobiology, Konan University, 8-9-1, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan; Faculty of Science and Engineering, Konan University, 8-9-1, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan.
| |
Collapse
|
58
|
Park H, Kwak M, Seo J, Ju J, Heo S, Park S, Hong W. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst Eng 2018; 41:1355-1370. [DOI: 10.1007/s00449-018-1963-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022]
|
59
|
A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105. Genes (Basel) 2018; 9:genes9040200. [PMID: 29642531 PMCID: PMC5924542 DOI: 10.3390/genes9040200] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 01/19/2023] Open
Abstract
Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.
Collapse
|
60
|
Hassett BT, Gradinger R. New Species of Saprobic Labyrinthulea (=Labyrinthulomycota) and the Erection of a gen. nov. to Resolve Molecular Polyphyly within the Aplanochytrids. J Eukaryot Microbiol 2018; 65:475-483. [PMID: 29265676 DOI: 10.1111/jeu.12494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
A culture of a unicellular heterotrophic eukaryote was established from pollen-baited seawater acquired from the nearshore environment in Tromsø, Norway. Light microscopy revealed the production of ectoplasmic nets and reproduction by biflagellated zoospores, as well as binary division. After culturing and subsequent nucleotide extraction, database queries of the isolate's 18S small ribosomal subunit coding region identified closest molecular affinity to Aplanochytrium haliotidis, a pathogen of abalone. Testing of phylogenetic hypotheses consistently grouped our unknown isolate and A. haliotidis among the homoplasious thraustochytrids. Transmission electron microscopy revealed complex cell walls comprised of electron-dense lamella that formed protuberances, some associated with bothrosomes. Co-culturing experiments with the marine fungus Penicillium brevicompactum revealed prolonged interactions with hyphal strands. Based on the combined information acquired from electron microscopy, life history information, and phylogenetic testing, we describe our unknown isolate as a novel species. To resolve molecular polyphyly within the aplanochytrids, we erect a gen. nov. that circumscribes our novel isolate and the former A. haliotidis within the thraustochytrids.
Collapse
Affiliation(s)
- Brandon T Hassett
- UiT Norges Arktiske Universtiet, BFE, NFH Bygget, Framstredet 6, Tromsø, 9019, Norway
| | - Rolf Gradinger
- UiT Norges Arktiske Universtiet, BFE, NFH Bygget, Framstredet 6, Tromsø, 9019, Norway
| |
Collapse
|
61
|
Jaritkhuan S, Suanjit S. Species diversity and polyunsaturated fatty acid content of thraustochytrids from fallen mangrove leaves in Chon Buri province, Thailand. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
63
|
Qi F, Zhang M, Chen Y, Jiang X, Lin J, Cao X, Huang J. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production. BIORESOURCE TECHNOLOGY 2017; 227:221-226. [PMID: 28038399 DOI: 10.1016/j.biortech.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/25/2023]
Abstract
To utilize lignocellulosic hydrolysate for docosahexaenoic acid (DHA) production, a novel mutant Aurantiochytrium sp. FN21 with strong tolerance against inhibitory lignocellulosic hydrolysate was obtained through continuous domestication processes from the parent strain Aurantiochytrium sp. FJU-512. Aurantiochytrium sp. FN21 can accumulate 21.3% and 30.7% more DHA compared to its parent strain cultured in fermentation medium and a medium with 50% (v/v) sugarcane bagasse hydrolysate (SBH), respectively. After optimization with different nitrogen sources, the highest lipid (11.84g/L) and DHA (3.15g/L) production were achieved in SBH. The results demonstrated that Aurantiochytrium sp. FN21 has the commercial applications for DHA production using lignocellulosic hydrolysate. In order to elucidate the tolerance mechanism, transcriptomic profiling of the two strains was studied. The highly up-regulated genes and corresponding cellular pathways (TCA cycle, amino acid biosynthesis, fatty acid metabolism and degradation of aromatic compounds) are considered to be associated with the hydrolysate-tolerance of Aurantiochytrium sp. FN21.
