51
|
Tuning gelatin–alginate bioink properties by introducing new decellularized elastic cartilage scaffolds for bioinspired composite membranes in orthopedics. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Habib MA, Khoda B. Rheological Analysis of Bio-ink for 3D Bio-printing Processes. JOURNAL OF MANUFACTURING PROCESSES 2022; 76:708-718. [PMID: 35296051 PMCID: PMC8920312 DOI: 10.1016/j.jmapro.2022.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
3D bio-printing is an emerging technology to fabricate tissue scaffold in-vitro through the controlled allocation of biomaterial and cells, which can mimic the in-vivo counterpart of living tissue. Live cells are often encapsulated into the biomaterials (i.e., bio-ink) and extruded by controlling the printing parameters. The functionality of the bioink depends upon three factors: (a) printability, (b) shape fidelity, and (c) bio-compatibility. Increasing viscosity will improve the printability and the shape fidelity but require higher applied extrusion pressure, which is detrimental to the living cell dwelling in the bio-ink, which is often ignored in the bio-ink optimization process. This paper demonstrates a roadmap to develop and optimize bio-inks, ensuring printability, shape fidelity, and cell survivability. The pressure exerted on the bio-ink during extrusion processes is measured analytically, and the information is incorporated in the bio-ink's rheology design. Cell-laden filaments are fabricated with multiple cell lines, i.e., Human Embryonic Kidney (HEK 293), BxPC3, and prostate cancer cells which are analyzed for cell viability. The cross-sectional live-dead assay of the extruded filament demonstrates a spatial pattern for HEK 293 cell viability, which correlates with our analytical finding of the shear stress at the nozzle tip. All three cell lines were able to sustain a transient shear stress of 3.7 kPa and demonstrate 90% viability with our designed bio-ink after 15 days of incubation. Simultaneously, the shape fidelity and printability matrices show its suitability for 3D bio-printing process.
Collapse
Affiliation(s)
- Md Ahasan Habib
- Department of Sustainable Product Design and Architecture, Keene State College, Keene, NH
| | - Bashir Khoda
- Department of Mechanical Engineering, The University of Maine Orono, ME, United States
| |
Collapse
|
53
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
54
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
55
|
Characterization of Alginate–Gelatin–Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds. Polymers (Basel) 2022; 14:polym14051021. [PMID: 35267843 PMCID: PMC8915124 DOI: 10.3390/polym14051021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022] Open
Abstract
Tissue engineering (TE) is an innovative approach to tackling many diseases and body parts that need to be replaced by developing artificial tissues and organs. Bioinks play an important role in the success of various TE applications. A bioink refers to a combination of a living cell, biomaterials, and bioactive molecules deposited in a layer-by-layer form to fabricate tissue-like structures. The research on bioink attempts to offer a 3D complex architecture and control cellular behavior that improve cell physical properties and viability. This research proposed a new multi-material bioink based on alginate (A), gelatin (G), and cholesteryl ester liquid crystals (CELC) biomaterials, namely (AGLC) bioinks. The development of AGLC was initiated with the optimization of different concentrations of A and G gels to obtain a printable formulation of AG gels. Subsequently, the influences of different concentrations of CELC with AG gels were investigated by using a microextrusion-based 3D bioprinting system to obtain a printed structure with high shape fidelity and minimum width. The AGLC bioinks were formulated using AG gel with 10% weight/volume (w/v) of A and 50% w/v G (AG10:50) and 1%, 5%, 10%, 20%, and 40% of CELC, respectively. The AGLC bioinks yield a high printability and resolution blend. The printed filament has a minimum width of 1.3 mm at a 1 mL/min extrusion rate when the A equals 10% w/v, G equals 50% w/v, and CELC equals 40% v/v (AGLC40). Polymerization of the AGLC bioinks with calcium (Ca2+) ions shows well-defined and more stable structures in the post-printing process. The physicochemical and viability properties of the AGLC bioinks were examined by FTIR, DSC, contact angle, FESEM, MTT assay, and cell interaction evaluation methods. The FTIR spectra of the AGLC bioinks exhibit a combination of characteristics vibrations of AG10:50 and CELC. The DSC analysis indicates the high thermal stability of the bioinks. Wettability analysis shows a reduction in the water absorption ability of the AGLC bioinks. FESEM analysis indicates that the surface morphologies of the bioinks exhibit varying microstructures. In vitro cytotoxicity by MTT assay shows the ability of the bioinks to support the biological activity of HeLa cells. The AGLC bioinks show average cell viability of 82.36% compared to the control (90%). Furthermore, cultured cells on the surface of AGLC bioinks showed that bioinks provide favorable interfaces for cell attachment.
Collapse
|
56
|
Pharmaceutical polymer-based hydrogel formulations as prospective bioink for bioprinting applications- A step towards clean bioprinting. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
57
|
Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. MICROMACHINES 2022; 13:mi13030363. [PMID: 35334656 PMCID: PMC8956046 DOI: 10.3390/mi13030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The need for organ transplants has risen, but the number of available organ donations for transplants has stagnated worldwide. Regenerative medicine has been developed to make natural organs or tissue-like structures with biocompatible materials and solve the donor shortage problem. Using biomaterials and embedded cells, a bioprinter enables the fabrication of complex and functional three-dimensional (3D) structures of the organs or tissues for regenerative medicine. Moreover, conventional surgical 3D models are made of rigid plastic or rubbers, preventing surgeons from interacting with real organ or tissue-like models. Thus, finding suitable biomaterials and printing methods will accelerate the printing of sophisticated organ structures and the development of realistic models to refine surgical techniques and tools before the surgery. In addition, printing parameters (e.g., printing speed, dispensing pressure, and nozzle diameter) considered in the bioprinting process should be optimized. Therefore, machine learning (ML) technology can be a powerful tool to optimize the numerous bioprinting parameters. Overall, this review paper is focused on various ideas on the ML applications of 3D printing and bioprinting to optimize parameters and procedures.
