51
|
The predatory impacts of invasive European wasps on flies are facilitated by carcasses with open wounds. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
|
53
|
Fernández DC, VanLaerhoven SL, Rodríguez-Leyva E, Zhang YM, Labbé R. Population Structure and Genetic Diversity of the Pepper Weevil (Coleoptera: Curculionidae) Using the COI Barcoding Region. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:25. [PMID: 35220423 PMCID: PMC8882256 DOI: 10.1093/jisesa/ieac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 06/14/2023]
Abstract
The pepper weevil Anthonomus eugenii Cano (Coleoptera: Curculionidae) is a pest of economic importance for Capsicum species pepper in North America that attacks the reproductive structures of the plant. The insect is distributed across Mexico, the United States, and the Caribbean, and is occasionally found during the pepper growing season in southern Ontario, Canada. Continuous spread of the insect to new areas is partially the result of global pepper trade. Here, we describe the genetic diversity of the pepper weevil using the mitochondrial COI barcoding region across most of its geographic range. In this study, 44 (H1-H44) highly similar haplotypes were identified, the greatest number of haplotypes and haplotype diversity were observed among specimens from its native Mexico, followed by specimens from the United States. Unlike Mexico, a low haplotype diversity was found among specimens from Canada, the Dominican Republic, Italy, and the Netherlands. Out of these 44 haplotypes, 29 are reported for the first time. Haplotype diversity in the Canadian population suggests either multiple and continuous introductions of the pepper weevil into this area or a single introduction of genetically diverse individuals. We discuss the importance of such population genetic data in tailoring pepper weevil management programs, using Canada as an example.
Collapse
Affiliation(s)
- D Catalina Fernández
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, District of Columbia, USA
| | - Sherah L VanLaerhoven
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Esteban Rodríguez-Leyva
- Colegio de Postgraduados, Posgrado en Fitosanidad, Montecillo, 56100, Texcoco, Estado de Mexico, Mexico
| | - Y Miles Zhang
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, District of Columbia, USA
| | - Roselyne Labbé
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, 2585, Essex County Road 20, Harrow, Ontario, N0R 1G0, Canada
| |
Collapse
|
54
|
Roche DP, Stoleson SH, Lituma CM. Invasion of Eastern Deciduous Forests by the Spotted Wing Drosophila: Impacts and Knowledge Gaps. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel P. Roche
- Division of Forestry and Natural Resources West Virginia University 1145 Evansdale Drive Morgantown WV 26506 USA
| | - Scott H. Stoleson
- Forestry Sciences Laboratory, United States Department of Agriculture Forest Service Northern Research Station 335 National Forge Road Irvine PA 16329 USA
| | - Christopher M. Lituma
- Division of Forestry and Natural Resources West Virginia University 1145 Evansdale Drive Morgantown WV 26506 USA
| |
Collapse
|
55
|
Alientoma, a Dynamic Database for Alien Insects in Greece and Its Use by Citizen Scientists in Mapping Alien Species. INSECTS 2021; 12:insects12121101. [PMID: 34940189 PMCID: PMC8704008 DOI: 10.3390/insects12121101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Invasive alien species have been increasingly acknowledged as a major threat to native biodiversity and ecosystem services, while their adverse impacts expand to human health, society and the economy on a global scale. Insects represent one of the most numerous alien organismic groups, accounting for about one fifth of their total number. In Greece, a large number of alien insects have been identified, currently reaching 469 species. In recent decades, the contribution of citizen science towards detecting and mapping the distribution of alien insects has been steeply increasing. Addressing the need for up-to-date information on alien species as well as encouraging public participation in scientific research, the Alientoma website-derived from "alien" and the Greek word "entoma", meaning insects, is presented. The website aims towards providing updated information on alien species of insects to the public as well as the scientific community, raising awareness about biological invasions and addressing their distribution and impacts inter alia. By maintaining a dynamic online database alongside a strong social media presence since its launch, Alientoma has attracted individuals mainly from Greece and Cyprus, interacting with the website through a total of 1512 sessions. Alientoma intends to establish a constantly increasing network of citizen scientists and to supplement early detection, monitoring and management efforts to mitigate the adverse impacts of alien insects in Greece.
Collapse
|
56
|
Scarparo G, Sankovitz M, Loope KJ, Wilson‐Rankin E, Purcell J. Early queen joining and long-term queen associations in polygyne colonies of an invasive wasp revealed by longitudinal genetic analysis. Evol Appl 2021; 14:2901-2914. [PMID: 34950236 PMCID: PMC8674895 DOI: 10.1111/eva.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Invasive social insects rank among the most damaging of terrestrial species. They are responsible for extensive damage and severely threaten the biodiversity of environments where they are introduced. Variation in colony social form commonly occurs in introduced populations of yellowjacket wasps (genus Vespula). In particular, invasive colonies may contain multiple queens (i.e., polygyne) and persist several years, while in the native range, the colonies are usually annual and harbor a single queen (i.e., monogyne). In this study, we used genome-wide loci obtained by double digest restriction site-associated DNA sequencing (RADseq) to investigate the genetic structure and queen turnover in colonies of the western yellowjacket, Vespula pensylvanica, in their introduced range in Hawaii. Of the 27 colonies monitored over four months (October-January), 19 were polygyne and already contained multiple queens on the first day of sampling. Contrary to previous speculation, this finding suggests that polygyny often arises early in the annual colony cycle, before the production of new queens in the fall. Furthermore, polygyne colonies exhibited a prolonged average lifespan relative to those headed by a single queen. As a result, there is no clear window during which colony eradication efforts would be more effective than upon first discovery. The relatedness among nestmate queens was slightly above zero, indicating that these colonies are generally composed of nonrelatives. The queen turnover within each colony was low, and we detected some full-sibling workers sampled up to four months apart. Finally, we did not detect any population structure among colonies, suggesting that queens disperse up to several kilometers. Taken together, our results provide the first insights into the requeening dynamics in this invasive and incipiently polygyne population and illuminate the early establishment of multiple long-lasting queens in these damaging colonies.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Madison Sankovitz
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Kevin J. Loope
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Erin Wilson‐Rankin
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jessica Purcell
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
57
|
Camacho-Cervantes M, Mendoza-Arroyo W, Arellano-Sánchez D, Del-Val E. Exotic predators are not better biocontrol agents: the harlequin ladybird is not the most voracious in Mexico. PeerJ 2021; 9:e12503. [PMID: 34820207 PMCID: PMC8603833 DOI: 10.7717/peerj.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
The use of exotic species for pest biocontrol has been a common pathway for introduction and dispersal of invasive species that may have undesired outcomes. Biocontrol agents are believed to be a less damaging alternative than pesticides, but some species may also prey on or parasitize native species or outcompete them for resources. The harlequin ladybird (Harmonia axyridis) is a well-known biocontrol agent originally from Asia that has established invasive populations in 59 countries around the globe. Harlequin ladybirds are generalist predators that in addition to pests prey on an array of different species including other coccinelids’ eggs and larvae. In Mexico, native ladybirds that share ecological requirements with harlequin ladybirds are at risk of being outcompeted and predated upon. The aim of our study was to compare the foraging efficiency of harlequin ladybirds against three species of native coccinelids when preying on aphids. We investigated the foraging behaviour of ladybirds alone and in pairs with a conspecific, a native heterospecific or an exotic heterospecific. We found that the native Cycloneda sanguinea was the species that consumed the most aphids, while Hippodamia convergens was the fastest to find and consume each aphid. Harlequin ladybirds and H. convergens consumed the same number of aphids while P. vittigera consumed less. Conspecific competition was stronger than heterospecific competition. We discuss the suitability of using the exotic invasive harlequin ladybird for aphid biocontrol in comparison with native coccinelids.