Collapse
Affiliation(s)
- Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Mingliang Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Youwei Chen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xianzhang Jiang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jinxin Lin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xiao Cao
- Fujian Vocational College of Bio-engineering, Fuzhou, Fujian 350002, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
64
|
Cui GZ, Ma Z, Liu YJ, Feng Y, Sun Z, Cheng Y, Song X, Cui Q. Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp. SD116. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Pan J, Del Campo J, Keeling PJ. Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes. J Eukaryot Microbiol 2016; 64:88-96. [PMID: 27329779 DOI: 10.1111/jeu.12342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
Abstract
Labyrinthulomycetes are heterotrophic stramenopiles that are ubiquitous in a wide range of both marine and freshwater habitats and play important roles in decomposition of organic matter. The diversity and taxonomy of Labyrinthulomycetes has been studied for many years, but we nevertheless lack both a comprehensive reference database and up-to-date phylogeny including all known diversity, which hinders many global insights into their ecological distribution and the relative importance of various subgroups in different environments. Here, we present a curated reference database and a phylogenetic tree of Labyrinthulomycetes small subunit ribosomal RNA (SSU or 18S rRNA) data. Based on this created reference database, we analyzed high-throughput environmental sequencing data, revealing many previously unknown environmental clades and exploring the ecological distribution of various subgroups. Particularly, a number of newly identified environmental clades that are widespread in the open ocean. Comparing the manually curated reference database to existing tools for identification of environmental sequences (e.g. PR2 or SILVA databases) suggests that the curated database provides a higher degree of specificity and a lower frequency of misidentification. The phylogenetic framework and database will be a useful tool for future ecological and evolutionary studies.
Collapse
Affiliation(s)
- Jingwen Pan
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
66
|
Sarker PK, Kapuscinski AR, Lanois AJ, Livesey ED, Bernhard KP, Coley ML. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus). PLoS One 2016; 11:e0156684. [PMID: 27258552 PMCID: PMC4892564 DOI: 10.1371/journal.pone.0156684] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/18/2016] [Indexed: 11/19/2022] Open
Abstract
We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.
Collapse
Affiliation(s)
- Pallab K. Sarker
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| | - Anne R. Kapuscinski
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| | - Alison J. Lanois
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| | - Erin D. Livesey
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| | - Katie P. Bernhard
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| | - Mariah L. Coley
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, United States of America
| |
Collapse
|
67
|
Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 2016; 100:4309-21. [DOI: 10.1007/s00253-016-7498-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
|
68
|
Abad S, Turon X. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization. Mar Drugs 2015; 13:7275-84. [PMID: 26690180 PMCID: PMC4699237 DOI: 10.3390/md13127064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022] Open
Abstract
Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.
Collapse
Affiliation(s)
- Sergi Abad
- Bioengineering Department, IQS, Ramon Llull University, Via Augusta 390, Barcelona 08017, Spain.
| | - Xavier Turon
- Bioengineering Department, IQS, Ramon Llull University, Via Augusta 390, Barcelona 08017, Spain.
| |
Collapse
|
69
|
Takao Y, Tomaru Y, Nagasaki K, Honda D. Ecological Dynamics of Two Distinct Viruses Infecting Marine Eukaryotic Decomposer Thraustochytrids (Labyrinthulomycetes, Stramenopiles). PLoS One 2015. [PMID: 26203654 PMCID: PMC4512727 DOI: 10.1371/journal.pone.0133395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that are considered as important decomposers in coastal ecosystems. However, because of a lack of estimation method for each genus or systematic group of them, relatively little is known about their ecology in situ. Previously, we reported two distinct types of virus infecting thraustochytrids (AuRNAV: reported as SssRNAV, and SmDNAV) suggesting they have wide distributions in the host-virus systems of coastal environments. Here we conducted a field survey from 2004 through 2005 to show the fluctuation pattern of thraustochytrids and their viruses in Hiroshima Bay, Japan. During the field survey, we monitored the dynamics of the two types of thraustochytrid-infecting virus: small viruses causing lysis of Aurantiochytrium sp. NIBH N1-27 (identified as AuRNAV) and the large viruses of Sicyoidochytrium minutum NBRC 102975 (similar to SmDNAV in physiology and morphology). Fluctuation patterns of the two distinct types of virus were different from each other. This may reflect the difference in the preference of organic substrates; i.e., it may be likely the host of AuRNAV (Aurantiochytrium sp.) increases utilizing algal dead bodies or feeble cells as the virus shows a large increase in abundance following raphidophyte blooms; whereas, the trophic nutrient supply for S. minutum may primarily depend on other constantly-supplied organic compounds because it did not show any significant change in abundance throughout the survey. Further study concerning the population composition of thraustochytrids and their viruses may demonstrate the microbial ecology (especially concerning the detrital food web) of marine environments.