Collapse
Affiliation(s)
- Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Zhangkang Li
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Jinguang Hu
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Simon S. Park
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Keekyoung Kim
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
- Correspondence:
| |
Collapse
|
58
|
Rothbauer M, Eilenberger C, Spitz S, Bachmann BEM, Kratz SRA, Reihs EI, Windhager R, Toegel S, Ertl P. Recent Advances in Additive Manufacturing and 3D Bioprinting for Organs-On-A-Chip and Microphysiological Systems. Front Bioeng Biotechnol 2022; 10:837087. [PMID: 35252144 PMCID: PMC8891807 DOI: 10.3389/fbioe.2022.837087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
The re-creation of physiological cellular microenvironments that truly resemble complex in vivo architectures is the key aspect in the development of advanced in vitro organotypic tissue constructs. Among others, organ-on-a-chip technology has been increasingly used in recent years to create improved models for organs and tissues in human health and disease, because of its ability to provide spatio-temporal control over soluble cues, biophysical signals and biomechanical forces necessary to maintain proper organotypic functions. While media supply and waste removal are controlled by microfluidic channel by a network the formation of tissue-like architectures in designated micro-structured hydrogel compartments is commonly achieved by cellular self-assembly and intrinsic biological reorganization mechanisms. The recent combination of organ-on-a-chip technology with three-dimensional (3D) bioprinting and additive manufacturing techniques allows for an unprecedented control over tissue structures with the ability to also generate anisotropic constructs as often seen in in vivo tissue architectures. This review highlights progress made in bioprinting applications for organ-on-a-chip technology, and discusses synergies and limitations between organ-on-a-chip technology and 3D bioprinting in the creation of next generation biomimetic in vitro tissue models.
Collapse
Affiliation(s)
- Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Christoph Eilenberger
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Centre, Vienna, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Barbara E. M. Bachmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Centre, Vienna, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria
| | - Sebastian R. A. Kratz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Eva I. Reihs
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
59
|
Constantinou AP, Nele V, Doutch JJ, S. Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TK. Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules 2022; 55:1783-1799. [PMID: 35431333 PMCID: PMC9007541 DOI: 10.1021/acs.macromol.1c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Indexed: 01/15/2023]
Abstract
![]()
Thermoresponsive polymers with the
appropriate structure form physical
networks upon changes in temperature, and they find utility in formulation
science, tissue engineering, and drug delivery. Here, we report a
cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w);
OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl
ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate,
respectively. This polymer is investigated in depth and is compared
to its commercially available counterpart, Poloxamer P407 (Pluronic
F127). To elucidate the differences in their macroscale gelling behavior,
we investigate their nanoscale self-assembly by means of small-angle
neutron scattering and simultaneously recording their rheological
properties. Two different gelation mechanisms are revealed. The triblock
copolymer inherently forms elongated micelles, whose length increases
by temperature to form worm-like micelles, thus promoting gelation.
In contrast, Pluronic F127’s micellization is temperature-driven,
and its gelation is attributed to the close packing of the micelles.
The gel structure is analyzed through cryogenic scanning and transmission
electron microscopy. Ex vivo gelation study upon intracameral injections
demonstrates excellent potential for its application to improve drug
residence in the eye.
Collapse
Affiliation(s)
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, UK
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman V. Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Martina Cihova
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
60
|
Ramadan Q, Zourob M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:607648. [PMID: 35047890 PMCID: PMC8757855 DOI: 10.3389/fmedt.2020.607648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
61
|
Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
62
|
Solomon SM, Sufaru IG, Teslaru S, Ghiciuc CM, Stafie CS. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: https://doi.org/10.3390/app12031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
63
|
Vrana NE, Gupta S, Mitra K, Rizvanov AA, Solovyeva VV, Antmen E, Salehi M, Ehterami A, Pourchet L, Barthes J, Marquette CA, von Unge M, Wang CY, Lai PL, Bit A. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank 2022; 23:417-440. [PMID: 35000046 DOI: 10.1007/s10561-021-09975-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.
Collapse
Affiliation(s)
| | | | - Kunal Mitra
- Florida Institute of Technology, Melbourne, USA
| | | | | | - Ezgi Antmen
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University (METU), Ankara, Turkey
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lea Pourchet
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | - Julien Barthes
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | | | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Oslo, Norway.,Center for Clinical Research, Uppsala University, Vasteras, Uppsala, Sweden
| | - Chi-Yun Wang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Arindam Bit
- National Institute of Technology, Raipur, India.