Collapse
Affiliation(s)
- Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Wendy Mendoza-Arroyo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Daniela Arellano-Sánchez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| |
Collapse
|
58
|
Gippet JMW, George L, Bertelsmeier C. Local coexistence of native and invasive ant species is associated with micro-spatial shifts in foraging activity. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02678-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
60
|
Bălăcenoiu F, Japelj A, Bernardinelli I, Castagneyrol B, Csóka G, Glavendekić M, Hoch G, Hrašovec B, Krajter Ostoic S, Paulin M, Williams D, Witters J, de Groot M. Corythucha arcuata (Say, 1832) (Hemiptera, Tingidae) in its invasive range in Europe: perception, knowledge and willingness to act in foresters and citizens. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oak lace bug (OLB) Corythucha arcuata (Say, 1832) is an invasive alien species (IAS) that potentially could have many negative impacts on European oak health. Certain measures can be applied to counteract these effects. However, these measures may not be acceptable for forest managers or other stakeholder groups, such as private forest owners, environmental NGOs or the general public. Thereby, we set out to study the perception and knowledge of foresters and other stakeholders on the health status of European oak forests affected by oak lace bug and to investigate what forest health management measures would be acceptable to these target groups. An online survey questionnaire was designed and distributed via social networks, as well as professional networks via e-mails. The survey questionnaire was completed by 2084 respondents from nine European countries: Austria, Croatia, Belgium, France, Hungary, Italy, Romania, Serbia and Slovenia. Even though only a little over 60% of respondents reported they had noticed the discolouration of oak leaves caused by OLB, almost all (93%) considered it to be a problem. As respondents come from a country where C. arcuata is widespread and established, people’s general knowledge and awareness of OLB began to increase. The survey revealed that foresters thought that the insect affected photosynthesis, acorn crop and the aesthetics of the trees, but cannot cause death of trees. However, they assume that the value of the wood would decrease (this fact is also supported by the respondents who are connected to an environmental NGO), but that OLB does not affect property value. However, forest owners claim that the value of the property can be affected and that people would avoid entering the forest. In terms of potential control methods, respondents preferred biological or mechanical measures over chemical ones. We consider this study to be a good basis for further research on the topic of perception, knowledge and attitudes related to OLB since we can expect that the IAS, such as OLB, will certainly spread to European countries that were not included in this survey.
Collapse
|
61
|
Alien Invasive Pathogens and Pests Harming Trees, Forests, and Plantations: Pathways, Global Consequences and Management. FORESTS 2021. [DOI: 10.3390/f12101364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Forest health worldwide is impacted by many invasive alien pathogens and pests (IAPPs) that cause significant harm, with severe economic losses and environmental alterations. Destructive tree pathogens and pests have in the past devastated our forests, natural landscapes and cityscapes and still continue to represent a serious threat. The main driver of pathogen and pest invasions is human activities, above all global trade, which allows these invasive species to overstep their natural distribution ranges. While natural transport occurs according to a regular, expected colonization pattern (based on the dispersive capacity of the organism), human-mediated transport takes place on a larger, unpredictable scale. In order for a pathogen or pest species to become invasive in a new territory it must overcome distinct stages (barriers) that strongly affect the outcome of the invasion. Early detection is crucial to enabling successful eradication and containment. Although sophisticated diagnostic techniques are now available for disease and pest surveillance and monitoring, few control and mitigation options are usable in forestry; of these, biological control is one of the most frequently adopted. Since invasion by pathogens and pests is an economic and ecological problem of supranational relevance, governments should endorse all necessary preventive and corrective actions. To this end, establishing and harmonizing measures among countries is essential, both for preventing new introductions and for diminishing the eventual range expansion of IAPPs present at a local scale. Research is fundamental for: (i) developing effective and rapid diagnostic tools; (ii) investigating the epidemiology and ecology of IAPPs in newly introduced areas; and (iii) supporting policymakers in the implementation of quarantine regulations.
Collapse
|
62
|
Cotoras DD, Elgueta M, Vilches MJ, Hagen E, Pott M. Terrestrial invertebrates surviving San Ambrosio island’s ecological catastrophe reinforce biogeographic affinities between the Juan Fernández and Desventuradas Islands. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1954710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Darko D. Cotoras
- Entomology Department, California Academy of Sciences, San Francisco, CA, USA
- Island Conservation, Santiago, Chile
| | - Mario Elgueta
- Área de Entomología, Museo Nacional de Historia Natural, Parque Quinta Normal, Santiago, Región Metropolitana, Chile
| | | | - Erin Hagen
- Department of Conservation, Island Conservation, Santa Cruz, CA, USA
| | - Madeleine Pott
- Department of Conservation, Island Conservation, Santa Cruz, CA, USA
| |
Collapse
|
63
|
Turner RM, Brockerhoff EG, Bertelsmeier C, Blake RE, Caton B, James A, MacLeod A, Nahrung HF, Pawson SM, Plank MJ, Pureswaran DS, Seebens H, Yamanaka T, Liebhold AM. Worldwide border interceptions provide a window into human-mediated global insect movement. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02412. [PMID: 34255404 DOI: 10.1002/eap.2412] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/04/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
As part of national biosecurity programs, cargo imports, passenger baggage, and international mail are inspected at ports of entry to verify compliance with phytosanitary regulations and to intercept potentially damaging nonnative species to prevent their introduction. Detection of organisms during inspections may also provide crucial information about the species composition and relative arrival rates in invasion pathways that can inform the implementation of other biosecurity practices such as quarantines and surveillance. In most regions, insects are the main taxonomic group encountered during inspections. We gathered insect interception data from nine world regions collected from 1995 to 2019 to compare the composition of species arriving at ports in these regions. Collectively, 8,716 insect species were intercepted in these regions over the last 25 yr, with the combined international data set comprising 1,899,573 interception events, of which 863,972 were identified to species level. Rarefaction analysis indicated that interceptions comprise only a small fraction of species present in invasion pathways. Despite differences in inspection methodologies, as well as differences in the composition of import source regions and imported commodities, we found strong positive correlations in species interception frequencies between regions, particularly within the Hemiptera and Thysanoptera. There were also significant differences in species frequencies among insects intercepted in different regions. Nevertheless, integrating interception data among multiple regions would be valuable for estimating invasion risks for insect species with high likelihoods of introduction as well as for identifying rare but potentially damaging species.