Collapse
Affiliation(s)
- Yoshitake Takao
- Department of Marine Bioscience, Fukui Prefectural University, 1–1 Gakuencho, Obama, Fukui, 917–0003, Japan
- * E-mail:
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739–0452, Japan
| | - Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739–0452, Japan
| | - Daiske Honda
- Department of Biology, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe, 658–8501, Japan
| |
Collapse
|
70
|
Li J, Liu R, Chang G, Li X, Chang M, Liu Y, Jin Q, Wang X. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. BIORESOURCE TECHNOLOGY 2015; 177:51-57. [PMID: 25479393 DOI: 10.1016/j.biortech.2014.11.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Glucose and glycerol are useful carbon sources for the cultivation of Aurantiochytrium limacinum SR21. Glucose facilitates rapid growth and lipid synthesis, and glycerol promotes the accumulation of docosahexaenoic acid (DHA) in A. limacinum SR21. To improve the DHA productivity of A. limacinum SR21, shake flask and fed-batch cultures were performed using glucose and glycerol as mixed carbon sources (MCSs). Along with optimization of the MCSs, the best DHA yield and productivity (32.36 g/L and 337.1 mg/L/h) were obtained via fed-batch fermentation with maintenance of a constant air supply. The DHA productivity was 15.24% higher than that obtained using glucose as single carbon source (SCS). This study presents a highly efficient and economic strategy for the production of DHA by A. limacinum SR21.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guifang Chang
- Wilmar Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Xiangyu Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
71
|
Gustavsen JA, Winget DM, Tian X, Suttle CA. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front Microbiol 2014; 5:703. [PMID: 25566218 PMCID: PMC4266044 DOI: 10.3389/fmicb.2014.00703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.
Collapse
Affiliation(s)
- Julia A Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Xi Tian
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Departments of Botany, and Microbiology & Immunology, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
72
|
Abe E, Ikeda K, Nutahara E, Hayashi M, Yamashita A, Taguchi R, Doi K, Honda D, Okino N, Ito M. Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine. PLoS One 2014; 9:e102377. [PMID: 25090090 PMCID: PMC4121067 DOI: 10.1371/journal.pone.0102377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, 22:6n-3), have been reported to play roles in preventing cardiovascular diseases. The major source of DHA is fish oils but a recent increase in the global demand of DHA and decrease in fish stocks require a substitute. Thraustochytrids, unicellular marine protists belonging to the Chromista kingdom, can synthesize large amounts of DHA, and, thus, are expected to be an alternative to fish oils. DHA is found in the acyl chain(s) of phospholipids as well as triacylglycerols in thraustochytrids; however, how thraustochytrids incorporate DHA into phospholipids remains unknown. We report here a novel lysophospholipid acyltransferase (PLAT1), which is responsible for the generation of DHA-containing phosphatidylcholine and phosphatidylethanolamine in thraustochytrids. The PLAT1 gene, which was isolated from the genomic DNA of Aurantiochytrium limacinum F26-b, was expressed in Saccharomyces cerevisiae, and the FLAG-tagged recombinant enzyme was characterized after purification with anti-FLAG affinity gel. PLAT1 shows wide specificity for donor substrates as well as acceptor substrates in vitro, i.e, the enzyme can adopt lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine and lysophosphatidylinositol as acceptor substrates, and 15:0/16:0-CoA and DHA-CoA as donor substrates. In contrast to the in vitro experiment, only lysophosphatidylcholine acyltransferase and lysophosphatidylethanolamine acyltransferase activities were decreased in plat1-knockout mutants, resulting in a decrease of 16:0-DHA-phosphatidylcholine (PC) [PC(38∶6)] and 16:0-DHA-phosphatidylethanolamine (PE) [PE(38∶6)], which are two major DHA-containing phospholipids in A. limacinum F26-b. However, the amounts of other phospholipid species including DHA-DHA-PC [PC(44∶12)] and DHA-DHA-PE [PE(44∶12)] were almost the same in plat-knockout mutants and the wild-type. These results indicate that PLAT1 is the enzyme responsible for the generation of 16:0-DHA-PC and 16:0-DHA-PE in the thraustochytrid.