| |
Collapse
|
64
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
65
|
Costa ALR, Willerth SM, de la Torre LG, Han SW. Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Mater Today Bio 2022; 13:100221. [PMID: 35243296 PMCID: PMC8866736 DOI: 10.1016/j.mtbio.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
66
|
Huang CC, Chen YJ, Liu HW. Characterization of Composite Nano-Bioscaffolds Based on Collagen and Supercritical Fluids-Assisted Decellularized Fibrous Extracellular Matrix. Polymers (Basel) 2021; 13:4326. [PMID: 34960876 PMCID: PMC8708679 DOI: 10.3390/polym13244326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Nano-bioscaffolds obtained from decellularized tissues have been employed in several medical applications. Nano-bioscaffolds could provide structural support for cell attachment and a suitable environment with sufficient porosity for cell growth and proliferation. In this study, a new combined method constitutes a decellularization protocol to remove the tissue and cellular molecules from porcine dermis for preparation of nano-bioscaffolds with fibrous extracellular matrix via pre- and post-treatment of supercritical fluids. The supercritical fluids-assisted nano-bioscaffolds were characterized by peptide identification, infrared spectrum of absorption, morphology, histological observations, DNA quantification, and hemocompatibility. Further, the resulting nano-bioscaffolds could be employed to obtain new cross-linked composite nano-bioscaffold containing collagen and acellular matrix.
Collapse
Affiliation(s)
- Ching-Cheng Huang
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan City 32033, Taiwan; (C.-C.H.); (Y.-J.C.)
| | - Ying-Ju Chen
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan City 32033, Taiwan; (C.-C.H.); (Y.-J.C.)
| | - Hsia-Wei Liu
- Department Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- PARSD Biomedical Material Research Center, Taichung City 40749, Taiwan
| |
Collapse
|
67
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
68
|
Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regen Ther 2021; 18:133-145. [PMID: 34189195 PMCID: PMC8213915 DOI: 10.1016/j.reth.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bioprinting is a relatively new yet evolving technique predominantly used in regenerative medicine and tissue engineering. 3D bioprinting techniques combine the advantages of creating Extracellular Matrix (ECM)like environments for cells and computer-aided tailoring of predetermined tissue shapes and structures. The essential application of bioprinting is for the regeneration or restoration of damaged and injured tissues by producing implantable tissues and organs. The capability of bioprinting is yet to be fully scrutinized in sectors like the patient-specific spatial distribution of cells, bio-robotics, etc. In this review, currently developed experimental systems and strategies for the bioprinting of different types of tissues as well as for drug delivery and cancer research are explored for potential applications. This review also digs into the most recent opportunities and future possibilities for the efficient implementation of bioprinting to restructure medical and technological practices.
Collapse
Affiliation(s)
- Radia Jamee
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| |
Collapse
|
69
|
Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative Engineering: Current Applications and Future Perspectives. Front Surg 2021; 8:731031. [PMID: 34805257 PMCID: PMC8595140 DOI: 10.3389/fsurg.2021.731031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Many pathologies, congenital defects, and traumatic injuries are untreatable by conventional pharmacologic or surgical interventions. Regenerative engineering represents an ever-growing interdisciplinary field aimed at creating biological replacements for injured tissues and dysfunctional organs. The need for bioengineered replacement parts is ubiquitous among all surgical disciplines. However, to date, clinical translation has been limited to thin, small, and/or acellular structures. Development of thicker tissues continues to be limited by vascularization and other impediments. Nevertheless, currently available materials, methods, and technologies serve as robust platforms for more complex tissue fabrication in the future. This review article highlights the current methodologies, clinical achievements, tenacious barriers, and future perspectives of regenerative engineering.
Collapse
Affiliation(s)
- Dana Goldenberg
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Caroline McLaughlin
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Srinivas V. Koduru
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Dino J. Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
70
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
71
|
Somasekharan LT, Raju R, Kumar S, Geevarghese R, Nair RP, Kasoju N, Bhatt A. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Int J Biol Macromol 2021; 189:398-409. [PMID: 34419550 DOI: 10.1016/j.ijbiomac.2021.08.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Biofabrication of skin tissue equivalents using 3D bioprinting technology has gained much attention in recent times due to the simplicity, the versatility of the technology and its ability in bioengineering biomimetic tissue histology. The key component being the bioink, several groups are actively working on the development of various bioink formulations for optimal skin tissue construction. METHODS Here, we present alginate (ALG), gelatin (GEL) and diethylaminoethyl cellulose (DCEL) based bioink formulation and its application in bioprinting and biofabrication of skin tissue equivalents. Briefly, DEAE cellulose powder was dispersed in alginate solution with constant stirring at 60 °C to obtain a uniform distribution of cellulose fibers; this was then mixed with GEL solution to prepare the bioink. The formulation was systematically characterized for its morphological, physical, chemical, rheological, biodegradation and biocompatibility properties. The printability, shape fidelity and cell-laden printing were assessed using the CellInk bioprinter. RESULTS The bioink proved to be a good printable, non-cytotoxic and stable hydrogel formulation. The primary human fibroblast and keratinocyte-loaded 3D bioprinted constructs showed excellent cell viability, collagen synthesis, skin-specific marker and biomimetic tissue histology. CONCLUSION The results demonstrated the successful formulation of ALG-GEL-DCEL bioink and its application in the development of human skin tissue equivalents with distinct epidermal-dermal histological features.
Collapse
Affiliation(s)
- Lakshmi T Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Riya Raju
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Suvanish Kumar
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Rency Geevarghese
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Renjith P Nair
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
72
|
Fanjul-Mosteirín N, Aguirresarobe R, Sadaba N, Larrañaga A, Marin E, Martin J, Ramos-Gomez N, Arno MC, Sardon H, Dove AP. Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:7194-7202. [PMID: 34602744 PMCID: PMC8482781 DOI: 10.1021/acs.chemmater.1c00913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/13/2023]
Abstract
The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients' needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the crystallization process, the hydrogel modulus can be tuned up to 3 orders of magnitude upon heating up to 40 °C, offering an interesting strategy to directly 3D-print hydrogels without the need of postprinting cross-linking. Moreover, the absence of any toxicity makes these materials ideal candidates for biomedical applications.