Collapse
Affiliation(s)
- Rebecca M Turner
- Scion (New Zealand Forest Research Institute), P.O. Box 29237, Christchurch, 8440, New Zealand
| | | | - Cleo Bertelsmeier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Rachael E Blake
- National Socio-Environmental Synthesis Center, Annapolis, Maryland, 21401, USA
| | - Barney Caton
- U.S. Department of Agriculture, Raleigh, North Carolina, 27606, USA
| | - Alex James
- Te Pūnaha Matatini, a New Zealand Centre of Research Excellence, Auckland, 1142, New Zealand
- School of Mathematics and Statistics, University of Canterbury, Christchurch, 8041, New Zealand
| | - Alan MacLeod
- Department for Environment, Food and Rural Affairs, York, YO41 1LZ, UK
| | - Helen F Nahrung
- Forest Research Institute, University of the Sunshine Coast, Brisbane, Queensland, 4102, Australia
| | - Stephen M Pawson
- Scion (New Zealand Forest Research Institute), P.O. Box 29237, Christchurch, 8440, New Zealand
- School of Forestry, University of Canterbury, Christchurch, 8041, New Zealand
| | - Michael J Plank
- Te Pūnaha Matatini, a New Zealand Centre of Research Excellence, Auckland, 1142, New Zealand
- School of Mathematics and Statistics, University of Canterbury, Christchurch, 8041, New Zealand
| | - Deepa S Pureswaran
- Laurentian Forestry Centre, Canadian Forest Service, Quebec, Quebec, G1V 4C7, Canada
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, 60325, Germany
| | - Takehiko Yamanaka
- Research Center for Agricultural Information Technology, NARO, Tokyo, 3058604, Japan
| | - Andrew M Liebhold
- U.S. Department of Agriculture Forest Service Northern Research Station, Morgantown, West Virginia, 26505, USA
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, 165 00, Czech Republic
| |
Collapse
|
64
|
Tepa‐Yotto GT, Gouwakinnou GN, Fagbohoun JR, Tamò M, Sæthre M. Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in West and Central Africa. PEST MANAGEMENT SCIENCE 2021; 77:4437-4446. [PMID: 33991052 PMCID: PMC8453867 DOI: 10.1002/ps.6478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The southern armyworm (SAW) Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) is native to the tropical Americas where the pest can feed on more than 100 plant species. SAW was recently detected in West and Central Africa, feeding on various crops including cassava, cotton, amaranth and tomato. The current work was carried out to predict the potential spatial distribution of SAW and four of its co-evolved parasitoids at a global scale using the maximum entropy (Maxent) algorithm. RESULTS SAW may not be a huge problem outside its native range (the Americas) for the time being, but may compromise crop yields in specific hotspots in coming years. The analysis of its potential distribution anticipates that the pest might easily migrate east and south from Cameroon and Gabon. CONCLUSION The models used generally demonstrate that all the parasitoids considered are good candidates for the biological control of SAW globally, except they will not be able to establish in specific climates. The current paper discusses the potential role of biological control using parasitoids as a crucial component of a durable climate-smart integrated management of SAW to support decision making in Africa and in other regions of bioclimatic suitability. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ghislain T Tepa‐Yotto
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
- Ecole de Gestion et de Production Végétale et SemencièreUniversité Nationale d'AgricultureKétouBenin
| | - Gérard N Gouwakinnou
- Laboratoire d'Ecologie, de Botanique et de Biologie végétaleFaculté d'Agronomie, Université de ParakouParakouBenin
| | - Johannes R Fagbohoun
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
- Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
- Department for Invertebrate Pests and Weeds in Forestry, Horticulture and AgricultureNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Manuele Tamò
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
| | - May‐Guri Sæthre
- Department for Climate, Energy and Environment, Section for Environment and Food SecurityNorwegian Agency for Development and CooperationOsloNorway
| |
Collapse
|
65
|
Preference and Performance of the Pine-Tree Lappet Dendrolimus pini on Various Pine Species. FORESTS 2021. [DOI: 10.3390/f12091261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global commercial and recreational transport may lead to the unintentional invasion of insect species, which in turn may pose a threat to native organisms. In this study, we aimed to assess whether the economically important pest of Pinus sylvestris L., moth Dendrolimus pini L. (DP), is able to feed on nine other pine species, and how this will affect its survival, performance, growth, and development. We carried out food choice tests and a no-choice laboratory feeding experiment. We found that this insect mostly preferred its prime host, but also Pinus cembra L., Pinus contorta Douglas ex Loudon, Pinus nigra J.F.Arnold, and Pinus ponderosa Douglas ex C.Lawson. The performance test revealed a host-specific response of DP to the host plant. This response was manifested in a large variation in body mass as well as in a decrease or increase in life-history traits, such as fecundity, and wing morphology parameters. However, the larvae’s choice of particular hosts corresponded to the results of the performance test. Larvae more willingly selected food allowing better results in their performance. Larvae achieved better values of growth and development when fed on European and North American pine species or on species with two- and three-needle fascicles. In addition, attractants and repellents in needles of different pine species were chemically analyzed. Variations in the secondary metabolite composition as well as the specific leaf area of different pine species effectively explained the results found in the insects, but the content of sugars and nitrogen remains to be elucidated. We speculate that DP poses a serious threat to large areas of pine forests, if transferred, as it can survive and develop on many economically important tree species in North America and Europe.
Collapse
|
66
|
Hemsley JA, Holland JM. Does the non-native Harlequin ladybird disrupt the feeding behaviour of the native two-spot ladybird? BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:1-5. [PMID: 34488913 DOI: 10.1017/s000748532100064x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since its arrival in 2004, the non-native Harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) has rapidly spread throughout Britain, and it is now the most common coccinellid in England. There have since been concerns about the detrimental effects it may have on native coccinellids because there is a strong correlation between the arrival of H. axyridis and the decline in native species, including the two-spot ladybird, Adalia bipunctata. However, there have been few studies of the behavioural interactions between these two species, which occupy a high-niche overlap. This study investigated if the presence of H. axyridis impacts the feeding behaviour of A. bipunctata through direct competition for aphid prey. Foraging and interactive behaviour of A. bipunctata and H. axyridis were investigated within microcosms. Adalia bipuncata exhibited a similar consumption rate and time in the presence of H. axridis, yet H. axyridis consumed 3.5 times more prey items and were seven times faster compared to A. bipuncata. Observations showed that H. axyridis does not directly disrupt the feeding behaviour of A. bipunctata, but rather indirectly excludes the native species through being a superior competitor for prey items. Results indicate that the decline in native coccinellid species may be a consequence of H. axyridis competitive advantage, but that the concept of coexistence should not be dismissed.
Collapse
|
67
|
First Detection of the Adventive Egg Parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in France. INSECTS 2021; 12:insects12090761. [PMID: 34564202 PMCID: PMC8468701 DOI: 10.3390/insects12090761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The invasive brown marmorated stink bug (BMSB), Halyomorpha halys, is a polyphagous species and a serious pest worldwide. Classical biological control (CBC), i.e., the introduction of a natural enemy from the native area of the pest, is considered as the preferential solution for BMSB regulation. Adventive populations of exotic egg parasitoids of BSMB, Trissolcus japonicus and T. mitsukurii, have been reported worldwide. With the aim to characterize the French diversity of egg parasitoids associated to various stink bugs including BMSB, field surveys were conducted between 2018 and 2020. Surprisingly, morphological and molecular analyses unambiguously revealed 12 specimens of T. mitsukurii, an Asian egg parasitoid of BSMB. Although its permanent establishment has to be confirmed, this first record in France could actually facilitate CBC initiatives, T. mitsukurii being considered with T. japonicus as the two most promising biological control agents against BMSB. Abstract We report the first detection of Trissolcus mitsukurii in France. More than 1860 sentinel egg masses of Halyomorpha halys (BMSB) were exposed in the field during the 2018–2020 period, and 12 specimens of T. mitsukurii emerged from one egg mass. Their taxonomic identification was confirmed both by morphological and molecular analysis. Trissolcus mitsukurii, similar to T. japonicus, is an egg parasitoid of BMSB in its area of origin in Asia, and both species are considered to be candidates for a classical biological control strategy against BMSB. Trissolcus mitsukurii was previously recorded in Italy where it is well established and widespread, and this may be the source of the French population. Possible permanent establishment and dispersion of T. mitsukurii in France should be monitored with emphasis on its potential effect on BMSB populations.
Collapse
|
68
|
Mills NJ. Abundance–suitability relationships for invasive species: Epiphyas postvittana as a case study. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02500-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Invasive Burmese pythons alter host use and virus infection in the vector of a zoonotic virus. Commun Biol 2021; 4:804. [PMID: 34183751 PMCID: PMC8239020 DOI: 10.1038/s42003-021-02347-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
The composition of wildlife communities can have strong effects on transmission of zoonotic vector-borne pathogens, with more diverse communities often supporting lower infection prevalence in vectors (dilution effect). The introduced Burmese python, Python bivittatus, is eliminating large and medium-sized mammals throughout southern Florida, USA, impacting local communities and the ecology of zoonotic pathogens. We investigated invasive predator-mediated impacts on ecology of Everglades virus (EVEV), a zoonotic pathogen endemic to Florida that circulates in mosquito-rodent cycle. Using binomial generalized linear mixed effects models of field data at areas of high and low python densities, we show that increasing diversity of dilution host (non-rodent mammals) is associated with decreasing blood meals on amplifying hosts (cotton rats), and that increasing cotton rat host use is associated with increasing EVEV infection in vector mosquitoes. The Burmese python has caused a dramatic decrease in mammal diversity in southern Florida, which has shifted vector host use towards EVEV amplifying hosts (rodents), resulting in an indirect increase in EVEV infection prevalence in vector mosquitoes, putatively elevating human transmission risk. Our results indicate that an invasive predator can impact wildlife communities in ways that indirectly affect human health, highlighting the need for conserving biological diversity and natural communities.