Collapse
Affiliation(s)
- Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Eri Nutahara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Ryo Taguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, Japan
| | - Kosaku Doi
- Graduate School of Natural Science, Konan University, Higashinada-ku, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Higashinada-ku, Kobe, Hyogo, Japan
| | - Daiske Honda
- Institute for Integrative Neurobiology, Konan University, Higashinada-ku, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Higashinada-ku, Kobe, Hyogo, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Bio-Archtechture Center, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
73
|
Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of Microalgae for Biodiesel Feedstock. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.47044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Takahashi Y, Yoshida M, Inouye I, Watanabe MM. Diplophrys mutabilis sp. nov., a New Member of Labyrinthulomycetes from Freshwater Habitats. Protist 2014; 165:50-65. [DOI: 10.1016/j.protis.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Accepted: 10/19/2013] [Indexed: 11/25/2022]
|
75
|
Gupta A, Wilkens S, Adcock JL, Puri M, Barrow CJ. Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production. ACTA ACUST UNITED AC 2013; 40:1231-40. [DOI: 10.1007/s10295-013-1324-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
Abstract
Marine heterotrophic microbes are capable of accumulating large amounts of lipids, omega-3 fatty acids, carotenoids, and have potential for biodiesel production. Pollen baiting using Pinus radiata pollen grain along with direct plating techniques were used in this study as techniques for the isolation of oil-producing marine thraustochytrid species from Queenscliff, Victoria, Australia. Thirteen isolates were obtained using either direct plating or using pine pollen, with pine pollen acting as a specific substrate for the surface attachment of thraustochytrids. The isolates obtained from the pollen baiting technique showed a wide range of docosahexaenoic acid (DHA) accumulation, from 11 to 41 % of total fatty acid content (TFA). Direct plating isolates showed a moderate range of DHA accumulation, from 19 to 25 % of TFA. Seven isolates were identified on the basis of 18S rRNA sequencing technique as Thraustochytrium species, Schizochytrium species, and Ulkenia species. Although both methods appear to result in the isolation of similar strains, pollen baiting proved to be a simpler method for the isolation of these relatively slow-growing organisms.
Collapse
Affiliation(s)
- Adarsha Gupta
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3216 Geelong VIC Australia
| | - Serena Wilkens
- grid.419676.b 0000 0000 9252 5808 Marine Biodiversity and Biosecurity, NIWA Kilbirnie Wellington New Zealand
| | - Jacqui L Adcock
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3216 Geelong VIC Australia
| | - Munish Puri
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3216 Geelong VIC Australia
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3220 Geelong VIC Australia
| | - Colin J Barrow
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3216 Geelong VIC Australia
- grid.1021.2 0000000105267079 Centre for Chemistry and Biotechnology Deakin University 3220 Geelong VIC Australia
| |
Collapse
|
76
|
Li Q, Wang X, Liu X, Jiao N, Wang G. Abundance and novel lineages of thraustochytrids in Hawaiian waters. MICROBIAL ECOLOGY 2013; 66:823-830. [PMID: 23942794 DOI: 10.1007/s00248-013-0275-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Thraustochydrids has been known for their ubiquitous distribution in the ocean. However, a few efforts have been made to investigate their ecology. In this study, we have applied molecular method, acriflavine direct detection, and classical oceanographic methods to investigate the abundance and diversity of thraustochytrids in the North Pacific subtropical gyre. Our results revealed interesting temporal and spatial variations of their population. Out of three seasons (spring, summer, and fall), cruise Hawaii Ocean Time-series (HOT)-216 during November 2009 obtained the highest abundance of thraustochytrids ranging from 1,890 (Station S1C1, 45 m) to 630,000 (Station S2C12, 100 m) cells L(-1) of seawater, which accounted for a 0.79 to 281.0 % biomass ratio to that of bacteria in terms of gram carbon per liter. A patchy distribution of these organisms was widely observed in the water column and they were somehow related to the maximum chlorophyll layers. A total of 25 operational taxonomic units (OTUs) from cruise HOT-216 formed four phylogroups in the specific labyrinthulomycetes 18S rRNA-based phylogenetic tree, with the largest group of 20 OTUs fell into the Aplanochytrium cluster and the others aligned with uncultured clones or none, thus appeared to be undescribed. This study indicates the presence of new thraustochytrids lineages and their quantitative importance in the marine water column.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | | | | | | | | |
Collapse
|
77
|
Nagano N, Taoka Y, Honda D, Hayashi M. Effect of trace elements on growth of marine eukaryotes, tharaustochytrids. J Biosci Bioeng 2013; 116:337-9. [DOI: 10.1016/j.jbiosc.2013.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/09/2013] [Accepted: 03/25/2013] [Indexed: 11/25/2022]
|
78
|