Collapse
Affiliation(s)
- Noé Fanjul-Mosteirín
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- POLYMAT, University of the
Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Robert Aguirresarobe
- POLYMAT, University of the
Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Naroa Sadaba
- Department
of Mining−Metallurgy Engineering and Materials Science, POLYMAT,
School of Engineering, University of the
Basque Country UPV/EHU, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining−Metallurgy Engineering and Materials Science, POLYMAT,
School of Engineering, University of the
Basque Country UPV/EHU, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Edurne Marin
- Department
of Mining−Metallurgy Engineering and Materials Science, POLYMAT,
School of Engineering, University of the
Basque Country UPV/EHU, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Jaime Martin
- POLYMAT, University of the
Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa
72, 20018 Donostia-San
Sebastian, Spain
- Grupo
de Polímeros, Departamento de Física e Ciencias da Terra,
Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, Esteiro, Ferrol, 15471 Spain
| | - Nicolas Ramos-Gomez
- POLYMAT, University of the
Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Maria C. Arno
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Haritz Sardon
- POLYMAT, University of the
Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
73
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
74
|
Tavafoghi M, Darabi MA, Mahmoodi M, Tutar R, Xu C, Mirjafari A, Billi F, Swieszkowski W, Nasrollahi F, Ahadian S, Hosseini V, Khademhosseini A, Ashammakhi N. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication 2021; 13. [PMID: 34130266 DOI: 10.1088/1758-5090/ac0b9a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Tissue reconstruction requires the utilization of multiple biomaterials and cell types to replicate the delicate and complex structure of native tissues. Various three-dimensional (3D) bioprinting techniques have been developed to fabricate customized tissue structures; however, there are still significant challenges, such as vascularization, mechanical stability of printed constructs, and fabrication of gradient structures to be addressed for the creation of biomimetic and complex tissue constructs. One approach to address these challenges is to develop multimaterial 3D bioprinting techniques that can integrate various types of biomaterials and bioprinting capabilities towards the fabrication of more complex structures. Notable examples include multi-nozzle, coaxial, and microfluidics-assisted multimaterial 3D bioprinting techniques. More advanced multimaterial 3D printing techniques are emerging, and new areas in this niche technology are rapidly evolving. In this review, we briefly introduce the basics of individual 3D bioprinting techniques and then discuss the multimaterial 3D printing techniques that can be developed based on combination of these techniques for the engineering of complex and biomimetic tissue constructs. We also discuss the perspectives and future directions to develop state-of-the-art multimaterial 3D bioprinting techniques for engineering tissues and organs.
Collapse
Affiliation(s)
- Maryam Tavafoghi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Rumeysa Tutar
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa Avcılar, Istanbul 34320, Turkey
| | - Chun Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,School of Dentistry, The University of Queensland, Brisbane, Australia
| | - Arshia Mirjafari
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America
| | - Fabrizio Billi
- UCLA/OIC Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Bioengineering, University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States of America.,Department of Chemical Engineering, University of California, Los Angeles, CA, United States of America
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, United States of America.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, College of Engineering, Michigan State University, MI, United States of America
| |
Collapse
|
75
|
Dong L, Bu Z, Xiong Y, Zhang H, Fang J, Hu H, Liu Z, Li X. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Int J Biol Macromol 2021; 188:72-81. [PMID: 34364938 DOI: 10.1016/j.ijbiomac.2021.07.199] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/18/2022]
Abstract
The extrusion 3D printing of hydrogels has evolved as a promising approach that can be applied for specific tissue repair. However, the printing process of hydrogel scaffolds with high shape fidelity is inseparable from the complex crosslinking strategy, which significantly increases the difficulty and complexity of printing. The aim of this study was to develop a printable hydrogel that can extrude at room temperature and print scaffolds with high shape fidelity without any auxiliary crosslinking during the printing process. To this end, a novel formulation consisting of a Laponite suspension with a high solid concentration and a gelatine methacrylate (GelMA) nanocomposite hydrogel was developed. A homogeneously dispersed high-concentration (up to 20% w/v) Laponite suspension was obtained by stirring at 0 °C. The addition of Laponite with high concentration improved the rheological properties, the degradation stability, and the mechanical strength of the hydrogel. The formulation of 15% (w/v) GelMA and 8% (w/v) Laponite nanocomposite hydrogel exhibited desirable printability and biocompatibility. The GelMA/Laponite hydrogels significantly promoted bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation. Both desirable printability under mild conditions and cyto-compatibility enable composite hydrogel a potential candidate as biomaterial inks to be applied for bone tissue regeneration.