Collapse
|
70
|
Hartshorn JA, Coyle DR. Comparative Meta-analysis Effects of Nonnative Ants (Hymenoptera: Formicidae), Ground Beetles (Coleoptera: Carabidae), and Bark and Ambrosia Beetles (Coleoptera: Curculionidae) on Native Confamilials. ENVIRONMENTAL ENTOMOLOGY 2021; 50:622-632. [PMID: 33822028 DOI: 10.1093/ee/nvab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Nonnative species often transform local communities to the detriment of native species. Much of the existing invasion ecology research focuses on the effects of a few extremely impactful species, and it is less clear how nonnative species which are not causing economic or ecological impacts alter closely related natives at risk of being displaced. Filling these knowledge gaps is critical because consequences of nonnative species are likely to vary depending on taxonomic scale, functional trait, and spatial or temporal niche. We conducted a meta-analysis to evaluate how biodiversity of native Formicidae (ants), Carabidae (ground beetles), and Scolytinae (bark and ambrosia beetles) species changes across a gradient of pressure from nonnative confamilials. We calculated Hill numbers for each group from data presented in literature and correlated native diversity metrics to proportion of nonnative species. Species richness of native ants was significantly negatively correlated with proportions of nonnative ants, whereas bark and ambrosia beetle metrics showed a nonsignificant negative correlation. Nonnative ground beetles had neutral effects on diversity of native ground beetles. Resulting contrasting patterns of invasive species effects on natives suggest complex biotic and abiotic factors driving effects of nonnative species in these groups. Our results suggest that a few extreme examples (e.g., red imported fire ants) drive most of the changes seen in native arthropod communities. To accurately assess impacts of invaders on native arthropod diversity, baseline data are needed, and community analyses must consider diverse functional traits of native taxa and improve the depth and breadth of community sampling.
Collapse
Affiliation(s)
- Jessica A Hartshorn
- Department of Forestry & Environmental Conservation, Clemson University, Clemson, SC
| | - David R Coyle
- Department of Forestry & Environmental Conservation, Clemson University, Clemson, SC
| |
Collapse
|
71
|
Yasashimoto T, Sakata MK, Sakita T, Nakajima S, Ozaki M, Minamoto T. Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples. Sci Rep 2021; 11:10712. [PMID: 34040019 PMCID: PMC8154996 DOI: 10.1038/s41598-021-89993-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Alien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.
Collapse
Affiliation(s)
- Tetsu Yasashimoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Masayuki K Sakata
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoya Sakita
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Satoko Nakajima
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Mamiko Ozaki
- Graduate School of Science, Kobe University, Kobe, Japan
- Graduate School of Engineering, Kobe University, Kobe, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
- Research Institute of Sustainable Humanosphere, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
72
|
Interactions of ants with native and invasive lady beetles and the role of chemical cues in intraguild interference. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe predator-predator naïveté hypothesis suggests that non-native predators benefit from being unknown to native predators, resulting in reduced intraguild interference with native predators. This novelty advantage should depend on the ability of native predators to recognize cues of non-native predators. Here, we compared ant aggression and lady beetle reaction in four native and the invasive lady beetle species Harmonia axyridis. In addition, we tested whether lady beetle cuticular hydrocarbons (CHCs) are involved in species recognition, which might explain naïveté if the invasive species has a specific CHC profile. To this end, we conducted behavioral assays confronting two native ant species with both living lady beetles and lady beetle elytra bearing or lacking CHCs of different lady beetle species. Finally, we characterized CHC profiles of the lady beetles using GC–MS. In general, the aggression of Lasius niger was more frequent than that of Myrmica rubra and L. niger aggression was more frequent towards most native lady beetle species compared to H. axyridis. The removal of CHCs from lady beetle elytra reduced aggression of both ant species. If CHCs of respective lady beetle species were added on cue-free elytra, natural strength of L. niger aggression could be restored. CHC analyses revealed a distinct cue composition for each lady beetle species. Our experiments demonstrate that the presence of chemical cues on the surface of lady beetles contribute to the strength of ant aggression against lady beetles. Reduced aggression of L. niger towards H. axyridis and reduced avoidance behavior in H. axyridis compared to the equally voracious C. septempunctata might improve the invasive lady beetle’s access to ant-tended aphids.
Collapse
|
73
|
Javal M, Terblanche JS, Conlong DE, Delahaye N, Grobbelaar E, Benoit L, Lopez-Vaamonde C, Haran JM. DNA barcoding for bio-surveillance of emerging pests and species identification in Afrotropical Prioninae (Coleoptera, Cerambycidae). Biodivers Data J 2021; 9:e64499. [PMID: 33967581 PMCID: PMC8099841 DOI: 10.3897/bdj.9.e64499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/11/2021] [Indexed: 11/18/2022] Open
Abstract
DNA barcoding has been succesfully used for bio-surveillance of forest and agricultural pests in temperate areas, but has few applications in the tropics and particulary in Africa. Cacoscelesnewmannii (Coleoptera: Cerambycidae) is a Prioninae species that is locally causing extensive damage in commercially-grown sugarcane in the KwaZulu-Natal Province in South Africa. Due to the risk of spread of this species to the rest of southern Africa and to other sugarcane growing regions, clear and easy identification of this pest is critical for monitoring and for phytosanitary services. The genus Cacosceles Newman, 1838 includes four species, most being very similar in morphology. The damaging stage of the species is the larva, which is inherently difficult to distinguish morphologically from other Cerambycidae species. A tool for rapid and reliable identification of this species was needed by plant protection and quarantine agencies to monitor its potential abundance and spread. Here, we provide newly-generated barcodes for C.newmannii that can be used to reliably identify any life stage, even by non-trained taxonomists. In addition, we compiled a curated DNA barcoding reference library for 70 specimens of 20 named species of Afrotropical Prioninae to evaluate DNA barcoding as a valid tool to identify them. We also assessed the level of deeply conspecific mitochondrial lineages. Sequences were assigned to 42 different Barcode Index Numbers (BINs), 28 of which were new to BOLD. Out of the 20 named species barcoded, 11 (52.4%) had their own unique Barcode Index Number (BIN). Eight species (38.1%) showed multiple BINs with no morphological differentiation. Amongst them, C.newmannii showed two highly divergent genetic clusters which co-occur sympatrically, but further investigation is required to test whether they could represent new cryptic species.