Santagapita P, Rosa S, Mazzobre MF, Cueto M, de Pilar Buera M, Galvagno M. Differential scanning calorimetry evaluation of oxidation stability of docosahexaenoic acid in microalgae cells and their extracts. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Patricio Santagapita
- Departamento de Industrias y Departamento de Química Orgánica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (FCEyN-UBA) & Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Intendente Güiraldes 2160, CP 1428; Buenos Aires; Argentina
| | - Silvina Rosa
- INGEBI-(CONICET), Vuelta de Obligado 2490, CP 1428; Ciudad de Buenos Aires; Argentina
| | - María Florencia Mazzobre
- Departamento de Industrias y Departamento de Química Orgánica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (FCEyN-UBA) & Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Intendente Güiraldes 2160, CP 1428; Buenos Aires; Argentina
| | - Mario Cueto
- Departamento de Industrias y Departamento de Química Orgánica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (FCEyN-UBA) & Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Intendente Güiraldes 2160, CP 1428; Buenos Aires; Argentina
| | - María de Pilar Buera
- Departamento de Industrias y Departamento de Química Orgánica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (FCEyN-UBA) & Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Intendente Güiraldes 2160, CP 1428; Buenos Aires; Argentina
| | | |
Collapse
|
79
|
Gao M, Song X, Feng Y, Li W, Cui Q. Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp. SD116. J Oleo Sci 2013; 62:143-51. [DOI: 10.5650/jos.62.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
80
|
Iwasaka H, Aki T, Adachi H, Watanabe K, Kawamoto S, Ono K. Utilization of Waste Syrup for Production of Polyunsaturated Fatty Acids and Xanthophylls by Aurantiochytrium. J Oleo Sci 2013; 62:729-36. [DOI: 10.5650/jos.62.729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
81
|
Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 2012; 30:1733-45. [DOI: 10.1016/j.biotechadv.2012.02.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/03/2012] [Accepted: 02/21/2012] [Indexed: 12/01/2022]
|
82
|
Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. BIORESOURCE TECHNOLOGY 2012; 123:8-14. [PMID: 22929740 DOI: 10.1016/j.biortech.2012.07.068] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
During the fermentation process, dissolved oxygen values and carbon-to-nitrogen ratios are critical factors influencing DHA productivity. This study employed an intermittent oxygen feeding method to maintain a 50% dissolved oxygen level and produced a dissolved oxygen fluctuation environment to facilitate both Aurantiochytrium limacinum SR21 growth and lipid accumulation. Study results indicated that at a 1.25 C:N ratio and medium composition of 100gL(-1) glycerol, 40gL(-1) yeast extract, and 40gL(-1) peptone, A. limacinum SR21 achieved biomass at 61.76gL(-1), lipid content at 65.2%, DHA concentration at 20.3gL(-1), and DHA productivity at 122.62mgL(-1)h(-1), this result were better than most similar researches. Dissolved oxygen fluctuation environment also altered the fatty acid composition of A. limacinum SR21. In the late period of the fermentation process, C16:0 fatty acid ratios decreased significantly to below 5%, and C22:6 fatty acid ratios increased to 70%.
Collapse
Affiliation(s)
- Ting Yen Huang
- Chemical Engineering Department, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | |
Collapse
|
83
|
Armenta RE, Valentine MC. Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2154-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Chaung KC, Chu CY, Su YM, Chen YM. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2012; 2:42. [PMID: 22883641 PMCID: PMC3485123 DOI: 10.1186/2191-0855-2-42] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022] Open
Abstract
This study explored the influence of various culture conditions on the biomass, lipid content, production of docosahexaenoic acid (DHA), and fatty acid composition of Aurantiochytrium mangrovei strain BL10. The variables examined in this study include the species and concentration of salt, the concentrations of the two substrates glucose and yeast extract, the level of dissolved oxygen, the cerulenin treatment, and the stages of BL10 growth. Our results demonstrate that BL10 culture produces maximum biomass when salinity levels are between 0.2 and 3.0%. Decreasing salinity to 0.1% resulted in a considerable decrease in the biomass, lipid content, DHA production, and DHA to palmitic acid (PA) (DHA/PA) ratio, signifying deterioration in the quality of the oil produced. The addition of 0.9% sodium sulfate to replenish salinity from 0.1% to 1.0% successfully recovered biomass, lipid content and DHA production levels; however, this also led to a decrease in DHA/PA ratio. An increase in oxygen and cerulenin levels resulted in a concomitant decrease in the DHA to docosapentaenoic acid (DPA) (DHA/DPA) ratio in BL10 oil. Furthermore, the DHA/DPA and DHA/PA ratios varied considerably before and after the termination of cell division, which occurred around the 24 hour mark. These results could serve as a foundation for elucidating the biochemistry underlying the accumulation of lipids, and a definition of the extrinsic (environmental or nutritional) and intrinsic (cell growth stage) factors that influence lipid quality and the production of DHA by BL10.