Collapse
Affiliation(s)
- Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ziheng Bu
- Department of joint and bone surgery, the First Affiliated Hospital of Naval Military Medical University, 168 Changhai Road, Shanghai 200233, China
| | - Yinze Xiong
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Fang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongxing Hu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou 325000, China
| | - Zhongtang Liu
- Department of joint and bone surgery, the First Affiliated Hospital of Naval Military Medical University, 168 Changhai Road, Shanghai 200233, China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
76
|
Lee H, Yoo JM, Nam SY. Additive Fabrication and Characterization of Biomimetic Composite Bone Scaffolds with High Hydroxyapatite Content. Gels 2021; 7:100. [PMID: 34449611 PMCID: PMC8395852 DOI: 10.3390/gels7030100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
With the increased incidence of bone defects following trauma or diseases in recent years, three-dimensional porous scaffolds fabricated using bioprinting technologies have been widely explored as effective alternatives to conventional bone grafts, which provide cell-friendly microenvironments promoting bone repair and regeneration. However, the limited use of biomaterials poses a significant challenge to the robust and accurate fabrication of bioprinted bone scaffolds that enable effective regeneration of the target tissues. Although bioceramic/polymer composites can provide tunable biomimetic conditions, their effects on the bioprinting process are unclear. Thus, in this study, we fabricated hydroxyapatite (HA)/gelatin composite scaffolds containing large weight fractions of HA using extrusion-based bioprinting, with the aim to provide an adequate biomimetic environment for bone tissue regeneration with compositional and mechanical similarity to the natural bone matrix. The overall features of the bioprinted HA/gelatin composite scaffolds, including rheological, morphological, physicochemical, mechanical, and biological properties, were quantitatively assessed to determine the optimal conditions for both fabrication and therapeutic efficiency. The present results show that the bioprinted bioceramic/hydrogel scaffolds possess excellent shape fidelity; mechanical strength comparable to that of native bone; and enhanced bioactivity in terms of cell proliferation, attachment, and osteogenic differentiation. This study provides a suitable alternative direction for the fabrication of bioceramic/hydrogel-based scaffolds for bone repair based on bioprinting.
Collapse
Affiliation(s)
- Hoyeol Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (H.L.); (J.M.Y.)
| | - Jin Myoung Yoo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (H.L.); (J.M.Y.)
| | - Seung Yun Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (H.L.); (J.M.Y.)
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
77
|
Evaluation of 3D-Printing Scaffold Fabrication on Biosynthetic Medium-Chain-Length Polyhydroxyalkanoate Terpolyester as Biomaterial-Ink. Polymers (Basel) 2021; 13:polym13142222. [PMID: 34300981 PMCID: PMC8309464 DOI: 10.3390/polym13142222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, the selection of materials for tissue engineering scaffolds is still limited because some tissues require flexible and compatible materials with human cells. Medium-chain-length polyhydroxyalkanoate (MCL-PHA) synthesized in microorganisms is an interesting polymer for use in this area and has elastomeric properties compatible with the human body. MCL-PHAs are elastomers with biodegradability and cellular compatibility, making them an attractive material for fabricating soft tissue that requires high elasticity. In this research, MCL-PHA was produced by fed-batch fermentation that Pseudomonas Putida ATCC 47054 was cultured to accumulate MCL-PHA by using glycerol and sodium octanoate as carbon sources. The amounts of dry cell density, MCL-PHA product per dry cells, and MCL-PHA productivity were at 15 g/L, 27%, and 0.067 g/L/h, respectively, and the components of MCL-PHA consisting of 3-hydroxydecanoate (3HD) 64.5%, 3-hydroxyoctanoate (3HO) 32.2%, and 3-hydroxyhexanoate (3HHx) 3.3%. The biosynthesized MCL-PHA terpolyester has a relatively low melting temperature, low crystallinity, and high ductility at 52 °C, 15.7%, and 218%, respectively, and considering as elastomeric polyester. The high-resolution scaffold of MCL-PHA terpolyester biomaterial-ink (approximately 0.36 mm porous size) could be printed in a selected condition with a 3D printer, similar to the optimum pore size for cell attachment and proliferation. The rheological characteristic of this MCL-PHA biomaterial-ink exhibits shear-thinning behavior, leading to good shape fidelity. The study results yielded a condition capable of fabricating an elastomer scaffold of the MCL-PHA terpolyester, giving rise to the ideal soft tissue engineering application.
Collapse
|
78
|
Lobo DA, Ginestra P, Ceretti E, Miquel TP, Ciurana J. Cancer Cell Direct Bioprinting: A Focused Review. MICROMACHINES 2021; 12:764. [PMID: 34203530 PMCID: PMC8305105 DOI: 10.3390/mi12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional printing technologies allow for the fabrication of complex parts with accurate geometry and less production time. When applied to biomedical applications, two different approaches, known as direct or indirect bioprinting, may be performed. The classical way is to print a support structure, the scaffold, and then culture the cells. Due to the low efficiency of this method, direct bioprinting has been proposed, with or without the use of scaffolds. Scaffolds are the most common technology to culture cells, but bioassembly of cells may be an interesting methodology to mimic the native microenvironment, the extracellular matrix, where the cells interact between themselves. The purpose of this review is to give an updated report about the materials, the bioprinting technologies, and the cells used in cancer research for breast, brain, lung, liver, reproductive, gastric, skin, and bladder associated cancers, to help the development of possible treatments to lower the mortality rates, increasing the effectiveness of guided therapies. This work introduces direct bioprinting to be considered as a key factor above the main tissue engineering technologies.