Collapse
Affiliation(s)
- Marion Javal
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University Stellenbosch South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University Stellenbosch South Africa
| | - Desmond E Conlong
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa South African Sugarcane Research Institute Mount Edgecombe South Africa.,Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University Stellenbosch South Africa
| | | | - Elizabeth Grobbelaar
- Biosystematics Division, ARC-Plant Protection Research Institute, Private Bag X134, Queenswood, Pretoria, South Africa Biosystematics Division, ARC-Plant Protection Research Institute, Private Bag X134, Queenswood Pretoria South Africa
| | - Laure Benoit
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier Montpellier France
| | - Carlos Lopez-Vaamonde
- INRAE, URZF, Orleans, France INRAE, URZF Orleans France.,IRBI, UMR 7261, CNRS-Université de Tours, Tours, France IRBI, UMR 7261, CNRS-Université de Tours Tours France
| | - Julien M Haran
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier Montpellier France
| |
Collapse
|
74
|
Canelles Q, Bassols E, Vayreda J, Brotons L. Predicting the potential distribution and forest impact of the invasive species Cydalima perspectalis in Europe. Ecol Evol 2021; 11:5713-5727. [PMID: 34026042 PMCID: PMC8131781 DOI: 10.1002/ece3.7476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive species have considerably increased in recent decades due to direct and indirect effects of ever-increasing international trade rates and new climate conditions derived from global change. We need to better understand how the dynamics of early species invasions develop and how these result in impacts on the invaded ecosystems. Here we studied the distribution and severe defoliation processes of the box tree moth (Cydalima perspectalis W.), a tree defoliator insect native to Asia and invasive in Europe since 2007, through the combination of species distribution models based on climate and landscape composition information. The results showed that the combination of data from the native and the invaded areas was the most effective methodology for the appropriate invasive species modeling. The species was not influenced by overall landscape factors, but only by the presence of its host plant, dispersal capacity, and climate suitability. Such climate suitability was described by low precipitation seasonality and minimum annual temperatures around 0°C, defining a continentality effect throughout the territory. We emphasize the need of studying distribution and severe defoliation processes separately because we identified that climate suitability was slightly involved in limiting species spread processes but strongly constrained ecosystem impact in terms of defoliation before the species reaches equilibrium with the new environment. New studies on habitat recovery after disturbance, ecological consequences of such impact, and community dynamics in a context of climate change are required for a better understanding of this invasive species.
Collapse
Affiliation(s)
| | - Emili Bassols
- Parc Natural de la Zona Volcànica de la GarrotxaOlotSpain
| | - Jordi Vayreda
- InForestJru (CREAF‐CTFC)SolsonaSpain
- CREAFCerdanyola del VallèsSpain
| | - Lluís Brotons
- InForestJru (CREAF‐CTFC)SolsonaSpain
- CREAFCerdanyola del VallèsSpain
- CSICCerdanyola del VallèsSpain
| |
Collapse
|
75
|
Clarke DA, Palmer DJ, McGrannachan C, Burgess TI, Chown SL, Clarke RH, Kumschick S, Lach L, Liebhold AM, Roy HE, Saunders ME, Yeates DK, Zalucki MP, McGeoch MA. Options for reducing uncertainty in impact classification for alien species. Ecosphere 2021. [DOI: 10.1002/ecs2.3461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- David A. Clarke
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - David J. Palmer
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - Chris McGrannachan
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - Treena I. Burgess
- Centre for Climate Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University 90 South Street Murdoch6150Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - Rohan H. Clarke
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - Sabrina Kumschick
- Centre for Invasion Biology Department of Botany & Zoology Stellenbosch University Matieland South Africa
- Cape Town Office South African National Biodiversity Institute Claremont South Africa
| | - Lori Lach
- College of Science and Engineering James Cook University PO Box 6811 Cairns Queensland4870Australia
| | - Andrew M. Liebhold
- USDA Forest Service Northern Research Station Morgantown West Virginia26505USA
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Praha 6 ‐ Suchdol CZ165 21Czech Republic
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology WallingfordOX10 8BBUK
| | - Manu E. Saunders
- School of Environmental and Rural Science University of New England Armidale New South Wales2351Australia
- UNE Business School University of New England Armidale New South Wales2351Australia
| | - David K. Yeates
- CSIRO Australian National Insect Collection PO Box 1700 Canberra Australian Capital Territory2601Australia
| | - Myron P. Zalucki
- School of Biological Sciences University of Queensland Brisbane Queensland4072Australia
| | - Melodie A. McGeoch
- School of Biological Sciences Monash University Clayton Victoria3800Australia
- Department of Ecology Environment and Evolution La Trobe University Bundoora, Melbourne Victoria30186Australia
| |
Collapse
|
76
|
Marcolin E, Pividori M, Colombari F, Manetti MC, Pelleri F, Conedera M, Gehring E. Impact of the Asian gall wasp
Dryocosmus kuriphilus
on the radial growth of the European chestnut
Castanea sativa. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | | | | | - Marco Conedera
- WSL Swiss Federal Research InstituteInsubric Ecosystems Research Group Cadenazzo Switzerland
| | - Eric Gehring
- WSL Swiss Federal Research InstituteInsubric Ecosystems Research Group Cadenazzo Switzerland
| |
Collapse
|
77
|
Diesburg KM, Sullivan SMP, Manning DWP. Consequences of a terrestrial insect invader on stream-riparian food webs of the central Appalachians, USA. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02435-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
78
|
Pshegusov RH, Chadaeva VA. Proliferation of Alien Plant Species in Forest Communities of the Khosta Yew–Boxwood Grove of the Caucasus Nature Reserve after the Destruction of Buxus colchica Pojark. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2021. [DOI: 10.1134/s2075111721010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Mason CJ, Walsh B, Keller J, Couture JJ, Calvin D, Urban JM. Fidelity and Timing of Spotted Lanternfly (Hemiptera: Fulgoridae) Attack Patterns on Ornamental Trees in the Suburban Landscape. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1427-1436. [PMID: 32960283 DOI: 10.1093/ee/nvaa109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Invasive herbivores can have dramatic impacts in new environments by altering landscape composition, displacing natives, and causing plant decline and mortality. One of the most recent invasive insects in the United States, the spotted lanternfly (Lycorma delicatula), has the potential to cause substantial economic and environmental impacts in agriculture and forestry. Spotted lanternfly exhibits a broad host range, yet reports of late-season movement from the surrounding landscapes onto select tree species in suburban environments have been reported. In this study, we aimed to evaluate the fidelity of spotted lanternfly attack on specific, individual trees within the same species during this movement period. In 2018 and 2019, we observed that individual red (Acer rubrum L. [Sapindales: Sapindaceae]) and silver maple (Acer saccharinum L. [Sapindales: Sapindaceae]) trees were preferentially attacked over other nearby trees of the same species. Foliar elemental composition was a good predictor of spotted lanternfly attack numbers, indicating that individual variation in nutrients may influence spotted lanternfly attraction to and/or retention on maple trees. Our data also confirm reports of late-season movement from surrounding landscapes throughout autumn. Collectively, our results show that spotted lanternfly exhibits some fidelity to particular trees in the landscape during this movement period. While other potential mechanisms also contribute to host plant selection by spotted lanternfly, our data show that host nutritional profiles influence spotted lanternfly infestation of suburban trees at the landscape scale. Our data establish that late-season infestations of suburban trees by spotted lanternfly occurred and that variation in host quality should be further considered in the management of this invasive insect pest.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Brian Walsh
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Joseph Keller
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - John J Couture
- Department of Entomology and Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Dennis Calvin
- Department of Entomology, The Pennsylvania State University, University Park, PA
| | - Julie M Urban
- Department of Entomology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
80
|
Oliveira-Christe R, Wilke ABB, Marrelli MT. Microgeographic Wing-Shape Variation in Aedes albopictus and Aedes scapularis (Diptera: Culicidae) Populations. INSECTS 2020; 11:insects11120862. [PMID: 33287264 PMCID: PMC7761735 DOI: 10.3390/insects11120862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Aedes albopictus and Aedes scapularis are vectors of several arboviruses, including the dengue, chikungunya, and Rocio virus infection. While Ae. albopictus is a highly invasive species native to Asia and has been dispersed by humans to most parts of the world, Ae. scapularis is native to Brazil and is widely distributed in the southeast of the country. Both species are highly anthropophilic and are often abundant in places with high human population densities. Because of the great epidemiological importance of these two mosquitoes and the paucity of knowledge on how they have adapted to different urban built environments, we investigated the microgeographic population structure of these vector species in the city of São Paulo, Brazil, using wing geometric morphometrics. Females of Ae. albopictus and Ae. scapularis were collected in seven urban parks in the city. The right wings of the specimens were removed and digitized, and eighteen landmarks based on vein intersections in the wing venation patterns were used to assess cross-sectional variation in wing shape and size. The analyses revealed distinct results for Ae. albopictus and Ae. scapularis populations. While the former had less wing shape variation, the latter had more heterogeneity, indicating a higher degree of intraspecific variation. Our results indicate that microgeographic selective pressures exerted by different urban built environments have a distinct effect on wing shape patterns in the populations of these two mosquito species studied here.