Collapse
|
85
|
Abad S, Turon X. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnol Adv 2012; 30:733-41. [DOI: 10.1016/j.biotechadv.2012.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
|
86
|
Sakaguchi K, Matsuda T, Kobayashi T, Ohara JI, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl Environ Microbiol 2012; 78:3193-202. [PMID: 22344656 PMCID: PMC3346472 DOI: 10.1128/aem.07129-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.
Collapse
Affiliation(s)
- Keishi Sakaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Matsuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Kobayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichiro Ohara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Rie Hamaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Nagano
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mayumi Ueda
- Graduate School of Natural Science, Konan University, Higashinada, Kobe, Hyogo, Japan
| | - Daiske Honda
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yuji Okita
- Nippon Suisan Kaisha, Ltd., Tokyo, Japan
| | | | | | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Bio-Architecture Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
87
|
Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. BIORESOURCE TECHNOLOGY 2012; 109:287-91. [PMID: 22023965 DOI: 10.1016/j.biortech.2011.09.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 05/23/2023]
Abstract
Optimum conditions of temperature, salinity and glucose concentration were investigated for squalene production of the strain of Aurantiochytrium sp. 18 W-13a, with a high content of squalene. Squalene production by this strain was optimum at 25 °C, 25-50% seawater concentration and 2-6% glucose concentration. When this strain was grown in the optimum condition, the squalene content and production of approximately 171 mg/g dry weight and 0.9 g/L were much higher than that previously reported in thraustochytrids, plants and yeasts, respectively. Therefore, 18 W-13a could be used as an alternative source of commercial squalene.
Collapse
Affiliation(s)
- Atsushi Nakazawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 2012; 93:2215-31. [PMID: 22252264 DOI: 10.1007/s00253-011-3856-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C(20)) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A-H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C(20), C(22), omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50-61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20-30% TFA) and the sum of saturated FA was in the range of 32-51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.
Collapse
|
89
|
Nakazawa A, Matsuura H, Kose R, Ito K, Ueda M, Honda D, Inouye I, Kaya K, Watanabe MM. Optimization of Biomass and Fatty Acid Production by Aurantiochytrium sp. Strain 4W-1b. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proenv.2012.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
90
|
Hong DD, Anh HTL, Thu NTH. STUDY ON BIOLOGICAL CHARACTERISTICS OF HETEROTROPHIC MARINE MICROALGA-SCHIZOCHYTRIUM MANGROVEI PQ6 ISOLATED FROM PHU QUOC ISLAND, KIEN GIANG PROVINCE, VIETNAM(1). JOURNAL OF PHYCOLOGY 2011; 47:944-954. [PMID: 27020029 DOI: 10.1111/j.1529-8817.2011.01012.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Schizochytrium sp. PQ6, a heterotrophic microalga isolated from Phu Quoc (PQ) Island in the Kien Giang province of Vietnam, contains a high amount of docosahexaenoic acid (DHA, C22:6n-3). In this study, the culture conditions are developed to maximize biomass and DHA production. Nucleotide sequence analysis of partial 18S rRNA gene from genomic DNA showed that PQ6 has a phylogenetic relationship close to Schizochytrium mangrovei Raghu-Kumar. The highest growth rate and DHA accumulation of this strain were obtained in 6.0% glucose, 1.0% yeast extract, 50% artificial seawater (ASW), and pH 7 at 28°C. In addition, carbon and nitrogen sources could be replaced by glycerol, ammonium acetate, sodium nitrate, or fertilizer N-P-K. Total lipid content reached 38.67% of dry cell weight (DCW), in which DHA and eicosapentaenoic acid (EPA, C20:5n-3) contents accounted for 43.58% and 0.75% of the total fatty acid (TFA), respectively. In 5 and 10 L fermenters, the cell density, DCW, total lipid content, and maximum DHA yield were 46.50 × 10(6) cells · mL(-1) , 23.7 g · L(-1) , 38.56% of DCW, and 8.71 g · L(-1) (in 5 L fermenter), respectively, and 49.71 × 10(6) cells · mL(-1) , 25.34 g · L(-1) , 46.23% of DCW, and 11.55 g · L(-1) (in 10 L fermenter), respectively. Biomass of PQ6 strain possessed high contents of Na, I, and Fe (167.185, 278.3, and 43.69 mg · kg(-1) DCW, respectively). These results serve as a foundation for the efficient production of PQ6 biomass that can be used as a food supplement for humans and aquaculture in the future.