Collapse
Affiliation(s)
- David Angelats Lobo
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Paola Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Teresa Puig Miquel
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain;
| |
Collapse
|
79
|
Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A State‐of‐the‐Art Review of Laser‐Assisted Bioprinting and its Future Research Trends. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chaoran Dou
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| | - Victoria Perez
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| | - Jie Qu
- The University of Texas Rio Grande Valley Department of Mechanical Engineering Edinburg TX USA
- China University of Mining and Technology School of Electrical and Power Engineering Xuzhou Jiangsu Province China
| | - Andrew Tsin
- The University of Texas Rio Grande Valley School of Medicine Department of Molecular Science USA
| | - Ben Xu
- Mississippi State University Department of Mechanical Engineering Starkville MS USA
| | - Jianzhi Li
- The University of Texas Rio Grande Valley Department of Manufacturing and Industrial Engineering Edinburg TX USA
| |
Collapse
|
80
|
Mahmood MA, Popescu AC. 3D Printing at Micro-Level: Laser-Induced Forward Transfer and Two-Photon Polymerization. Polymers (Basel) 2021; 13:2034. [PMID: 34206309 PMCID: PMC8271989 DOI: 10.3390/polym13132034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
Laser-induced forward transfer (LIFT) and two-photon polymerization (TPP) have proven their abilities to produce 3D complex microstructures at an extraordinary level of sophistication. Indeed, LIFT and TPP have supported the vision of providing a whole functional laboratory at a scale that can fit in the palm of a hand. This is only possible due to the developments in manufacturing at micro- and nano-scales. In a short time, LIFT and TPP have gained popularity, from being a microfabrication innovation utilized by laser experts to become a valuable instrument in the hands of researchers and technologists performing in various research and development areas, such as electronics, medicine, and micro-fluidics. In comparison with conventional micro-manufacturing methods, LIFT and TPP can produce exceptional 3D components. To gain benefits from LIFT and TPP, in-detail comprehension of the process and the manufactured parts' mechanical-chemical characteristics is required. This review article discusses the 3D printing perspectives by LIFT and TPP. In the case of the LIFT technique, the principle, classification of derivative methods, the importance of flyer velocity and shock wave formation, printed materials, and their properties, as well as various applications, have been discussed. For TPP, involved mechanisms, the difference between TPP and single-photon polymerization, proximity effect, printing resolution, printed material properties, and different applications have been analyzed. Besides this, future research directions for the 3D printing community are reviewed and summarized.
Collapse
Affiliation(s)
- Muhammad Arif Mahmood
- Laser Department, National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Andrei C. Popescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania
| |
Collapse
|
81
|
Monfared V, Bakhsheshi-Rad HR, Ramakrishna S, Razzaghi M, Berto F. A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites. MICROMACHINES 2021; 12:mi12060704. [PMID: 34208605 PMCID: PMC8234982 DOI: 10.3390/mi12060704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
In this research article, a mini-review study is performed on the additive manufacturing (AM) of the polymeric matrix composites (PMCs) and nanocomposites. In this regard, some methods for manufacturing and important and applied results are briefly introduced and presented. AM of polymeric matrix composites and nanocomposites has attracted great attention and is emerging as it can make extensively customized parts with appreciably modified and improved mechanical properties compared to the unreinforced polymer materials. However, some matters must be addressed containing reduced bonding of reinforcement and matrix, the slip between reinforcement and matrix, lower creep strength, void configurations, high-speed crack propagation, obstruction because of filler inclusion, enhanced curing time, simulation and modeling, and the cost of manufacturing. In this review, some selected and significant results regarding AM or three-dimensional (3D) printing of polymeric matrix composites and nanocomposites are summarized and discuss. In addition, this article discusses the difficulties in preparing composite feedstock filaments and printing issues with nanocomposites and short and continuous fiber composites. It is discussed how to print various thermoplastic composites ranging from amorphous to crystalline polymers. In addition, the analytical and numerical models used for simulating AM, including the Fused deposition modeling (FDM) printing process and estimating the mechanical properties of printed parts, are explained in detail. Particle, fiber, and nanomaterial-reinforced polymer composites are highlighted for their performance. Finally, key limitations are identified in order to stimulate further 3D printing research in the future.
Collapse
Affiliation(s)
- Vahid Monfared
- Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
- Correspondence: (V.M.); (H.R.B.-R.); (F.B.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
- Correspondence: (V.M.); (H.R.B.-R.); (F.B.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Mahmood Razzaghi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: (V.M.); (H.R.B.-R.); (F.B.)
| |
Collapse
|
82
|
Abstract
Many soft tissues of the human body such as cartilages, muscles, and ligaments are mainly composed of biological hydrogels possessing excellent mechanical properties and delicate structures. Nowadays, bio-inspired hydrogels have been intensively explored due to their promising potential applications in tissue engineering. However, the traditional manufacturing technology is challenging to produce the bio-inspired hydrogels, and the typical biological composite topologies of bio-inspired hydrogels are accessible completed using 3D bioprinting at micrometer resolution. In this chapter, the 3D bioprinting techniques used for the fabrication of bio-inspired hydrogels were summarized, and the materials used were outlined. This chapter also focuses on the applications of bio-inspired hydrogels fabricated using available 3D bioprinting technologies. The development of 3D bioprinting techniques in the future would bring us closer to the fabrication capabilities of living organisms, which would be widely used in biomedical applications.