Collapse
Affiliation(s)
- Rafael Oliveira-Christe
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, 05403-000 Butanta, SP, Brazil;
| | - André Barretto Bruno Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Mauro Toledo Marrelli
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, 05403-000 Butanta, SP, Brazil;
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, 01246-904 Butanta, SP, Brazil
- Correspondence:
| |
Collapse
|
81
|
Zida I, Nacro S, Dabiré R, Moquet L, Delatte H, Somda I. Host range and species diversity of Tephritidae of three plant formations in Western Burkina Faso. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:732-742. [PMID: 32482179 DOI: 10.1017/s0007485320000243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In Western Burkina Faso, the host range of fruit flies was evaluated in three plant formations between May 2017 and April 2019. Samples of 61 potential hosts were collected and incubated for fruit fly emergence. Twenty-seven hosts including cultivated and wild fruit were identified. Among cultivated fruit species, mango, and guava were the most infested while high infestation incidences were observed in the fruit of the indigenous plants Vitellaria paradoxa, Annona senegalensis, Sarcocephalus latifolius, and Saba senegalensis. Low infestation rates were observed in Anacardium occidentale, Citrus species, Opilia celtidifolia, and Cissus populnea. The highest infestation index (1648.57 flies kg-1) was observed from V. paradoxa. Eleven new host fruit infested with many fruit fly species are reported in Burkina Faso. A total of 18 fruit fly species were reared; Bactrocera dorsalis (42.94%), Ceratitis cosyra (29.93%), and Ceratitis silvestrii (22.33%) dominated those that emerged. Four fruit fly species have been detected for the first time in Burkina Faso. The main suitable fruit hosts are abundant and available from May through August during the rainy season and become rare and have low infestation from November to April during the dry season. This is the first study of its kind in the region. This study shows that the three plant formations had an impact on population dynamics of the three tephritid species of economic importance in Western Burkina Faso. This information should be integrated into the development of a fruit fly pests management strategy.
Collapse
Affiliation(s)
- Issaka Zida
- Institut de l'Environnement et de Recherches Agricoles (INERA), Station de Farako-bâ, 01 BP 910 Bobo Dioulasso, Burkina Faso
- Université Nazi BONI, 01 BP 1091, Bobo Dioulasso, Burkina Faso
| | - Souleymane Nacro
- Institut de l'Environnement et de Recherches Agricoles (INERA), Station de Kamboinsé, 01 BP 476 Ouagadougou, Burkina Faso
| | - Rémy Dabiré
- Institut de l'Environnement et de Recherches Agricoles (INERA), Station de Farako-bâ, 01 BP 910 Bobo Dioulasso, Burkina Faso
| | - Laura Moquet
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Hélène Delatte
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Irénée Somda
- Université Nazi BONI, 01 BP 1091, Bobo Dioulasso, Burkina Faso
| |
Collapse
|
82
|
Ruzzier E, Menchetti M, Bortolotti L, Selis M, Monterastelli E, Forbicioni L. Updated distribution of the invasive Megachile sculpturalis (Hymenoptera: Megachilidae) in Italy and its first record on a Mediterranean island. Biodivers Data J 2020; 8:e57783. [PMID: 33281473 PMCID: PMC7714772 DOI: 10.3897/bdj.8.e57783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Megachilesculpturalis (Smith, 1853) (Hymenoptera: Megachilidae) is an invasive solitary bee that is rapidly spreading all over Europe. The present study aims to update the distribution of this species in Italy. The research led to the collection of 177 records, obtained through bibliographic research and data-mining from websites, blogs and social networks. We here present the first record of M.sculpturalis on a Mediterranean island and discuss its possible effect on the native ecosystem. Given the particular discovery of M.sculpturalis on Elba Island (Tuscany), we suggest possible monitoring, containment and possible eradication measures of the species.
Collapse
Affiliation(s)
- Enrico Ruzzier
- Universtità degli Studi di Padova, Legnaro (Padova), Italy Universtità degli Studi di Padova Legnaro (Padova) Italy.,World Biodiversity Association onlus c/o NAT LAB Forte Inglese, Portoferraio (LI), Italy World Biodiversity Association onlus c/o NAT LAB Forte Inglese Portoferraio (LI) Italy
| | - Mattia Menchetti
- Università degli Studi di Firenze, Firenze, Italy Università degli Studi di Firenze Firenze Italy
| | - Laura Bortolotti
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna, Italy Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment Bologna Italy
| | - Marco Selis
- Via dei Tarquini 22, Viterbo, Italy Via dei Tarquini 22 Viterbo Italy
| | - Elisa Monterastelli
- Università degli Studi di Firenze, Firenze, Italy Università degli Studi di Firenze Firenze Italy
| | - Leonardo Forbicioni
- World Biodiversity Association onlus c/o NAT LAB Forte Inglese, Portoferraio (LI), Italy World Biodiversity Association onlus c/o NAT LAB Forte Inglese Portoferraio (LI) Italy
| |
Collapse
|
83
|
Vasiliev D, Greenwood S. Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: Mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140880. [PMID: 32693283 DOI: 10.1016/j.scitotenv.2020.140880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 05/11/2023]
Abstract
Pollinator biodiversity and biomass are in decline globally. This fact accompanied by shortage and collapses of domesticated pollinator colonies, puts human food security under unprecedented threat. Many countries worldwide have adopted or intend to introduce national pollinator conservation strategies. Decisions of policy makers and other involved stakeholders are often driven by pragmatic considerations, rather than biodiversity conservation per se. At the same time, different opinions exist in the literature on the role of pollinator biodiversity versus abundance of few dominant species in crop pollination. This article critically evaluates the literature in order to understand the importance of biodiversity over abundance and to examine the effectiveness of conservation strategies. Results of this review suggest that pollinator biodiversity is critical for crop pollination quality, magnitude and resilience. Most current national pollinator conservation strategies lack comprehensive measures for maintaining pollinator biodiversity at a landscape scale.
Collapse
Affiliation(s)
- Denis Vasiliev
- Biodiversity, Wildlife and Ecosystem Health MSc, Biomedical Sciences, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom of Great Britain and Northern Ireland.