Collapse
Affiliation(s)
- Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Hoang Thi Lan Anh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ngo Thi Hoai Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
91
|
Rosa SM, Galvagno MA, Vélez CG. Adjusting culture conditions to isolate thraustochytrids from temperate and cold environments in southern Argentina. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
92
|
Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M. The distribution of extracellular cellulase activity in marine Eukaryotes, thraustochytrids. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:133-136. [PMID: 20443042 DOI: 10.1007/s10126-010-9297-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/26/2010] [Indexed: 05/29/2023]
Abstract
Cellulolytic ability was evaluated in 19 strains of thraustochytrids, representing nine genera, using carboxymethylcellulose (CMC) as a substrate. Extracellular cellulolytic enzyme activity was determined in the culture supernatants during cell growth. CMC hydrolysis was observed in 14 out of the 19 strains examined. These belonged to the genera Aplanochytrium, Botryochytrium, Oblongichytrium, Parietichytrium, Schizochytrium, Sicyoidochytrium, Thraustochytrium and Ulkenia. On the other hand, cellulolytic enzyme activity was not detected in any strains belonging to the genus Aurantiochytrium.
Collapse
Affiliation(s)
- Naoki Nagano
- Department of Biological Production and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | | | | | | | | | | |
Collapse
|
93
|
Nagano N, Sakaguchi K, Taoka Y, Okita Y, Honda D, Ito M, Hayashi M. Detection of Genes Involved in Fatty Acid Elongation and Desaturation in Thraustochytrid Marine Eukaryotes. J Oleo Sci 2011; 60:475-81. [DOI: 10.5650/jos.60.475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
94
|
Mišurcová L, Ambrožová J, Samek D. Seaweed lipids as nutraceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:339-55. [PMID: 22054960 DOI: 10.1016/b978-0-12-387669-0.00027-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seaweeds are known as low-energy food. Despite low lipid content, ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) introduce a significant part of seaweed lipids. PUFAs are the important components of all cell membranes and precursors of eicosanoids that are essential bioregulators of many cellular processes. PUFAs effectively reduce the risk of cardiovascular diseases, cancer, ostheoporosis, and diabetes. Because of the frequent usage of seaweeds in Asia and their increasing utilization as food also in other parts of the world, seaweeds could contribute to the improvement of a low level of ω-3 PUFAs, especially in the Western diet. The major commercial sources of ω-3 PUFAs are fish, but their wide usage as food additives is limited for the typical fishy smell, unpleasant taste, and oxidative nonstability. Nevertheless, growing requirements of healthy functional foods have led to produce PUFAs as nutraceuticals in controlled batch culture of marine microalgae, especially Thraustochytrium and Schizochytrium strains.
Collapse
Affiliation(s)
- Ladislava Mišurcová
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic.
| | | | | |
Collapse
|
95
|
Yang HL, Lu CK, Chen SF, Chen YM, Chen YM. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:173-185. [PMID: 19609613 DOI: 10.1007/s10126-009-9207-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/01/2009] [Indexed: 05/28/2023]
Abstract
Marine heterotrophic microalgal species which are potentially rich in docosahexaenoic acid (DHA, C22:6n-3) have been found in Taiwan; however, there was a lack of detailed analysis and characterization of these indigenous algae which is needed for the development of commercial applications. Hence, the objective of this study was to screen DHA-rich heterotrophic microalgae species indigenous to Taiwan for commercial purposes. Heterotrophic microalgae from a variety of marine habitats were isolated, cultivated, and then identified according to their 18S rRNA gene sequences and morphological characteristics. A comparison was made of their fatty acid profiles, fatty acid content, and amount of biomass. For the strain with highest DHA yield, the optimal growth conditions were determined in order to establish the best fermentation conditions for scale-up. In this study, 25 heterotrophic microalgal strains were successfully isolated from marine habitats around Taiwan. All of the isolated strains showed a close phylogenic relationship with the Thraustochytriaceae family according to their 18S rRNA gene sequences. GC/MS analysis discerned seven distinctive fatty acid profiles of these strains, with the production of eicosapentaenoic acid (C20:5n-3) ranging from 0.02 to 2.61 mg L(-1), and DHA ranging from 0.8 to 18.0 mg L(-1). An Aurantiochytrium strain BL10 with high DHA production was subsequently chosen for further manipulation. Under optimal growth conditions it could produce up to 59.0 g of dry biomass per liter of culture, with dry biomass containing 73% total fatty acid and 29% DHA, revealing BL10 as an excellent source of microbial DHA.