Collapse
|
83
|
Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 2021; 18:102-111. [PMID: 34141834 PMCID: PMC8178073 DOI: 10.1016/j.reth.2021.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suffering from organ dysfunction due to damaged or diseased tissue/bone has been globally on the rise. Current treatment strategies for non-union bone defects include: the use of autografts, allografts, synthetic grafts and free vascularized fibular grafts. Bone tissue engineering has emerged as an alternative for fracture repair to satisfy the current unmet need of bone grafts and to alleviate the problems associated with autografts and allografts. The technology offers the possibility to induce new functional bone regeneration using synergistic combination of functional biomaterials (scaffolds), cells, and growth factors. Bone scaffolds are typically made of porous biodegradable materials that provide the mechanical support during repair and regeneration of damaged or diseased bone. Significant progress has been made towards scaffold materials for structural support, desired osteogenesis and angiogenesis abilities. Thanks for innovative scaffolds fabrication technologies, bioresorbable scaffolds with controlled porosity and tailored properties are possible today. Despite the presence of different bone scaffold fabrication methods, pore size, shape and interconnectivity have not yet been fully controlled in most of the methods. Moreover, scaffolds with tailored porosity for specific defects are still difficult to manufacture. Nevertheless, such scaffolds can be designed and fabricated using three dimensional (3D) printing approaches. 3D printing technology, as an advanced tissue scaffold fabrication method, offers the opportunity to produce complex geometries with distinct advantages. The technology has been used for the production of various types of bodily constructs such as blood vessels, vascular networks, bones, cartilages, exoskeletons, eyeglasses, cell cultures, tissues, organs and novel drug delivery devices. This review focuses on 3D printed scaffolds and their application in bone repair and regeneration. In addition, different classes of biomaterials commonly employed for the fabrication of 3D nano scaffolds for bone tissue engineering application so far are briefly discussed.
Collapse
Affiliation(s)
- Tesfa Marew
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gebremariam Birhanu
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
84
|
Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Moghaddam AS, Khonakdar HA, Arjmand M, Jafari SH, Bagher Z, Moghaddam ZS, Chimerad M, Sisakht MM, Shojaei S. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells. ACS APPLIED BIO MATERIALS 2021; 4:4049-4070. [PMID: 35006822 DOI: 10.1021/acsabm.1c00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Hossein Ali Khonakdar
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany.,Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mohammadreza Chimerad
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 19379-57511, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3000 DR, The Netherlands
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, PO Box 13185/768, Tehran 15689-37813, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, PO Box 13185-768, Tehran 15689-37813, Iran
| |
Collapse
|
86
|
|
87
|
|
88
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
89
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
90
|
Chen P, Luo H, Huang S, Liu J, Lin M, Yang F, Ban J, Huang Z, Lu Z, Xie Q, Chen Y. Preparation of High-Drug-Loaded Clarithromycin Gastric-Floating Sustained-Release Tablets Using 3D Printing. AAPS PharmSciTech 2021; 22:131. [PMID: 33839973 DOI: 10.1208/s12249-021-01994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
The high-drug-loaded sustained-release gastric-floating clarithromycin (CAM) tablets were proposed and manufactured via semisolid extrusion (SSE)-based 3D printing. The physical and mechanical properties, such as dimensions, weight variation, friability, and hardness, were accessed according to the quality standards of Chinese Pharmacopoeia (Ch.P). The interactions among the drug-excipients were evaluated via differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques. Next, the rheological properties of the paste and the effect of the excipients and solvents were evaluated. Finally, a very high drug-loading of up to 81.7% (w/w) with the sustain release time of 8 h (125 mg) and 12 h (250 mg) was achieved. The results revealed the potential of SSE for achieving a high drug loading and identified the suitable properties of the paste for SSE-based 3D printing.
Collapse
|
91
|
Li X, Deng Q, Wang S, Li Q, Zhao W, Lin B, Luo Y, Zhang X. Hydroxyethyl Cellulose As a Rheological Additive for Tuning the Extrusion Printability and Scaffold Properties. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:87-98. [PMID: 36655060 PMCID: PMC9828602 DOI: 10.1089/3dp.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bioink, a key element of three-dimensional (3D) bioprinting, is frequently engineered to achieve improved printing performance. Viscoelasticity related to rheological properties is correlative of the printability of bioink for extrusion bioprinting, which affects the complexity of printing 3D structures. This article shows the use of hydroxyethyl cellulose (HEC) as a rheological additive for engineering bioink to improve the printability without reducing the biocompatibility. Different concentrations of HEC were added to four types of bioink, namely, reagent-crosslinked, temperature-dependent phase change, ultraviolet-polymerized, and composite hydrogel bioinks, to investigate the effect on the viscoelasticity properties, print fidelity, and other printed scaffold properties. The results indicate that HEC is able to increase the rheological properties by 100 times to stabilize complex structures and improve the printing fidelity to narrow the gap between the design value and theoretical value, even converting nonviscous ink into directly printable ink, as well as tune the swelling ratio for better molecular permeability. The degradation of bioink can also be tuned by the addition of HEC. Moreover, this bioink is biocompatible for cell lines and primary cells. HEC is expected to be widely used in 3D extrusion-based bioprinting.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Quanfeng Deng
- College of Pharmaceutical Science, Soochow University, Soochow, China
| | - Shuai Wang
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qi Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Soochow, China
| |
Collapse
|
92
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
93
|
Baruffaldi D, Palmara G, Pirri C, Frascella F. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS APPLIED BIO MATERIALS 2021; 4:2233-2250. [PMID: 35014348 DOI: 10.1021/acsabm.0c01472] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
Collapse
Affiliation(s)
- Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Gianluca Palmara