| | - Sarah Greenwood
- Biodiversity, Wildlife and Ecosystem Health MSc, Biomedical Sciences, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
84
|
Zina V, Branco M, Franco JC. Impact of the Invasive Argentine Ant in Citrus Agroecosystems: Effects on the Diversity and Frequency of Native Ant Species Foraging on Tree Canopy. INSECTS 2020; 11:insects11110785. [PMID: 33187222 PMCID: PMC7696009 DOI: 10.3390/insects11110785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary We aimed at assessing the impact of the Argentine ant invasion on the native ant community in citrus ecosystems. We compared the Argentine ant’s invaded and uninvaded citrus orchards in the south of Portugal, estimating species richness and the frequency of ant assemblages foraging on the tree canopy. The results suggest that the Argentine ant has a negative impact on the native ant community structure, markedly reducing the diversity and frequency of native species. This impact was more or less pronounced depending on the season. Possible implications for citrus pest management are discussed. Abstract The invasion of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera, Formicidae) can alter the entire ecosystem with serious impacts on the native community structure (e.g., ant diversity) and processes (e.g., trophic interactions) leading to biodiversity loss and pest outbreaks. Most studies addressing these impacts have been conducted in natural or semi-natural areas, few are those conducted in agricultural ecosystems, such as citrus orchards. These are dominant agricultural ecosystems in Mediterranean landscapes. Furthermore, most studies have been conducted in a short span, not evidencing seasonal fluctuations. In this work, we assessed the ecological impact of the Argentine ant on the native ant communities in citrus orchards, in the region of Algarve, southern Portugal. By using principal response curve, we compared seasonal variation on ant assemblages in invaded and uninvaded citrus orchards foraging on tree canopy from a two-year sampling. The Argentine ant had a marked negative impact on the native ant community foraging on citrus canopy. In the uninvaded orchards, the native ant community had a rich assemblage composed of 16 ant species, in its majority (72%) controlled by the dominant species Lasius grandis Forel, Tapinoma nigerrimum (Nylander) and/or Pheidole pallidula (Nylander). In the invaded orchards, the native ant community was poorer and highly modified, mostly dominated by the Argentine ant (80%). Apparently, the only native ant species not affected by the presence of the Argentine ant was Plagiolepis pygmaea (Latreille). A significant negative effect was found between the proportion of infested trees by L. humile and the number of native ant species per orchard. Differences in the native ant community in the invaded and uninvaded orchards persisted over seasons and years. However, negative impacts were higher in the spring and summer, and less pronounced in the autumn. We discuss implications for citrus pest management.
Collapse
Affiliation(s)
- Vera Zina
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (M.B.); (J.C.F.)
- Correspondence:
| | - Manuela Branco
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (M.B.); (J.C.F.)
- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - José Carlos Franco
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (M.B.); (J.C.F.)
- Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
85
|
Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet Sci 2020; 7:vetsci7040166. [PMID: 33143134 PMCID: PMC7712510 DOI: 10.3390/vetsci7040166] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance. In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee colonies. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause. It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, various factors have been considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem. Thus, it is obvious that there are many factors affecting honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses. The present review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.
Collapse
|
86
|
Survival of an Extinct in the Wild skink from Christmas Island is reduced by an invasive centipede: implications for future reintroductions. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Chen Y, Coleman TW, Poloni AL, Nelson L, Seybold SJ. Reproduction and Control of the Invasive Polyphagous Shot Hole Borer, Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae), in Three Species of Hardwoods: Effective Sanitation Through Felling and Chipping. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1155-1163. [PMID: 32885817 DOI: 10.1093/ee/nvaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The invasive ambrosia beetle polyphagous shot hole borer is one member of the cryptic species, Euwallacea nr. fornicatus (Eichhoff), and poses a great ecological and environmental threat to ornamental and native hardwood trees and agriculturally important tree crops in southern California, United States. We monitored the emergence of polyphagous shot hole borer adults from chipped and unchipped cut logs of infested boxelder, Acer negundo L. (Sapindales: Sapindaceae), California sycamore, Platanus racemosa Nutt. (Proteales: Platanaceae), coast live oak, Quercus agrifolia Née (Fagales: Fagaceae), and red willow, Salix laevigata Bebb (Malpighiales: Salicaceae), every week for 4 to 5 mo. No polyphagous shot hole borer adults emerged from chipped or unchipped coast live oak logs, suggesting this species is not a preferred reproductive host. However, following chipping, a small number of polyphagous shot hole borer adults emerged from boxelder (up to 7 wk) and from California sycamore and red willow (both up to 9 wk). A significantly greater number of polyphagous shot hole borer adults emerged from unchipped logs of boxelder (up to 14 wk) and California sycamore and red willow (both up to 5 mo). Chipping of boxelder, California sycamore, and red willow by using common commercially available chippers reduced polyphagous shot hole borer emergence by over 97%. Emerged polyphagous shot hole borer adults were strongly female-biased, regardless of host. Chipping treatments were highly effective, but for the complete elimination of polyphagous shot hole borer from woody material, other sanitation measures such as solarization in conjunction with chipping are recommended. Environmental and ecological impact of polyphagous shot hole borer is reviewed and discussed.
Collapse
Affiliation(s)
- Yigen Chen
- Department of Entomology and Nematology, University of California, Davis, CA
| | - Tom W Coleman
- USDA Forest Service, Forest Health Protection, San Bernardino, CA
| | - Adrian L Poloni
- Department of Entomology and Nematology, University of California, Davis, CA
| | - Lori Nelson
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA
| | - Steven J Seybold
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA
| |
Collapse
|
88
|
Tomoshevich MA. Interrelations between Alien and Native Foliar Fungal Pathogens and Woody Plants in Siberia. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425519060143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Spencer EE, Barton PS, Ripple WJ, Newsome TM. Invasive European wasps alter scavenging dynamics around carrion. FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Pérez-González A, Cotoras DD, Acosta LE. Early detection of an invasive harvestman in an oceanic island? Remarkable findings of Parabalta reedii (Opiliones, Gonyleptidae) in the Juan Fernández archipelago, Chile. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2020. [DOI: 10.1080/01650521.2020.1809611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abel Pérez-González
- División Aracnología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” – CONICET, Buenos Aires, Argentina
| | - Darko D. Cotoras
- Entomology Department, California Academy of Sciences, San Francisco, CA, USA
| | - Luis E. Acosta
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica II and Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-U.N.C, Córdoba, Argentina
| |
Collapse
|
91
|
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM. Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc 2020; 95:1511-1534. [PMID: 32588508 PMCID: PMC7687187 DOI: 10.1111/brv.12627] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long‐term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
Collapse
Affiliation(s)
- Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic.,Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Dan Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tim M Blackburn
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, U.K.,Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - James T Carlton
- Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville, Mystic, CT, 06355, U.S.A
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Llewellyn C Foxcroft
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Conservation Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,ISPRA, Institute for Environmental Protection and Research and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany.,Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany.,Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, 180 Canfield St., Morgantown, West Virginia, U.S.A.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, CZ-165 00, Czech Republic
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, U.S.A
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.,Institute of Ecology and Biodiversity, Santiago, Chile
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic
| | - Helen E Roy
- U.K. Centre for Ecology & Hydrology, Wallingford, OX10 8BB, U.K
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avd. Américo Vespucio 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
92
|
Longitude, Forest Fragmentation, and Plant Size Influence Cycas micronesica Mortality Following Island Insect Invasions. DIVERSITY 2020. [DOI: 10.3390/d12050194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Island invasions may cause severe changes in biodiversity, but the factors that influence these changes are not well understood. We established 120 plots in Cycas micronesica habitats throughout Guam in 2005 following the invasion of the armored scale Aulacaspis yasumatsui, then observed plant mortality through 2020. We used transects in Yap as benchmarks, as the Yap C. micronesica population is not threatened. The initial Guam plots contained about 1600 seedlings, 1160 juveniles, and 1240 mature plants per ha. Seedling mortality was 100% by 2006, juvenile mortality was 100% by 2014, and the 2020 census revealed 96% mortality of the plant population. Localities in western Guam and isolated forest fragments exhibited the greatest mortality, with 100% extirpation from two fragmented western localities. The juvenile and mature trees in Yap were unchanged from 2010 to 2018, but the seedling count was heterogeneous among the years. Constrained recruitment from seedlings to juveniles explained these dynamics. Yap transects contained about 6120 seedlings, 3400 juveniles, and 1250 mature plants per ha. Biological control of the invasive insects remains the acute conservation action needed for the Guam population. Lessons learned may be useful in other regions where invasions of non-native pests threaten biodiversity.