Collapse
Affiliation(s)
- Huey-Lang Yang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
96
|
Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 2010; 26:1303-9. [PMID: 24026934 DOI: 10.1007/s11274-009-0301-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
Squalene is an effective chemopreventive agent in reducing the incident of coronary heart disease and cancer. It is also a strong antioxidant used extensively in the food and cosmetic industries. Microbial sources of squalene are being explored in recent years. The objective of this study is to increase the squalene content and yield in the thraustochytrid, Aurantiochytrium mangrovei FB3 through medium optimization and the treatment with terbinafine, an inhibitor of squalene monooxygenase in the sterol biosynthetic pathway. The highest biomass concentration of 21.2 g l(-1) was obtained at a glucose concentration of 60 g l(-1), while the highest specific growth rate of 0.077 h(-1) and the growth yield coefficient of 0.44 g g(-1) based on glucose were achieved at a lower glucose concentration (30 g l(-1)). The addition of terbinafine led to a slight inhibition of cell growth whereas an obvious increase in squalene content was observed at terbinafine concentrations of 10 and 100 mg l(-1), which corresponded to an increase of 36 and 40% in squalene content, respectively compared to the control. The addition of terbinafine was thus effective in inducing the accumulation of squalene in A. mangrovei. This study not only demonstrated the production potential of squalene by A. mangrovei, but also provided novel information on the accumulation effect of terbinafine on the biosynthesis of an essential intermediate involved in sterol metabolic pathway.
Collapse
|
97
|
Li Q, Chen GQ, Fan KW, Lu FP, Aki T, Jiang Y. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4267-72. [PMID: 19371138 DOI: 10.1021/jf9003972] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eighteen strains of thraustochytrids were newly isolated from Hong Kong mangroves, and their fatty acid and squalene contents were analyzed. All strains could grow well heterotrophically with glucose as the sole carbon source. All of them had the typical fatty acid profile of thraustchytrids and could produce a large amount of docosahexaenoic acid. The cell dry weight ranged from 5.49 to 15.62 g/L and squalene content from 0.02 to 0.18 mg/g at 72 h. The highest squalene-producing strain, BR-MP4-A1 was identified as a new strain of Aurantiochytrium species through sequence comparison of the 18S rRNA gene. The highest biomass of Aurantiochytrium sp. BR-MP4-A1 was achieved at 72 h, whereas its squalene content reached the maximum of 0.567 mg/g at 36 h but decreased rapidly thereafter. The production of squalene by thraustochytrids might be highly influenced by culture conditions.
Collapse
Affiliation(s)
- Qian Li
- Department of Biology and Kwong Living Trust Food Safety and Analysis Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
98
|
Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M. Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. Strain mh0186. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:368-74. [PMID: 18941836 DOI: 10.1007/s10126-008-9151-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 09/25/2008] [Indexed: 05/11/2023]
Abstract
The growth, lipid content, and fatty acid composition of Aurantiochytrium sp. strain mh0186 at different temperatures were investigated. Strain mh0186 grew well at 15-30 degrees C, but weakly at 10 degrees C. The biomass at 15-30 degrees C was significantly higher than at 10 and 35 degrees C, and the total lipid at 15-35 degrees C was significantly higher than that at 10 degrees C. The amount of DHA in the total fatty acid was highest at 10 degrees C and decreased in response to temperature increase. The content of DHA (mg/g-dry cell weight) at 15-30 degrees C were significantly higher than those at 35 degrees C and those at 15-25 degrees C were significantly higher than those at 10 and 35 degrees C. The DHA yield at 15-35 degrees C was significantly higher than those at 10 and 35 degrees C. Unsaturation of fatty acid was regulated by temperature and was enhanced in response to temperature decrease. The ratio of DHA to DPA varied at different temperatures.
Collapse
Affiliation(s)
- Yousuke Taoka
- Laboratory of Marine Bioscience, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada.
| | | | | | | |
Collapse
|
100
|
Nagano N, Taoka Y, Honda D, Hayashi M. Optimization of Culture Conditions for Growth and Docosahexaenoic Acid Production by a Marine Thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 2009; 58:623-8. [DOI: 10.5650/jos.58.623] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|