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Candido Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,Center for Sustainable Futures@Polito, Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
94
|
Glover K, Stratakos AC, Varadi A, Lamprou DA. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int J Pharm 2021; 599:120423. [PMID: 33647412 DOI: 10.1016/j.ijpharm.2021.120423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, affecting roughly 25% of diabetic patients and resulting in lower limb amputation in over 70% of known cases. In addition to the devastating physiological consequences of DFU and its impact on patient quality of life, DFU has significant clinical and economic implications. Various traditional therapies are implemented to effectively treat DFU. However, emerging technologies such as bioprinting and electrospinning, present an exciting opportunity to improve current treatment strategies through the development of 3D scaffolds, by overcoming the limitations of current wound healing strategies. This review provides a summary on (i) current prevention and treatment strategies available for DFU; (ii) methods of fabrication of 3D scaffolds relevant for this condition; (iii) suitable materials and commonly used molecules for the treatment of DFU; and (iv) future directions offered by emerging technologies.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexandros Ch Stratakos
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Aniko Varadi
- Faculty of Health and Applied Sciences, Center for Research in Biosciences, University of the West of England, Bristol BS16 1QY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
95
|
Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021; 13:563. [PMID: 33668617 PMCID: PMC7918883 DOI: 10.3390/polym13040563] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Livia Pilatti
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Alberto Blay
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, Sao Paulo 07023-070, Brazil
| |
Collapse
|
96
|
Moore CA, Siddiqui Z, Carney GJ, Naaldijk Y, Guiro K, Ferrer AI, Sherman LS, Guvendiren M, Kumar VA, Rameshwar P. A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers (Basel) 2021; 13:480. [PMID: 33546275 PMCID: PMC7913313 DOI: 10.3390/polym13040480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.
Collapse
Affiliation(s)
- Caitlyn A. Moore
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
| | - Griffin J. Carney
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Khadidiatou Guiro
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Lauren S. Sherman
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Murat Guvendiren
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, 110 Bergen St, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| |
Collapse
|
97
|
Yoo KM, Murphy SV, Skardal A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021; 7:13. [PMID: 33535669 PMCID: PMC7931058 DOI: 10.3390/gels7010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels have played a significant role in many applications of regenerative medicine and tissue engineering due to their versatile properties in realizing design and functional requirements. However, as bioengineered solutions are translated towards clinical application, new hurdles and subsequent material requirements can arise. For example, in applications such as cell encapsulation, drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of natural extracellular matrix-based materials, but with defined, controllable, and modular properties. Advantages for these clinical applications include ultraviolet light-free and rapid polymerization crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and characterization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chromatography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed successful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays, protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with or without the hydrogel. These initial studies present a defined, and well-characterized extracellular matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs., 140 W. 19th Ave, Columbus, OH 43210, USA
- Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
98
|
Miranda MA, Marcato PD, Mondal A, Chowdhury N, Gebeyehu A, Surapaneni SK, Bentley MVLB, Amaral R, Pan CX, Singh M. Cytotoxic and chemosensitizing effects of glycoalkaloidic extract on 2D and 3D models using RT4 and patient derived xenografts bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111460. [PMID: 33321591 PMCID: PMC8694857 DOI: 10.1016/j.msec.2020.111460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Glycoalkaloids have been widely demonstrated as potential anticancer agents. However, the chemosensitizing effect of these compounds with traditional chemotherapeutic agents has not been explored yet. In a quest for novel effective therapies to treat bladder cancer (BC), we evaluated the chemosensitizing potential of glycoalkaloidic extract (GE) with cisplatin (cDDP) in RT4 and PDX cells using 2D and 3D cell culture models. Additionally, we also investigated the underlying molecular mechanism behind this effect in RT4 cells. Herein, we observed that PDX cells were highly resistant to cisplatin when compared to RT4 cells. IC50 values showed at least 2.16-folds and 1.4-folds higher in 3D cultures when compared to 2D monolayers in RT4 cells and PDX cells, respectively. GE + cDDP inhibited colony formation (40%) and migration (28.38%) and induced apoptosis (57%) in RT4 cells. Combination therapy induced apoptosis by down-regulating the expression of Bcl-2 (p < 0.001), Bcl-xL (p < 0.001) and survivin (p < 0.01), and activating the caspase cascade in RT4 cells. Moreover, decreased expression of MMP-2 and 9 (p < 0.01) were observed with combination therapy, implying its effect on cell invasion/migration. Furthermore, we used 3D bioprinting to grow RT4 spheroids using sodium alginate-gelatin as a bioink and evaluated the effect of GE + cDDP on this system. Cell viability assay showed the chemosensitizing effect of GE with cDDP on bio-printed spheroids. In summary, we showed the cytotoxicity effect of GE on BC cells and also demonstrated that GE could sensitize BC cells to chemotherapy.
Collapse
Affiliation(s)
- Mariza Abreu Miranda
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | - Robson Amaral
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
99
|
Zhu Y, Joralmon D, Shan W, Chen Y, Rong J, Zhao H, Xiao S, Li X. 3D printing biomimetic materials and structures for biomedical applications. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00117-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Huang J, Huang Z, Liang Y, Yuan W, Bian L, Duan L, Rong Z, Xiong J, Wang D, Xia J. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci 2021; 9:2620-2630. [DOI: 10.1039/d0bm02103b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hUCB-MSC-laden 3D printed gelatin/HAP scaffold effectively repairs knee cartilage defects in a pig model.
Collapse
|