Collapse
|
93
|
Lee RH, Wang CL, Guénard B. The ecological implications of rubber‐based agroforestry: Insect conservation and invasion control. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roger Ho Lee
- School of Biological Sciences The University of Hong Kong Hong Kong City Hong Kong
| | - Chase Liu‐Wei Wang
- School of Biological Sciences The University of Hong Kong Hong Kong City Hong Kong
| | - Benoit Guénard
- School of Biological Sciences The University of Hong Kong Hong Kong City Hong Kong
| |
Collapse
|
94
|
McClure KM, Fleischer RC, Kilpatrick AM. The role of native and introduced birds in transmission of avian malaria in Hawaii. Ecology 2020; 101:e03038. [PMID: 32129884 DOI: 10.1002/ecy.3038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai'i 'amakihi (Chlorodrepanis virens) by 7-14%, but mortality from malaria could not explain gaps in this species' distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result.
Collapse
Affiliation(s)
- Katherine M McClure
- Department Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, California, 95060, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, USA
| | - A Marm Kilpatrick
- Department Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, California, 95060, USA
| |
Collapse
|
95
|
Pedlar JH, McKenney DW, Yemshanov D, Hope ES. Potential Economic Impacts of the Asian Longhorned Beetle (Coleoptera: Cerambycidae) in Eastern Canada. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:839-850. [PMID: 31808523 DOI: 10.1093/jee/toz317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The Asian longhorned beetle (Anoplophora glabripennis Motschulsky) continues to pose a significant risk to deciduous forests around the world. We assess Asian longhorned beetle-related risks in eastern Canada by generating current and future climate suitability maps, import-based likelihood of introduction estimates for each urban center in our study area, and potential economic impacts in both urban and natural settings. For the current period, climatic suitability for Asian longhorned beetle was highest in southern Ontario, but was projected to expand significantly northward and eastward by midcentury. High likelihood of Asian longhorned beetle introduction was associated with large urban centers, but also smaller centers with high levels of pest-associated imports. Potential costs for the removal and replacement of Asian longhorned beetle-impacted street trees ranged from CDN$8.6 to $12.2 billion, with the exact amount and city-level ranking depending on the method used to calculate risk. Potential losses of merchantable maple (Acer) timber were estimated at CDN$1.6 billion using provincial stumpage fees and CDN$431 million annually when calculated using a combination of economic and forestry product statistics. The gross value of edible maple products, which could potentially be affected by Asian longhorned beetle, was estimated at CDN$358 million annually. These values can help inform the scale of early detection surveys, potential eradication efforts, and research budgets in the event of future Asian longhorned beetle introductions.
Collapse
Affiliation(s)
| | - Daniel W McKenney
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Marie, ON, Canada
| | - Denys Yemshanov
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Marie, ON, Canada
| | - Emily S Hope
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Marie, ON, Canada
| |
Collapse
|
96
|
Egli L, LeVan KE, Work TT. Taxonomic error rates affect interpretations of a national‐scale ground beetle monitoring program at National Ecological Observatory Network. Ecosphere 2020. [DOI: 10.1002/ecs2.3035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lauren Egli
- Département des sciences biologiques Université du Québec à Montréal CP 8888, succursale Centre‐ville Montréal Québec H3C 3P8 Canada
| | - Katherine E. LeVan
- National Ecological Observatory Network 1685 38th Street #100 Boulder Colorado 80301 USA
| | - Timothy T. Work
- Département des sciences biologiques Université du Québec à Montréal CP 8888, succursale Centre‐ville Montréal Québec H3C 3P8 Canada
| |
Collapse
|
97
|
Kaczvinsky C, Hardy NB. Do major host shifts spark diversification in butterflies? Ecol Evol 2020; 10:3636-3646. [PMID: 32313623 PMCID: PMC7160180 DOI: 10.1002/ece3.6116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022] Open
Abstract
The Escape and Radiate Hypothesis posits that herbivorous insects and their host plants diversify through antagonistic coevolutionary adaptive radiation. For more than 50 years, it has inspired predictions about herbivorous insect macro-evolution, but only recently have the resources begun to fall into place for rigorous testing of those predictions. Here, with comparative phylogenetic analyses of nymphalid butterflies, we test two of these predictions: that major host switches tend to increase species diversification and that such increases will be proportional to the scope of ecological opportunity afforded by a particular novel host association. We find that by and large the effect of major host-use changes on butterfly diversity is the opposite of what was predicted; although it appears that the evolution of a few novel host associations can cause short-term bursts of speciation, in general, major changes in host use tend to be linked to significant long-term decreases in butterfly species richness.
Collapse
Affiliation(s)
- Chloe Kaczvinsky
- Department of Entomology and Plant PathologyAuburn UniversityAuburnALUSA
| | - Nate B. Hardy
- Department of Entomology and Plant PathologyAuburn UniversityAuburnALUSA
| |
Collapse
|
98
|
Frank SD, Just MG. Can Cities Activate Sleeper Species and Predict Future Forest Pests? A Case Study of Scale Insects. INSECTS 2020; 11:E142. [PMID: 32106554 PMCID: PMC7142728 DOI: 10.3390/insects11030142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50-100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case studies of scale insects that are important pests of urban trees in parts of the US. Melanaspis tenebricosa and Parthenolecanium quercifex are geographically native to the US but take on invasive characteristics such as higher survival and reproduction and become disconnected from natural enemies on urban trees due to the urban heat island effect. This allows them to reach high densities and damage their host trees. Parthenolecanium quercifex density increases up to 12 times on urban willow oaks with just 2 °C of warming due to higher survival and adaptation to warmer temperatures. The urban heat island effect also creates a phenological mismatch between P. quercifex and its parasitoid complex, and so egg production is higher. Melanaspis tenebricosa density can increase 300 times on urban red maples with 2.5 °C of warming. This too is due to direct effects of warmer temperatures on survival and fecundity but M. tenebricosa also benefits from the drought stress incurred by warmer urban trees. These effects combine to increase M. tenebricosa density in forests as well as on urban trees at latitudes higher than its native range. We illustrate how cities provide a unique opportunity to study the complex effects of warming on insect herbivores. Studying pestilent urban species could be a pragmatic approach for identifying and preparing for sleeper species.
Collapse
Affiliation(s)
- Steven D. Frank
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA;
| | | |
Collapse
|
99
|
Keinath S, Frisch J, Müller J, Mayer F, Rödel MO. Spatio-Temporal Color Differences Between Urban and Rural Populations of a Ground Beetle During the Last 100 Years. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
100
|
Łukowski A, Adamczyk D, Karolewski P. Survival and Recovery of the Pine-Tree Lappet Dendrolimus pini When Subjected to Simulated Starvation. INSECTS 2020; 11:insects11010067. [PMID: 31968638 PMCID: PMC7022933 DOI: 10.3390/insects11010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/29/2022]
Abstract
There are many reasons to study the survival and recovery of animals after starvation in simulated transport conditions or other passive dispersal methods. To do so, we chose Dendrolimus pini, an economically important pest of Scots pine with great potential in terms of passive dispersal outside its territory. In this work, we sought to answer the following questions: What is the maximum survival of different instar larvae after total starvation? Does access to dry tissues of the preferred host plant extend the lifespan of the larvae? Does the possibility of larvae recovery exist after starvation for various periods? We found that older larvae survived longer without food than younger larvae. Moreover, dry food did not extend the lifespan of the larvae. Our observations showed that insects were interested in food and tasted it at the beginning, but they did not feed on it for long. Furthermore, larvae recovery was indeed possible, and the time of starvation did not significantly affect this. We generally concluded that the D. pini larvae were characterized by the ability to survive without food for up to one month, which confirms that this species is able to survive long durations of transport to almost anywhere in the world.
Collapse
Affiliation(s)
- Adrian Łukowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
- Correspondence:
| | - Dawid Adamczyk
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| | - Piotr Karolewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| |
Collapse
|